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NETWORK PARADOXES AND THE INEFFICIENCY
OF NONCOOPERATIVE GAMES

Joel E. Cohen
Rockefeller University

1230 York Avenue, Box 20
New York, NY 10021

Summary

One might think that adding an additional road
to a traffic network woule improve, or at least
not worsen, the time travelers take to go from
a given origin to a given destination in the net-
work. In 1968, D. Braess showed that adding
a road to a congested traffic network can some-
times worsen the travel time from origin to des-
tination for all travelers. Analogous surprises
can occur in networks of queues: adding servers
may slow the average time through a network
for all travelers. (Strangely, in queuing net-
works, giving travelers more information about
queue lengths may make them worse off than
giving them less information.) These results
are special cases of a general theorem, due to
P. Dubey in 1986: in n-person noncooperative
games with smooth payoff functions, Nash equi-
libria are generically Pareto-inefficient. This tu-
torial talk will assume no prior background in
the theory of traffic networks, queues or games.
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Block-decodable Runlength-limited Codes Via Look-ahead Technique

K.A. Schouhamer humink

Since the early 1970s, coding methods based on make it easier to preserve a particular mapping between the
(d,k)-constrained sequences have been widely used in such high- source and the code symbols, and, obviously, error propagation
capacity storage systems as magnetic and optical disks or tapes. is localized to one decoded m-block. Block-decodable codes are
Properties and applications of (dk)-constrained sequences, or highly suitable in conjunction with Reed-Solomon error control
runlength-limited (RLL) sequences as they are often called, are codes. In the preferred embodiment of the coding system, the
surveyed in [1]. The number of sequential like symbols in a (bi- codewords have a i-1 correspondence with the elements of the
nary) sequence is known as runlength. A (dk) RLL sequence is finite field GF(2-), thus enabling the construction of, for in-
a sequence of binary symbols characterized by two parameters, stance, a Reed-Solomon code directly over the (dk)-constrained
(d + I) and (k + 1), which stipulate the minimum and maximum codewords. A notable drawback of state-of-the-art block-de-
runlength, respectively, that may occur in the sequence. Closely codable code constructions, however, is the fact that at code
related to RLL sequences are (dk) sequences. A binary sequence rates R = m/n approaching the Shannon capacity of the
is said to be (dk) constrained if the number of 'zeros' between (dk)-constrained channel, the implementations can be fairly
any pair of consecutive 'ones' is at least d and at most complex, involving long codewords. For example, the minimum
k, k > d. A (d1, k)-constrained sequence is converted into a (dk) codeword lengths allowing a rate R = 2/3, (1,7) block-decodable
RLL sequence by a simple coding step which is known as code and a rate R = 1/2, (2,7) block-decodable code are 33 and
precoding. The 'ones' in the (d,k)-constrained sequence indicate 34, respectively. Our design approach is based on the observa-
the positions of a transition I -- 0 or 0 -4 I of the corresponding tion that good codes must be constructed on RLL sequences
runlength-limited sequence. rather than (dk) sequences. In the literature, the terms (d~k) se-

Codes are used to translate source data into the constrained quence and RLL sequence are usually used as synonyms, and
sequence. Commonly, the source data is partitioned into words the design of encoders that generate RLL sequences is almost
of length mn, and under the coding rules, these m-tuples-are always conducted by designing encoders that generate (d~k) se-
translated into n-tuples, called codewords. Popular (d, k) codes quences followed by a precoder. It is generally believed that this
incorporated in disk file systems are the (2,7) and the (1,7) codes strategy does not entail a loss of performance in terms of coder
of rate rn/n = 1/2 and rate 2/3, respectively [1]. The codes are complexity and error propagation. It will be shown, however,
designed using the bounded delay method [2] or the ACH slid- that it is surprisingly profitable in terms of error propagation to
ing-block code algorithm [3]. The principal feature of a (dk) (or design RLL encoders directly, i.e. without the intermediate step
other finite-type constraints) code constructed with the sliding- of a (dk)-constrained sequence. The new RLL codes to be dis-
block code algorithm is that coded sequences can be decoded cussed are block decodable, while at the same time they are
by examining a limited number of consecutive symbols without simpler to implement than (dk) block-decodable codes currently
relying on external state information. As an immediate conse- being used [6].
quence, these codes have a limited amount of error propagation.
For example, a single bit error in a received sequence encoded References
by the (2,7) sliding-block code propagates at most over four
decoded bits. Blaum [4] showed that the error propagation of [11 K.A.S. Immink. Coding Techniques for Digital Recorders. Prentice-Hall
sliding-block codes presents a problem as it entails an extra load International (UK) Ltd., Englewood Cliffs, New Jersey, 1991.
to the error correction circuitry usually used in conjunction with (21 P.A. Franaszek, 'On Future-dependent Block Coding for Input-res-
the (d, k) code. tricted Channels', IBM J. Res. Develop., voi. 23, pp. 75-81. 1979.

An alternative to the above sliding-block coding scheme [3] R.L. Adler. D. Coppersmith, and M. Hassner. 'Algorithms for Sliding
Block Codes. An Application of Symbolic Dynamics to Information

was proposed by Tang and Bahl [5]. There, the authors use Theory', IEEE Trans. Inform. Theory. vol. IT-29. no. 1, pp. 5-22. Jan.
codes compiled from codewords of fixed length which can be 1983.
decoded without the knowledge of preceding or succeeding [41 M. Blaum, 'Combining ECC with Modulation: Performance Compar-
codewords. Codes with this property, that is, codes that can be isons', IEEE Trans. Inform. Theory, vol. IT-37, no. 3. pp. 945-949. May

decoded by observing single codewords (the encoding operation 1991.
[51 D.T. Tang and L.R. Bahl. 'Block Codes for a Class of Constrained

is allowed to be state dependent), will be called block(- Noiseless Channels'. information and Control. vol. 17. pp. 436-461. 1970.
decolable) codc.. Evidently, block-decodable codes offer an ad- [61 K.A.S. Immink. 'Block-decodable Runlength-limited Codes Via Look-
vantageous solution relative to sliding-block codes since they ahead Technique'. Philips J. Res.. vol. 46, no. 6. pp. 293-310. 1991.

The author is with Philips Research Laboratories, P.O. Box 80.000, 5600 JA Ein-
dhoven, The Netherlands. E-mail: immink(d)prl.philips.nl
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On the Optimization 4f Constrained Channel Codes
P. A. Franassek J. A. Thomas

IBM T.J.Watson Research Center, P.O.Box 704, Yorktown, Heights, NY 10598.

Abstract the entire weight is associated with that IP (a natural partition).
At higher levels, the partition of the weight of a state u, must be

A variety of techniques have been proposed for the a combination of the subweights in the partitions of the successor
construction of codes for input restricted channels, in- states to vi, since each IP going through state vi corresponds to
cluding variable length codewords, codes based on par- a set of subweights of the successor states of ai. Thus a search
titioning the state successor trees, and methods based for a partition of the tree can be reduced to a search for a set of
on state splitting. In this paper, new methods that compatible partitions of the weights of the states of the tree. A
avoid exhaustive search are proposed for partitioning tree partition can be obtained as follows:
state successor trees into subtrees termed independent
paths that are used for the coding. First, the approxi- 1. Choose a rate for the code p/q. Calcalate the weights

mating eigenvector algorithm is used to determine the of the states using the (A9, 2P) approximate eigenvector

weights of the states. These weights are then parti- algorithm[l, 2, 4, 5].

tioned into integer parts, which are used to form the 2. Algorithm for partitioning successor trees into IP's
independent paths (IP's). Consistency of the weights The UP phase:
alone is checked in the first phase of the algorithm, and For a specific depth of tree R > 1 starting with a
in the second phase, the partitions are used to form the natura paritio depth of find potential pition
IP's and to allot information symbols. These methods of weights at depth i that will be compatible with the

can also be used to determine the sequence of splits partits ated at d e c w t.
needed foi the state splitting technique. partitions calculated at depth i + 1.

Stop when a complete partition (1,1,... ,1) is obtained

The problem of encoding information to fit constraints has many at the root of the tree.
applications in magnetic recording and optical communication. The DOWN phase: a depth first search for a compatible
Given a finite-state desciption of the channel constraints, and a partition.
desired coding rate, one way to obtain a code [1, 2] involves the
partition of a state successor tree (the tree of paths starting at a Starting with a complete partition (1,1,... ,l) at the
a particular state) into subtrees with specified properties. For root, for i = 0,1, ... , R- 1, choose a partition at depth
one class o" codes, the subtrees correspond[3] to ones associated i + 1 that is compatible with the chosen partition at
with a set of split states such as obtained via the method of depth i.
Adler, Coppersmith and Rassaer[41 It is usulaUy desirable to Stop when a vatural partition is obtained at the leaves
find a code corresponding to a tree partition at mnnimal depth, or of the tree.
equivalently (for stationary codes) requiring a ,inimum number
of splits. Moreover, practical considerations generally dictate 3. The partition of the states yields IP's, to which input se-

that the partition depth D be bounded by a small integex. quences may be alloted using the methods given in [2].

One way to proceed is via an exhaustive search over all possible By varying the conditions on the successor tree partitions, for
state splits. We here describe an algorithm which organises the example by permitting a dependence on the path used to reach a
search somewhat differently, first considering only integer parti- state, there is a potential for more general code structures. The
tions of state weights in the tree ( no matter how obtained ), then, up phase, using only state weights, provides a means for bound-
once a complete partition has been obtained, reconstructing po- ing the minimum required value of the depth D. For stationary
tential candidate tree partitions. We begin with the definition of codes, the algorithms provides an alternative to searching over
an independent path, a central concept of the method. all possible state splits, and provide a lower bound on the number
Definition: An independent path (IP) of length N is a set of of rounds of state splitting required.
paths, starting at some state a , with the property that they can
represent one sequence of N input blocks, followed by anything
else. References

Consider the state successor tree associated with state a. The [i] P. Franassek. A general method for channel coding. IBM J.
encoder mapping defines equivalence classes of paths: those that R
correspond to the same sequence of input bits of length N are in
the same class. To distinguish between equivalence classes given [2] P. Franassek. Construction of bounded delay codes for dis-

only the set of output states then requires that each class corre- crete noiseless channels. IBM J. Res. Develop., 26:506-514,
spond to distirct states at some level of the state successor tree. 1982.

The equivalence classes correspond to IPs, and the decodability [3] P. Franassek. Coding for constrained channels: a comparison
requirement is that IPs be distinguishable at some depth D. The of two approaches. IBM J. Res. Develop., 33(6):602-608,
partition of the state successor tree into IP's is based on neces- November 1989.
sary conditions for the existence of a code rather than sufficient [4] R.L. Adler, D. Coppersmith, and M. Hassner. Algorithms
conditions as in [4]. for sliding block codes - an application of symbolic dynam-

Given a partition ( i.e. a set of M's), one may then construct a ics to information theory. IEEE Trans. Inform. Theory, IT-
code[l, 2]. The number of IPs that start at each state (the weight 29(1):5-22, 1983.
of the state) corresponds to a component of an approximating [5] B.H. Marcus, P.H. Siegel, and J.K. Wolf. Finite state modu-
eigenvector. At each level of the tree, the weight of the node lation codes for data stnrage. IBEE Journal on Selected Areas
is split among the different IP's that go throutgh the node. At in Communication, 10(l):5-37, January 1992.
leaves of the tree, each state lies ertixely within a rirsgle IP, and
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Construction of Polynomial-Size Encoders with Small
Decoding Look-ahead for Input-Constrained Channels

JONATHAN J. ASHLEY* BRIAN H. MARCUS* RON M. ROTHt

Input-constrained channels, also known as con- In [3], Ashley constructed encoders with order

strained systems, are widely-used models for describ- which is linear in the number k of states in a deter-
ing the read-write requirements of secondary storage ministic graph G that presents the constrained sys-

systems, such as magnetic disks or optical memory tern S. The resulting encoders have rate pf : qf for

devices. A constrained system S is defined as the sone ( = (0k). When these encoders are tranislated
set of constrained sequences obtained by reading the into rate p : q encoders, the latter have order 0(k),
labels of paths of a finite labeled directed graph G. but typically they are not sliding-block decodable.

One goal in the study of constrained systems is In this work, we present a class of encoders, called

designing encoders that map unconstrained binary stethering encoders, based on a construction of Adler,

sequences, referred to as source sequences, into con- Goodwyn, and Weiss in [2]. Using complexity results,

strained sequences of a given constrained system S. we show that the number of gates and memory-cells

A rate p : q finite-state encoder encodes a p-block of required for a hardware implementation of these en-

source symbols to a q-block in S in a state-dependent coders is at most polynomial in k. We show that. this

manner. also holds for the construction in [3].

An encoder is lossless of finite order if there is an Then we show that for any constrained system S

integer N such that the encoder state at each time and any positive integers p and q such that p/q <

slot r, together with the q-block generated at times c(S), stethering encoders have order which is at most

r, r+ 1,..., r+ N - 1, determine uniquely the source linear in k and is slightly smaller than the one guar-

p-block that was input at time slot r. The smallest anteed in [3]. We show that the stethering encoders

number for which this is possible is called the order and those in [3] have polynomial-size decoders.

of the encoder. An encoder is sliding-block decodable For constrained systems S of finite memory and

if the source sequence which was input to the encoder rate p/q <_ c(S)-((log2 e)/(2Pq)), stethering encoders

can be reconstructed by applying a decoding function are sliding-block decodable with window size at most

on a 'window' of symbols in the constrained sequence. quadratic in k.

Several schemes have been suggested for construct-
ing finite-state encoders, most notable of which is References
the Adler-Coppersmith-Hassner (state splitting) al-
gorithm [1]. The latter provides encoders which are [1] R.L. ADLER, D. COPPERSMITH, M. I1A!SNER,

lossless of finite-order. Furthermore, for the impor- Algorithms for sliding block codes - an applica-

tant subclass of constrained systems of finite mem- tion of symbolic dynamics to information theory,

ory (such as (d. k)-run-length-limited systems), the IEEE Trans. Inform. Theory, IT-29 (1983), 5-

resulting encoders are sliding-block decodable. How- 22.
ever, there are no known polynomial upper bounds,

in terms of the number of states in a deterministic [2] R.L. ADLER, L.W. GOODWYN, B. WEISS,

graph presentation G, on the window length or ini- Equivalence of topological Markov shifts. I.%rad

plementation size. J. Math., 27 (1977), 49 63.

*IBM Research Division, Almaden Research Center, [3] J.J. ASHLEY, A linear bound for sliding block

650 Harry Road, San Jose, CA 95120. decoder window size, IEEE Trans. Inform. The-

t Computer Science Department, Technion - Israel In- ory, I'1-34 (1988), 389-399.

stitute of Technology, Haifa 32000, Israel.
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ENUMERABLE MULTI-TRACK (d, k) BLOCK CODES

EDWARD K. ORCUTT AND MICHAEL W. MARCELLIN
Department of Electrical and Computer Engineering

The University of Arizona
Tucson, AZ 85721

Recently, a new class of run-length-limited codes, referred to
as two-dimensional or multi-track modulation codes, has been Consider an output symbol c(1) at time I derived from the

developed [1]. These codes are useful in applications such as outputs of each of the n tracks zi(l) as

digital magnetic recording in which constraints are placed on ,-1
both the minimum and maximum number of O's which occur c(l) - • zi(l)2. (1)
between l's. These constraints are parameterized by d and k, i-o
respectively.

In NRZI encoding, a '1' is represented by a transition change Hence, a new symbol set A 0,,... ,2" - 1) is formed and a

in polarity states while a '0' is symbolized by no transition. codeword of length m is described by c = (co, cl,..., - ,_t..) E C
In order to prevent adjacent transitions from interfering with where C C A- is the set of codewords (chosen to satisfy the

each other (intersymbol interference (ISI)), it is necessary to multi-track (d, k) constraints). The goal of our enumeration

ensure that some number of 'V's occur between 'l's. This ne- scheme is to lexicographically order the set of codewords.

cessitates the d constraint. Also, because timing information Consider the one-step state transition matrix B.(d, k) in

is extracted from the data itself, transitions must not be too which a value of 1 for the (ij)tA element indicates that state

far apart. Hence, the k constraint, which limits the number of S, can immediately follow state S.. This information can also

consecutive '0's which occur between 'l's, is enforced. be summarized in the form of a trellis, indicating allowable state

In the past, (d, k) codes have been devised such that each transitions. In ouf method, we augment the trellis description

track individually satisfies both constraints. This results in the by associating 2" values N,40(i) (p = 1,2,...., 2") with each

average capacity for all tracks to be equal to the capacity of node. The argument I represents the time index of the trellis
single-track (d, k) constraints; where capacity is the theoretical and the superscript i(l) denotes the index of a state at time I in
maximum code rate (ratio of source bits to code bits). How- the trellis. For a given terminal set, these N,(4(l) describe the
ever, by having each track satisfy the d constraint (ISI must number of sequences of length m - I which begin in that state
be controlled in each track) but using multiple tracks to satisfy with a symbol less than p and end in any terminal state.
the k constraint, increased capacity can be realized, relative to The determination of the lexicographic number of a given
the conventional single-track (d, k) code [1]. This increase in codeword is based upon knowing the number of allowable se-
capacity is realized because, in effect, the k constraint has been quences which begin with each of the elements of A at each
relaxed. For multi-track codes, it is assumed that all n tracks node of the trellis; i.e., the NP(4(l). We associate a unique inte-
are read in parallel and used (jointly) to derive clocking as op- ger value with each allowable codeword with the resulting set of
posed to single-track codes in which each track individually is integer values forming a contiguous set. This set takes the form
required to meet the k constraint. 40,1 ... , I C 1 -1} where I C I is the number of codewords in

For example, consider the following sequences which satisfy the code.
a two-track (1,2) constraint. Encoding of a K-bit binary source word begins by first con-

track 1 00001010001010010 verting it to its decimal equivalent 6. Then a path corresponding

track 2 01000001000000100 to both 0 and the Np(O(l) is traversed through the modified trel-
lis. At the path's completion, the codeword which results is that

It is observed that although both tracks individually have runs whose value in the lexicographic ordered set of all codewords is
of O's longer than k = 2, both tracks are never 0 simultaneously equal to 6.
more than twice consecutively. Decoding of a given codeword c entails following a path (dic-

In this paper, we propose a method to construct multi-track tated by c) through the modified trellis and keeping a running
(d, k) block codes which can be implemented using an enumera- sum of the Np')(1) encountered at each node of the path. At the
tion scheme based on a trellis. While block codes can be imple- path's completion, the value of the running sum is equal to the
mented via look-up tables, the amount of memory required for lexicographic number of c.
such an implementation increases exponentially with the block An interesting facet of this scheme is that the modified trellis
length. Our method is a computational algorithm which requires contains all the relevant information concerning both decoding
only a linear increase of memory (and computations) with block and encoding of codewords. Hence, the actual codewords under
length (2]. this scheme need not be known. They are generated automati-

Enumeration is a process in which the elements of a given set cally by the algorithm.
are assigned an index according to their lexicographical order.
For m-tuples of numbers, a lexicographic ordering can be de-
fined as follows. For x = ( X,.....,,,-i) and y = (yo,..., y,.,i), REFERENCES
then x < y if there exists some index i such that zx < yt and [1] M. Marcellin and H. Weber, "Two-dimensional modulation
zi = vj V j < i. We incorporate a modified trellis descrip- codes," IEEE Journal on Selected Areas in Communications,
tion of the multi-track (d, k) channel constraints to devise easily vol. 10, pp. 254-266, Jan. 1992.
enumerable block codes with good code rates.

This work was supported by International Business Machines Corp- [21 E. K. Orcutt, "Encoding of multi-track (d, k) modulation
oration and by the National Science Foundation under Grant No. NCR- codes," Ph.D. dissertation, The University of Arizona, Aug.
9258374. 1992.

5



A UNIVERSAL ALGORITHM FOR GENERATING OPTIMAL AND NEARLY OPTIMAL
RUN-LENGTH-LIMITED, CHARGE-CONSTRAINED BINARY SEQUENCES

Paul E. Bender Jack K. Wolf
UALCOMM Incorpqrated Center for Magnetic Recording Research

11555 Sorento Valley Road University of California, San Diego
San Diego, CA 92121 L Jolla, CA 92093

Abat- This paper presents an algorithm for run-length- From the state transition probabiliy matrix, we can find pA,
limiting and charge-constraining binary data. These constraints are the probability of being in a charge state i, where
specified by the three parameters (d,k c). The first two -c+d+lfi:c. In terms of these known values, the average
constraints, d and k, put a lower and an upper bound on the run- input length is
lengths. The third parameter, c, puts an upper bound on the ( -_÷,.' ( -c÷k÷I
absolute accumulated charge. An algorithm is optimal if its I - ,-I D_'ipai +pk-| ,pXj1
maximum average rate equals the capacity of the constraint. The l.(p~d,k,c) = \ .-e..d+I ,.--,.d.. )
algorithm that this paper presents, known as the bit stuff algorithm, 1-p
is a variable rate algorithm that is both simple and universal. It is and the average output length is
optimal for the (d,--,-o), the (d,d+Leo), and the (2c-2,coc) (+ p - -•.p,)
constraints. It is nearly optimal for all other constraints. L(pdk.c) = Lu(pdkc) + d + p, + I

Inrductio Therefore, the average information rate is
In [1], Lee presented an algorithm for sequentially (L.(pd,k,c)Y (l'1

satisfying the k and c constraints of a (O,k,c) constrained I(p,d,k,c) =' (p)l 1 ',1+(1-p)logw---)
sequence by inserting bits into an arbitrary data sequence. We fL,, (p,d,k,c) APJ [,l-p+J
present the bit stuff algorithm for simultaneously satisfying the k We maximize the average information rate with respect to p in
and c constraints of a (d,k,c) constrained sequence by inserting order to find the maximum average information rate of the bit stuff
bits into an arbitrary data sequence. code for a particular (dk,c) constraint

Bit Stuff Algorithm Oatimal Soai Cas
The encoder for the (d,k,c) bit stuff algorithm uses two For the (d,e-,-e) constraint, maximizing the equation for

variables to keep track of the information need to correctly insert the average information rate and setting p., = ;, we have the
the extra bits. The first variable, k', keeps track of the current run- parametric equations for the capacity of a (d,c.,--) code.
length, where a run is a string of consecutive O's. If k' is ever For the (d,d + Loo) constraint, maximizing the equation for
equal to k, then the encoder inserts a 1 to avoid a possible the average information rate and setting p = A , we have the
violation of the k constraint. The second variable, c', keeps track parametric equations for the capacity of a (a,"d + 1,'.) code.
of the accumulated charge in the opposite direction of the current For the (2c-2,o.,c) constraint, maximizing the equation
run's charge. If c' is ever equal to -c + 1, then the encoder inserts for the average information rate and setting p-, = A •,we have the
a 1 to avoid a possible violation of the c constraint. Then, after parametric equations for the capacity of a (2c - ,c) code.
every 1 the encoder inserts d 0's to avoid a possible violation of Sub-Optimalitv of Remaining Cases
the d constraint.

The decoder also keeps track of the variables k' and c', Now we argue that the remaining cases are sub-optimal.
using the values to delete the extra bits inserted by the encoder. All bit stuff (d,k,c) constrained sequences that we have not shown

to be optimal are in the category 0 < d + I < k + I < 2c- 15 -. We
Performance consider the two equally probable data sequences [Or-d[or-l 111

We model the encoder by a variable length constraint graph and [0o - 1[Or- 1010. If the bit stuff encoder starts in state
[2, 3]. The states in our graph represent c'. The edges in our -C + 1, then it will end in state -c+l and output the seIuen(es
graph represent the allowable runs. When O<d+ 1k:2c-l, 1tl[0]kl[0]dl[0]dl[0]il[0] and l[0]t-'l0]r-'I[0]F l[0*r.
we can represent the graph for such a (d, k,c) constrained sequence Since both sequences have the same starting and ending state, both
by the (2c - d) x (2c -d) matrix sequences have an identical set of predecessors and successors.

o0 ' ... 0 0 D/DI However, the output sequence for the first data sequence is longer
0 0 than the output sequence for the second data sequence. Therefore,o 0 -.. 0 I/D in order to maximize the average information rate, the probability

A(DoD) =of the first data sequence must be less than the probability of the
0D0 D.I ... &.-'D. D' second data sequence, which contradicts the fact that the data

o ...' -sequences are equally probable.
Although these remaining cases are sub-optimal, numerical

4Dg ... D-'D• &D ... 0 maximization of the average information rate shows that they are
where the superscripts of D, and DA represent the number of O's nearly optimal.
and I's respectively.

The capacity of such a graph is, C(d,k,c) = -log, A, where
A is the smallest positive root of the characteristic equation We have presented a simple and efficient algorithm for
det(I -A(z,z)) = 0. (d,k,c) constraining data. We have shown that the algorithm is

In order to get a description of the corresponding data optimal for (d,oo,ea), (d,d+l,.-), and (2c-2,e-,c) constraints
sequences for the bit stuff encoder, we remove the 0's and l's and nearly optimal for all other (d,k,c) constraints.
inserted by the bit stuff algorithm from the variable length graph References
described by A(D.,LA), getting the (2c-d)x(2c-d) matrix

[-0.. 0 f~• [ll P. Lee, Combined error-correctin amodulation recording

0 0 .. 0 0 41J0L4 dCLPh.D. Dissertation, University of California at San
0 0 ... 0 DD • Diego, 1988.

*(DO,[ d -1 [2] K. Norris and D. S. Bloomberg, "Channel capacity of
0 0 D4/ ... 9L Dt-Ltr [ charge-constrained run-length-limited codes," J=
0 iqr ... It-"-/ B-r Transactions on Ma191m. ,, vol. MAG-17, pp. 3452-3455,

[/gg- ... /:-,-*/f /:-df .. 0 November 1981.

Then, assuming that our data are independent, identically [3] K. J. Kerpez, A. Gallopoulos. and C. Heegard, "Maximum
distributed, binary digits with the probability of a 0 given by p, the entropy charge-constrained run-length codes," I=
slate transition probability matrix for the (d,k,c) bit stuff code is Journal on Selected Areas in Communication. vol. 10, pp.
A(p,! - p). 242-253, January 1992.
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Design of some new Balanced Codes.
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A binary word of length n E IN is called balanced when it Each bX can be considered as the binary encoding of an integer
has [r] ([2]) l's and [2j ([rj) O's. A code C is a balanced number between 0 and 3. In this way X can be identified by
code with r check bits and k information bits iff: a sequence of r•] integer numbers between 0 and 3 and so we

1. C has fixed length n = k + r, can encode X using the unary representation of such sequence.
Let:

2. each word A EC is balanced, U(X) e' u(b1x )u(b~x)... u(bx 4 Q. (2)

3. ICI = 2h.

In [4], Knuth showed that if a balanced code with r check bits and (U,=0 s~k) (U ,_ s=k) <t the tail-map defined as
and k information bits exists, then r > ½ log, k + 0.326; he has follows (, is the complement of X):

designed serial encoding and both serial and parallel decoding
schemes with k = 2' and k = 2' - r - 1 respectively. In both f U(X)O(k-)-1(U(X))o if XEU:=0 S.",
methods, for each given information word, some appropriate < Y > ( d)l
number of bits, starting from the first bit, are complemented; UI(X -r)--u(x• if XEOI,_, S,
then a check is assigned to this modified information word to
make the entire word balanced. In the sequential decoding the Balanced code construction 1: Given ,., r E IN k > 6, k <
check represents the weight of the original information word 2r+1 - 2 and t = t(k) L-_f [_l, the encoding scheme is:
whereas in the parallel decoding the check directly indicates
the number of information bits complemented. i. Encode the information words X E (U•=0 S,) U

In [1], [2) and [3) improved design methods are given. usin t
In this paper, we divide the set of information words into U,,=k•_ 1  using the tail-map defined above

two subsets: l)the subset of words that are close to balanced 2. Encode the other information words using single maps
and 2)the subset of words that are not close to balanced; then defined by the Knuth's complementation method.
we encode words in each subset with different methods. More
precisely, given tEIN, let (uw(X) is the weight of X): Two other improved tail-maps and balanced codes based

on these maps are also designed ii the paper. In particu-
U, = {XE 2  :0< uw(X) < t or k - t < k - u,(X) <k lar Balanced codes with r check bits, k < 3.2 - 8 and

k < 5.2'- l0r+Constant (Coastan(E {-15, -10. -5.0, +5))
and: information bits are designcd. In the first two cases Le Tail-

B, = 2Z2" - Ut maps can be compu led with a parallel scheme.

be the subsets of information words close to balanced and not
close to balanced respectively. The words are made balanced
by encoding U, using tail-maps and encoding Bt using single References
maps defined by Knuth's complementation method.Three different tail-maps are given and here one of these [I] S. AI-Bassain and B. Bose, Design of Efficie'nt Balanced
maps is briefly described. Code.-, in Proc. IEEE 19th Int. Symp. Fault Tolerant Com-puting, June 1989.
Tail-map construction 1: Here, the word is divided into [Al [2] S. AI-Bassam and B. Bose. On Balanced Codes, IEEE
two bits and each part is encoded into unary with the function Trans. Inform. Theory, vol. 36, pp. 406-408, March 1990.
U: 2Z2 22 - . More formally, given kEIN, let: [3] B. Bose, On Unordered Code., IEEE Trans. on Comput-

xe fkb 1bk bX., ers, vol. 40, pp. 125-131, Feb. 1991.
. 11 [4] D. E. Knuth, Efficient Balanced Codes, IEEE Trans. In-

where: form. Theory, vol. 17-32, pp. 51-53, Jan. 1986.

d() [5] G. Longo, Teoria dell'informazione. Serie di Informatica,
Zk if i= ] [1 Boringhieri, 1980.

[6] E. Sperner, Em Satz iiber Untcrmenngfe m inr endlichen

*This work is supported by the grant from National Science Foun- Menge, Math. Zhais., vol. 27, pp. 544-548, 1928.
dation MIP-9016143. The first author's work is supported by the
Italian National Research Council (CNR 203.01.59).



IRREDUCIBLE COMPONENTS OF CANONICAL DIAGRAMS
FOR SPECTRAL NULLS

Hiroshi Kamabe
Department of Electrical and Electronic Engineering, Mic University

1515 Kamihama-cho, Tsu-shi 514 Japan.
e-nma;: kamabe~elecom.mie-u.ac.jp

Abstract of G, such that a is generated by a cycle in 11(a). For two
Irreducible components of canonical diagrams for spectral null CSTD's I and I', if there is a label-preserving graph isomor-
constraints at f = .fsk/n are studied, where k and n are rel- phism of I to r then we write I • I'.
atively prime integers with 0 < k < n and fs is the symbol Theorem 1 Gf is the union of If'(a), a E : and G•.
frequency. Theorem 2 Assume that n is prime. Then

To identify systematically all irreducible components of the e for every pair of sequences a, b E E with a 9k b we have
canonical diagrams for first-order spectral nulls at f, we give a If (a) 9 1'(b);
set of channel symbol sequences specifying all of them. If n is * for every irreducible component I of Gf, we have I -5
a prime nmniber, then each sequence in the set corresponds to o
exactly one irreducible component up to label-preserving graph or I = 1(a) for some a E E.
isomrrphism. We also give a set of channel symbol sequences For every a = a0-. "aL- E E, I,1(a) contains the state
specifying all irreducible components of canonical diagrams for - ••.1 exp(_2viv'Wfk/n)ai. Therefore we can generate all
second-order spectral nulls at dc (i.e.,f = 0). irreducible components of Gp by applying the state transition

Introduction rule for Gf recursively.
A spectral null constraint requires that channel symbol se- Irreducible Components for Second-Order

quences should have no frequency content at a specified fre- Spectal Null at DC -

quency f. Codes for the constraint were characterized in terms
of finite directed graphs with labeled edges. Marcus and Siegel We have identified all irreducible components of ca nonical dia-
[1], h-,vever, have defined canonical diagrams for first-order grams for second-order spectral nulls at dc.
spectral null constraints at f, which are countable-state di- Let p be a positive integer. Let 0(2) be a CSTD which is
rected graphs with labeled edges, and they also have shown that period-p canonical for a second-order spectral null at dc [5].
every finite subdiagram of a canonical diagram has a first-order The set of states in 0,2) is Z x Z, where Z is the set of inte-
spectral null at f. Recently, order-K spectral null constraints gers. Let or be a state in G, 2. Define a diagram L(a) to be a
have been introduced as extensions of first-order spectral null subdiagram of &•2) which consists of all states -r (and all edges
constraints and canonical diagrams for them also have been connected to those states) such that there are paths from -r to
given. We can construct a spectral null code by choosing an a or paths from o to r. Then
irreducible finite subdiagram from the canonical diagram and Proposition 1 For every state o, in G0) L,(r) is irreducible.
by applying the code construction schemes given in [4], [2], [3]. Theorem For every irreducible componet I of G2, we hvave

When we design a code in such a way, a choice of an irre- I L,((i,0)) for somes with 0 < i < p - 1
ducible finite subdiagram from the canonical diagram has an
effect on the code we get. Hence, we must be able to identify Thus we can generate all irreducible components of G&2) by
all irreducible finite subdiagrams of the canonical diagram in applying the state transition rule of G<2 ) recursively to states
order to obtain an optimal code in some sense. However, canon- (0, 0), (1, 0) ..... (p - 1, 0).
ical diagrams have infinitely many states and configurations of
them are not so simple that we can understand them intuitively.
Moreover, a canonical diagram consists of disjoint irreducible References
countable-state subdiagrams. Therefore, in this paper we in-
vestigate irreducible components of a canonical diagram and [1] B. Marcus and P. Siegel, "On codes with spectral nulls
give a systematic way to identify all of them. at rational submultiples of the symbol frequency," IEEE

We assume that the channel symbol alphabet is {2, -}. Ta2ns. Inform. Theory., vol. IT-33, pp. 557-568, 1987.
Irreducible Components for First-Order [2] B. Marcus, "Sofic systemns and encoding data," IEEE

Spectral Null at Trans. Inform. Theory., vol. IT-31, pp. 366-377, 1985.
Let p be an integer with 0 < p < n - 1. Let Gf be [3] R. Karabed and B. Marcus, "Sliding-block coding for input-

a countable-state-transition-diagram(CSTD) which is period- restricted channels," IEEE Trans. Inform. Theory., vol. IT-
p canonical for a spectral null at f [1]. We assume that f > 0 34, pp. 2-26, 1988.
(i.e., n > 2) because it is trivial that GO is irreducible. In the [4] R. Adler, D. Coppersmith and M. Hassner, "Algorithms for
case where n is prime, we have identified all irreducible com- sliding block codes," IEEE Trans. Inform. Theory, vol. IT-
ponents of G1. 29, pp. 5-22, 1983.

L--2 -[5] R. Karabed and P. Siegel, "Matched spec:tral null codes for

Let 0, be ar, irreducible component of G1 which contains the partial response channels," IEEE Trans. IT., vol. IT-37,
state 0. For a E E, let I1 (a) be the irreducible component pp. 818-855, 1991.
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Conservative Codes.
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Computer Science Departement, Department of Computer

King Fahd University of Science,
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In a conservative code of dimension n, every word has Ln/2J Figure 1: Conservative code structure of Construction I.
transitions. A transition occurs when two adjacent bits are the
complements of each other. A (1 -. 0) and (0 - 1) transitions X1X2 ...---- 2X3.'. +- k C. C,,

are treated indistinguishably. information word code word
Conservative codes can be used for bit synchronization in a These c-checks will be used to construct a conservative code.

high-speed communication channels [1]. Non-systematic con- When a c-check is appended to an information vector, it is pos-
servative codes were introduced and analyzed in [1]. This paper sible to generate (or not to generate) a transition between the
gives efficient constructions of conservative codes which have information vector and the c-check depending on whether co
the same efficiency as the balanced codes reported in [3). or ci was appended. A c-check carries a positive (or negative)
Nlotation: sign depending on whether it is always used to generate (or not

W(x): the Hamming weight of the binary vector x; to generate) a transition at the time of encoding.
W(x) = W(x ... Zn) = ,I,. Let Rt denote the set of information vectors with I transi-

NT(x): the number of transitions in x, NT(x) = tions; i.e. R, = {x E {0, 1}k NT(x) t}.
-I , Z(X,+i. The encoding and decoding process is captured in t le following

N(n, t): the number of n-bit vectors with i transitions, i.e. notation:
N(n, t) = I{x E {0, 1)" 1 NT(x) = t)1. C :: RuR 1,uu...uRt, - Rt.

For instance, if x = 1101, then W(x) = 3 and
NT(x) = 2. To find N(4,2) we see that only the words This notation means that the information words wit It t i. 1...

0010, 0100, 0110, 1001, 1011, and 1101 have 2 transitions; and tq transitions are transformed to some k-bit vector with

therefore, N(4, 2) = 6. t transitions by complementing some even bits. One of the

Definition 1: Let x = x,... x, be a binary vector, then two check symbols in C will then be appended to the right-
let x[') denote x where the first j even bits are complemented; end of the transformed word to obtain the final code word. as

i.e. xf'1 = 11X2Z3X 4 ... X2,i-1X2j-2j+l .x.X. For instance, if depicted in fig. 1. The vector co is appended if X
1  

= 0 and

x = 1000 1101 then xl3l = 1101 1001. 0 C has a negative sign or Xk = I and C has a positive sign:

Properties of x(l: otherwise, ci is appended. This allows the creation of one
(or zero) transition when C has a positive (or negative) sign.

1. NT(xl'l) = NT(x(-JI) + i for 1 < j < rn/2], where i = To obtain a conservative code, the final code word must have
0,2, or -2 and NT(x~l./ 1 2J1 ) = n - 1 - NT(x) L(k + r)/2j transitions; therefore, all maps must satisfy

2. For any integer t, of the same parity as NT(x) (i.e. NT(C) + t= [(k + r)/2j. (1)
t = NT(x)mod2), where min(NT(x),n - I - NT(x))
< 1< max(NT(x), n - I - NT(x)), there exist a j such In decoding, the check symbol and the presence (or absence)
that NT(xl'I) = i (where 0 < j < rn/2]). of a transition between the information and the check are used

Given that NT(xlLn/ 2I]) =n- I -NT(x) and that NT(xlil) = to obtain the original information vector. If yc is the received
G -ie h et N2, r -2, w nd that every i code word, then c and the presence/absence of a transitionNT(x 2-) + iwhere i= 0, 2, or -2, we see that every integer betwveen y and c will uniquely determine the c-check (C) and

of the same parity as NT(x) in the range min(NT(x), n - I - hen y and c sn y determine th c-- (C) ahd

NT(x)) < t < max(NT(x), n - I - NT(x)) is obtained after the hen its ociate map, say C is e
complementation of some even bits. even bits of y will then be complemented until NT(yI.) is equalto ti, ½2,"', or t'q.

Code Design: Before starting the construction, one more Based on these concepts, codes with k up to 2'+' - r - 1.
definition is required. usiing r check bits are designed.

Definition 2: A complement cb,,,-'k (c-check), C consists References
of two r-bit vectors and positive or negative sign as follows: 1. Y. Ofek, "The Conservative Code for Bit Synchroniza-
C • {co, c ) +/- where co = Zi and the left most bit of co is 0 tion," IEEE Trans. on Communications. vol. 38, July
(and the left most bit of c is 1). Furthermore, let 1990.

NT(C) NT(co) if C has a negative sign 2. D. Morris, Pulse Code Formats for Fiber Optical Data{ NT(co) + I if C has a positive sign Communication. NY: Marcel Decker, 1983.
The set {0, 1 }' of check symbols are grouped into 2' c-checks. 3. D. E. Knuth, "Efficient Balanced Codes," IFEE Trans.

on Information Theory, vol. 32, Jan. 1986.
For example, the c-checks obtained from {0, 112 are {00, 11), 4. S. AI-Bassam and B. Lose, "Design of Efficient Balanced
{OO, 11)+' {ol, 101,{1O1, 10)+. Codes," IEEE Trans. on Computers (to appear).

5. S. AI-Bassam and B. Bose, "On Palanced Codes," IEEE"°This work is supported by the grant from KFUPM and National Trans. on Information Theory, vol. IT-36. March 1990.
Science Foundation MIP-9016143.
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ADAPTIVE OS LOCAL DETECTION FOR DATA FUSION

M. Longo, M. Lops
Dipartimento di Ingegneria Elettronica, Universiti di Napoli, Via Claudio 21, 80125 Napoli, Italia

Abstract o.m. The local error probabilities are

In a decentralized detection scheme, we consider adaptive N-r IN-r 1
Order Statistic (OS) thresholding for local decisions: each a,,, H 1I++Ji m =l1- _I
local detection threshold is a linear combination of ranked h=i 1 h= + 1+S.
samples from the reference window centered on the spatial EN,.-h
cell being probed. Letting cc, the vector of coefficients of where Cmh = r= amN_._/(Nm + 1 - h) and where
the linear combination at the m-th node, m = 1,.. .M, Sm = m2/oro" The goal is to maximize, with respect to
how should the cS's be chosen in order to maximize the -c, the overall power I - 0 for constrained a.
overall power of a given fusion rule for a fixed overall type-I
error probability? Assuming exponential observations, we AND fusion rule
solve this problem for AND and OR fusion rules, and we The global performance reduces to mere products of local
compare the respective performance. arm's and om's. Lagrangian maximization then yields the

Problem formulation optimum crg in terms of products "Ym~mh, that are solu-
tions to the system of equations

Decentralized detection is based on the concept of data fu-
sion: local decisions taken at spatially separated remote I1 + 7161 + 1 + "Ym=mh
sensors are transmitted to a central processor to make 1 + Si + "1C 1 + Sm + "'m~mh
a binary decision about the state of the sensed environ- For constant Sm, say Sm = S, the solution is m(mh = A,
ment. In practical situations, the environment is sequen- say, and the optimum performance is
tially scanned in time-space on a cell-by-cell basis, and a -N.q
decision is made for each cell. Adaptive processing is re- a - (1 + A)-N 1 - = + 1 )
quired to track various changes of the disturbance. Exam-
pies are presented in (1,2]: a common model of disturbance with Neq , Nm - rm. That is, the same performance
is assumed at each sensor, and adaptation is accomplished of a single detector whose threshold is adapted through a
by estimating a distributional parameter based on a refer- minimum variance estimate based on a reference set of Nq
ence set of cells surrounding the cell under test. i i d exponential variates.

Estimation procedures based on Order Statistics (OS)
are preferrable in regard to robustness against possible OR fusion rule
non-homogeneities in the reference set. We assume that
the local estimates of the disturbance activity are achieved The global performance can still be expressed in simple
as linear combinations of OS's, and that each local decision terms of the am's and the om'S, but the equations for the
is based on the logical variable optimum coefficients can only be solved through numerical

techniques. A suboptimal approach leading to analytical
= u M=,.. , solution is to minimize the individual Oim with respect to

"(Z. zthe Cmh'S (whence (inh = 1/(N, - rm)), and subsequentlyto minimize Ji with respect to the 7mn'S. In particular,
where u(.) is the unit-step function, Z. is the observation assuming Smi and Nrm - th= L leads to
from the cell being tested available at the m-th sensor,

-Ym is a ranked version of the Nm samples from the refer- 7m Q L[ (1 - a)1/M)-11L - 1] =,-
ence set of the m-th sensor, dy,, is a threshold coefficient say, whene
determining the local type-I error probability, -m is a set
of coefficients of size Nm (if censoring is adopted, the last )3 = [1 - (1 + S)L/(l + S + ,IL)L]M.
rm entries of cgm are set to zero). The final decision is
taken according to a preassigned fusion rule of the hm 's,
e.g. AND, OR, which determines the global performance. References

Optimisation of the local disturbance estimators is of
crucial importance if the inherent detection loss due to [1] M. Barkat, P. K. Varshney, "Decentralised CFAR Sig-
the adaptive processing is to be kept at a minimum. This nal Detection", IEEE Trans., Vol. AES-25, March 1989,
requires a statistical model for the observables. pp. 141-149.

We assume that the sample from the cell being tested [2] A. R. Elias-Fusti, A. Broquetas-Ibars, J. P. Antequera,
is exponential with parameter ar,, (alternative hypothesis) J. C. Manin Yuste, "CFAR Data Fusion Center with In-
or am, (null hypothesis), while the samples in the reference homogeneous Receivers", IEEE Trans., Vol. AES-28, Jan-
sets are independent exponential variates with parameter uary 1992, pp. 276-284.
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ASYMPTOTIC REFINEMENTS IN BAYESIAN DISTRIBUTED DETECTION'

Adrian Papamarcou and Po-Ning Chen

Electrical Engineering Department and Institute for Systems Research
University of Maryland, College Park MD 20742

Abstract Tsitsiklis [2] conjectured that the answer to the first question

The performance of a parallel distributed detection system is in- is negative, and in this paper we give proof to his conjecture. As
vestigated as the number of sensors tends to infinity. It is assumed to the second question, we show that the upper bound 0(n) on
that the i.i.d. sensor data are quantized locally into m-ary messages log[-y.(r)/7,.(r)] can be tightened to 0(1), hence the ratio y,(r)/7,(i)

and transmitted to the fusion center for Bayesian binary hypothe- is bounded from above (trivially, it is also lower-bounded by unity).

sis testing. Large deviations techniques are employed to show that We therefore have:

the equivalence of absolutely optimal and best identical-quantizer Theorem If P and Q are mutually absolutely continuous, then for
systems is not limited to error exponents, but extends to the actual T r f Pm le t t
Bayes error probabilities up to a multiplicative constant. This is true all E (0,(1),
as long as the two hypotheses are mutually absolutely continuous; no lim sup < Co . 0
further assumptions, such as boundedness of second moments of the
post-quantization log-likelihood ratio, are needed. We employ large deviations techniques for proving this theorem.

Summary Using a refinement (due to Esseen) of the central limit theorem for
independent but not identically distributed summands, we show the

Consider a parallel distributed system consisting of n geographi- following: if all quantizers in the optimal system are "regular," in
cally dispersed sensors, noiseless one-way communication links, and a that they yield-at their output-log-likelihood ratios that satisfy
fusion center. Each sensor makes an observation (denoted by Y,) of a certain uniform boundedness constraints, then the Bayes error prob-
random source, quantizes Yi into an m-ary message Ui = gi(Y,), and ability 71(r) can be lower-bounded by cn- 1/2 exp{-pn), where p.
then transmits Ui to the fusion center. Upon receipt of (U1,..., Un), is the optimal error exponent. The same expression-only with a
the fusion center performs a binary hypothesis test (Ho against H1) larger value of c-is also an upper bound on -y.*(r), so the conclu-
about the nature of the random source. A Bayesian setup is as- sion that 7:(T)/7n(1) is bounded from above is close at hand. It
sumed throughout, and the Bayes error probability is denoted by remains to show that the number of "irregular" quantizers in the
-7,(r), where r is the prior probability of H0. optimal system is bounded. As it turns out, these quantizers yield

It was shown by Tsitsiklis [1] that even when the observations are an error exponent smaller than p., and thus heuristically, they can
i.i.d., the optimal m-ary quantizers gi need not be identical. Thus the only exist in small numbers. We give rigorous proof to this fact using
absolutely optimal system (*) does not, in general, coincide with the a technical argument based on conditioning.
best identical-quantizer system (*). Since the latter is much easier Our simulations of Bayesian distributed detection have shown
to design than the former, it is natural to seek an estimate of the that the ratio y:(r)/7-(r) is in many instances dose to unity. It is
performance loss resulting from using identical quantizers. quite possible that under conditions as yet unknown to us, the ratio

Tsitsiklis supplied a result of this type in the i.i.d. case by show- 7:(•)/71) tends to unity as n approaches infinity. This, however,
ing, under a fairly general assumption, that the two systems are is not true in general, and we give a counterexample in which the
asymptotically exponentially equivalent. More precisely, if P and Q ratio 7(r)/7•(r) is greater than r > 1 infinitely often in n.
are mutually absolutely continuous distributions of the i.i.d. obser-
vations under H0o and Hi respectively, then References

li 1 - (r) = Hm -llog7Ar) [1] J. N. Tsitsiklis. Decentralized detection by a large number ofli-n -- log7 n 00oo gn n sensors. Mathematics of Control, Signals and Systems, 1(2): 167-

(i.e., the two error exponents coincide) provided that the seod 182,1988.
moments-under P and Q--of the post-quantization log-likelihood [2] J. N. Tsitsiklis. On threshold rules in decentralized detection.
ratio log[P 9(U)/Q,(U)j are bounded as the quantizer mapping g In Proc. 25th Conference on Decision and Control pages 232-236,
varies. The optimal error exponent is the supremum (over g) of the Athens, Greece, 1986.
Chernoff exponent associated with the m-ary post-quantization dis-
tributions P, and Q," It has also been shown that this supremum is
achieved by a g* taken from the class of deterministic likelihood-ratio
quantizers; and that such quantizers are optimal in the nonasymp-
totic (fixed n) setting.

Two questions arose from Tsitsiklis' work:

1. Is the aforementioned boundedness assumption really neces-
sary?

2. Does the nonnegative quantity log[vy*(r)/7-,(r)J admit an up-
per bound tighter than 0(n) (implied by the equality of error
exponents)?

'JResearch supported by the Institute (or Systems Research (a National Science
Foundation Engineering Research Center) at the University of Maryland, College
Park.
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DISTRIBUTED CELL-AVERAGING CFAR DETECTION OF DEPENDENT SIGNAL RETURNS*

Rick S. Blum Saleem A. Kassam
Electrical Engineering and Computer Science Department Department of Electrical Engineering

Lehigh University, Bethlehem, PA 18015 University of Pennsylvania, Philadelphia, PA 19104

Abstract II. Summary of Results
Constant false alarm rate (CFAR) detection techniques have The necessary conditions for the locally optimum (LO) sensor

been of much interest in radar and sonar applications. In this detector thresholds for either an AND or an OR fusion rule have
paper we consider CFAR detection in a decentralized, multisensor been obtained for N-sensor cases. Example solutions have been
context and show some interesting characteristics of cell averaging found for some representative two-sensor cases. The LO AND rule
(CA) in this setting. We investigate cases with observations which solution was found to always use equal thresholds at each sensor
are dependent from sensor to sensor, for which results have been detector. The LO OR rule solution used equal thresholds if the
lacking. The in-phase and quadrature components of the received number of reference cells at each of the sensors was the same,
narrowband observation at each sensor consist of a weak random but different thresholds if the number of reference cells at the two
signal in additive clutter and noise. Each sensor transmits a single sensors was different. We found that the AND rule solution was
binary decision to a fusion center which uses either an AND or an better than the OR rule solution for a range of small false alarm
OR fusion rule to develop a final decision. The forms of the best probabilities and that this range tended to shrink as the number
sensor detector rules are found and a set of necessary condition- of reference samples used at each sensor was increased.
are given for their thresholds. Solutions are obtained for some We have also provided some analysis and results on the ability
representative cases and their detection probability performance is of our two-sensor distributed CFAR detection systems to maintain
studied. Their ability to maintain constant false alarm probability constant false alarm probability in the presence of clutter edges
in the face of clutter edges is also studied. We show that solutions cosstthe grou prof refeeence sf cn tteredteswhih ue dffren fuionrues ay xce fr ech f tes diternt across their groups of reference samples. We considered the LO
which use different fusion rules ,ay excel for each of these different schemes using the AND and OR fusion rules for a particular falsecriteria. alarm probability. We found that the OR rule scheme was superior

I. Introduction to the AND rule scheme if both sensors had the same clutter edge
applied to them. The detection probability of one of our two-

Previous studies of cell-averaging constant false alarm rate (CA- sensor LO distributed CA-CFAR detection schemes was shown
CFAR) distributed detection techniques have focused on cases to be larger than that for a single sensor CA-CFAR scheme for
with independent observations [1, 21. Here we investigate some cases with a wide range of signal-to-noise ratios and dependent
cases with dependent observations from sensor to sensor. For observations from sensor to sensor.
our model of the dependency between the narrowband returns re- Cases with non-Gaussian signals, noise, and clutter were also
ceived at the remotely located sensors, we initially assume the considered for the particular case where the pdf of the combined
in-phase and quadrature signal components of the returns have a noise and clutter contains an unknown scale parameter. We sug-
jointly Gaussian probability density function (pdf). This appears gest schemes which use sensor tests which are LO [3] among all
to be a reasonable extension to the common radar return model tests satisfying a specific constraint which insures a CFAR test.
of Swerling type I target fluctuations often used for the single sen- This technique generates tests which can be considered a gen-
sor case. The narrowband signal components are observed in the eralization of the CA-CFAR scheme for non-Gaussian combined
presence of additive noise and clutter with the combined noise and noise and clutter pdfs since the CA-CFAR scheme is generated by
clutter observations initially assumeui to be Gaussian distributed assuming a Gaussian pdf for the combined noise and clutter obser-
and independent from sensor to sensor. The power of the com- vations. The form of the CFAR sensor test statistics were found
bined noise and clutter observations at each sensor is unknown for a specific example with a Cauchy noise pdf. The weak-signal
and so a CA-CFAR scheme is employed at each sensor. performance of our scheme was shown to be better than that of a

Due to the typical structurc of radar and sonar receivers, our CA-CFAR scheme for a single sensor case with Cauchy noise.
decisions will be based on processing the envelope of the ob-
served returns. Our signal detection schemes will be optimized
for the case of weak signals so we use locally optimum detection References
techniques [3]. While we provide some results for cases with N
sensors, due to the complexity of the problem we focus on the [1] M. Barkat and P. K. Varshney, "Decentralized CFAR Signal
two-sensor case with sensor decisions based on a single observa- Detection," IEEE Transactions on Aerospace and Electronic
tion, augmented with Nj reference samples taken at each sensor Systems, AES-2, vol. 25, pp. 141-148, March 1989.
j = 1,2. The two sensors are each constrained to transmit only [2] M. Barkat and P. K. Varshney, "Adaptive Cell-Averaging
a single binary decision to a fusion center and we consider only CFAR Detection in Distributed Sensor Networks," IEEE
non-randomized fusion rules; specifically, the AND and the OR Transactions on Aerospace and Electronic Systems, AES-27,
fusion rules. No. 3, pp. 424-429, May 1991.

"*This material is based upon work supported by the National Science
Foundation under Grant No. MIP-9211298 and by the Air Force Office of [3] R. S. Blum and S. A. Kassam, "Locally optimum distributed
Scientific Research under Grant 90-0050 detection with dependent sensors," IEEE Transactions on

Information Theory, IT-38, pp. 1066-1079, May 1992.
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Integration of Complementary Detection-Localization Systems

T. T. Kadota
AT&T Bell Laboratories

600 Mountain Avenue
Murray Hill, New Jersey 07974

Consider two surveilance systems: one using the visible-band resents a compromise between the performance improvement and

satellite (called the primary) and the other using the infrared the additional cost. Such an integration is advantagenous when

(called the ser'udary). The primary system, because of its shorter the secondary systen, has high S/N. Then the detection is virtu-

wavelength, gives more acurate and detailed results than the sec- ally done by the secondary and its localization result specifies a

ondary. Yet, it is more susceptible to atmospheric interference small region in the primary data where the target is likely to be

(e.g., clouds). This complementary aspect suggests integration of found. On the other hand, if the secondary S/N is low, the deci-

the two systems. Performance improvement by the integration sion by the secondary may mislead the primary. Thus we need a

depends on how they are combined and, even if the improvement criterion for deciding when and how to integrate the two systems.

is substantial, cost of the integration may not justify it. Thus, it For measuring the performance improvement by integration,

is desirable to have some rational methods of integration and to we introduce "db-gains" in detection and localization (or resolu-

evaluate the merit of such integration (i.e., performance improve- tion), which is the gain in the equivalent S/N measured in db. The

ment vs. cost). By using a simple example, we illustrate how this equivalent S/N for detection is defined as the S/N required by the

might be done. matched filter to achieve the same detection probability (Pd) in

The primary system consists of two-dimensional sampled data, the absence of clouds given the same false-alarm probability (Pf).

say, an n x n data array, and a signal processing algorithm to The equivalent S/N for resolution is defined as follows:Ideally, Pd

detect and localize a target. The data contain a target signal, at the target location should be 1.0 and it should drop to the pre-

if present, the usual white background noise and localized ran- assigned P1 value everywhere else. Calculate the average slope of

dom disturbances representing cloud coverage. In the absence of this peak (Pd - 1.0) with respect to cverywhere else (Pd = P1 )

clouds, the optimum processor is the matched filter and the de- and use this as a reference. Define the global resolution as a ra-

tection and localization is done by maximizing the matched filter tio of the average slope calculated from the actual values of Pd

output with respect to the possible target location and threshold- at all locations to this ideal average slope. There are two types

ing it. When random clouds appear, they overshadow the target of cost incurred by integration: the one which increases with the

and severly reduce the effective S/N. With the use of a Poisson- size of data and the other which is constant, such as fixed over-

distributed cloud model, we derive the log-likelihood ratio which head cost. We divide the first into the cost of additional storage

consists of the matched filter and a "cloud remover". The lat- space and the cost of additional computation load. As unit-free
ter involves a linear combination of exponentials in the data and relative figures, we choose the ratio of the cost with the integra-

requires far more computation than the former. However, it sig- tion to the cost without the integration on all three elements:

nificantly reduces the effect of the cloud. The secondary system storage space, computation load and overhead. Then we average

consists of a similar two-dimensional data covering the same phys- these three ratios with appropriate weighting. For example, in

ical area but with coarser sampling, say, an m x m data array with the decision-decision integration the additional space is for the

m < n. Unlike the primary data, the random disturbances are information on the location of a target obtained by the secondary
assumed negligible. Hence, the optimum processor comprises of system and the additioanl computation load is for combining this
a matched filter only. information with a similar one obtained by the primary. This

The simplest integration of the two systems is the "decision- may be equivalent to the space and time needed for handling one

decision" integration where the decisions of the indivisual systems data point. In the data-data integration, however, the additional

are combined to make a joint decision. If both systems agree on space is for the entire secondary data which are m x m = m2

the target presence and the location, this integration is satisfac- data points. Thus, the space ratio is (n 2 + M2 + n2 )/(n 2 + m2 ).

tory and the cost is minimal. If they disagree, some hierachical On the other hand, the computation load is not increased since
order must be established to arrive at a joint decision. In the the matched filtering on the secondary data is done anyway with-

event of a weak target, if both decide that there is no target in- out the integration. In the case of the data-decision integration,

spite of its presence, the joint decision will be "no target" and the space ratio is about the same as in the case of the decision-

the target will be missed. The most thorough integration is the decision integration, but the time ratio actually decreases by the

"data-data" integration where the secondary data are combined factor [(n/m)' + n2]/(n2 + Mn) since only the section of the pri-

with the primary and they are jointly processed to produce a sin- mary data corresponding to the declared target location in the

gle decision. With the optimum processing this integration gives secondary data is processed.

the highest performance improvement, though the cost of inte- As the figure of merit which evaluates the relative merit of

gration is also the highest since the entire data, instead of the integration, we propose the ratio of the db-gain to the average

decisions only, are combined and processed. Between these two, cost for both detection and resolution. In the paper, this ra-

there is an "data-decision" integration where the decision of the tio is numerically evaluated (via Monte Carlo simulation) for six

secondary system is combined with the data of the primary and detection-localization algorithms utilizing the data-data and the
they are jointly processed to produce the final decision. This rep- data-decision integrations for various values of parameters (e.g.,

occurrence probability of cloud, attenuation constant of cloud and
reflected-light intensity from cloud).
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On the Relationship Between Suboptimal Detectors and
Measures of Discrimination

Geoffrey C. Orseak and Bernd.Peter Paris2
Department of Electrical and Computer Engineering

Center of Excellence in C31
George Mason University
Fairfax, VA 22030-4444

Summary. There are many instances in detector design where suboptimum detection strategies by maximizing the distance
one can not implement the minimum probability of error detec- between the input statistics may not only be inappropriate but
tor for deciding between measures P0 and P1. As such, there may also lead to inconsistent solutions.
has been increasing interest in the development of design tech- This result seems to suggest that f-divergences have lim-
niques for determining "good" suboptimal detection strategies. ited applicability to the design of suboptimal detectors. How-

One effective approach to designing detection strategies ever, we demonstrate a direct linkage in the performance of
has been the optimization of a statistical distance measure be- suboptimal detectors and f-divergences through a form of the
tween competing hypotheses. The advantage of this approach data processing theorem. Specifically, we show that the lois
over minimizing the total probability of error is that these dis- in performance of any suboptimal detector over the minimum
tance measures can be computed while for most problems, the probability of error detector is bounded below by the los of
minimum error rate is analytically intractable. Unfortunately, "information' across the detector as determined by a specific
system parameters derived in this manner are not necessarily f-divergence. As such, when this lower bound holds with equal-
optimal in the minimum probability of error sense. To ad- ity, minimizing the loss of information with respect to this ape-
dress this issue, we develop sufficient conditions under which cific f-divergence results in the minimum probability of error
solutions obtained by optimizing arbitrary distance measures solution.
results in the minimum probability of error detector over a Unfortunately, the f-divergence in the lower bound is just
chosen class of detectors. as difficult to compute as the probability of error. Thus, we

We restrict our attention to the general class of mea- develop sufficient conditions under which all f-divergences have
sures of discrimination between probability measures PA and a common extremum over a class of probability measures. The
Pi known as f-divergences [3] or Ali-Silvey distances [1]. Math- significance of this result to the problem of detector design
ematically, these distance measures are given by is that one may maximize the most analytically tractable f-

divergence between the statistics of the detector to minimize
d(P,,P) = h(-6 [C~dP ) the lower bound on the performance loss of the detector. Most

d(Po d L'• importantly, when this lower bound holds with equality, the
where EL indicates that the expectation is taken with respect resulting solution minimizes the probability of error over the
to Po and where C(.) is a convex real function and h(.) is an class of allowable detectors. To demonstrate the applicability
increasing real function of a real variable. It is well established of this theory, we determine the optimal linear detector in the
that many well known measures of discrimination including the presence of a specific non-Gaussian noise and show in fact that
J-divergence, the Battacharyya distance, the Kullback-Leibler the matched filter is not always the "best' linear receiver. In a
distance, and Kolmogorov's measure of variational distance are second example, we apply this theory to the problem of signal
elements of this class, design and determine the optimal signal set in the presence of

Relationships between the minimum probability of error a specific non-Gaussian noise.
for deciding between P0 and PA and various f-divergences have
been studied at great length [1,2,41. Most of this work has Rgr•mimm:r
focused on developing bounds for the minimum probability of
error in terms of several f-divergences. Other work has centered [l] S. M. Ali and D. Silvey, 'A General Class of Coefficients
on utilizing these relationships to optimize communication sys- of Divergence of One Distribution from Another,* J. Royal
tems with respect to specific distance measures rather than the Slat Soc., vol. 28, pp. 131-142, 1966.
less analytically tractable probability of error [5, 61. However, [2] M. Basseville, "Distance Measures for Signal Process-
there has been no work to our knowledge on studying the re- ing and Pattern Recognition,' Signal Processing, vol. 18,

pp. 349-369, 1989.
lationship between the probability of error for suboptimal de- 13) I. Csiszar, "Information-Type Measures of Difference
tection strategies and f-divergences, of Probability Distributions and Indirect Observations,'

While it is well known that the minimum probability of Studio Scientiarum Mathematicarum Hungorica, vol. 2,
error between PA and PA is a f-divergence between these me.- pp. 299-318, 1967.
sures, we show that the probability of error derived from any [4) M. E. Hellman and J. Raviv, 'Probability of Error, Equiv-
decision strategy not equivalent to the likelihood ratio test is ocation, and the Chernof Bound," IEEE Trens. Inform.
not equivalent to a f-divergence (i.e., not a measure of dis. Theory, vol. IT-16, no. 4, pp. 368-372, July 1970.
crimination between Po and PA). This implies that designing 151 D. H. Johnson and G. C. Omsak, 'Relation of Signal Set to

the Performance of Optimal Non-Gaussian Detectors,' to
ISupported in part by the National Science Foundation under appear IEEE Trans. Commun., 1992.

Grant NCR-9109858 and by Rome Laboratories under contract (6) H. V. Poor, "Robust quantization of t-contaminated data,'
F30602-92 --C -0053. IE] T r , Co m m on of C -3 ontpp . n21 d-222 ,12Supported in part by Rome Laboratories under contract F30602- IEEE Tran.. Commun., vol. COM-33, pp. 218-222, 1985.
92-C-0053.
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ASYMPTOTIC EXPANSIONS FOR SAMPLE
SIZE IN SIGNAL DETECTION

Marat V. Burnashev H. Vincent Poor
Institute for Problems of Information Transmission Department of Electrical Engineering

Ermolovoy str. 19 Princeton University
Moscow 101447 RUSSIA Princeton, NJ 08544 USA

ABSTRACT
gives a quite good approximation (within let us say 10%) to the ac-

The number of samples required for signal detection is considered tual relative efficiency (RE) of two detectors, when the sample size is
as a function of the error probabilities. This problem is treated in the rather large (n _> 103). For moderate sample sizes (say, n = 20- 100)
context of detecting a constant signal in additive, independent and the ARE is much less accurate (within 50%), but it is still reasonable.
identically distributed noise. Detectors that base their decisions on In order to Letter approximate RE for moderate sample sizes iU
the comparison with a threshold of accumulated, nonlinearly trans- is quite natural to consider refinements of the CLT using asymptotic
formed observations are treated. Asymptotic expressions are derived expansions. The applicability of such asymptotic expansions in re-
for the relationship between sample size and error probabilities for this lated problems was shown in pioneering work of Cramer (see, e.g.,
model in two situations: that in which the nonlinearity has a partially [7]). However, this approach has not been developed in the context of
absolutely continuous output distribution; and that in which it has signal detection, although alternative intermediate estimates for RE
a lattice output distribution. Traditional analyses of such problems (without asymptotic expansions in the CLT) have been considered in
have involved only the lowest-order terms of such relationships (i.e., [4, 8].
central limit results), leading to performance indices such as the Pit-
man asymptotic relative efficiency (ARE). Such indices are known to The contribution of this paper is to develop, for a given error prob-
be of limited accuracy in predicting performance for more moderate abilities a and fl, detector function g and signal strength 0, asymp-

sample sizes. Here, the behavior of sample size as a function of error totic expansions for a necessary sample size n(cr,)3,9,9), as 6 - 0+,

probabilities is considered in more detail, leading to more accurate through the use of asymptotic expansions in the CLT, and to explore

indices of relative efficiencies for such detection problems. Several the accuracy of approximations based on these expansions. The pre-
specific examples are examined in detail, and numerical results are sentation of these developments is organized as follows. First, we

included to illustrate the significantly improved performance estima- provide a brief review of relevant results on the asymptotic expansion
tion afforded thereby for even small sample sizes, of distributions of sums of i.i.d. random variables. Then, we develop

the desired expansions for sample size for two basic cases: that in
which the distribution of g(zk) is of "density" type (meaning that

Introduction and Overview its characteristic function converges to a value less than unity with
increasing argument), and that in which the distribution of g(zk) is

In this paper, we consider the following pair of statistical hypotheses of lattice type. Finally, we consider several specific examples and
concerning a set z, . .z, of random observations: illustrate the accuracy of the developed expansions numerically.

HO:Zk4 k =I_ nReferences

versus

III:zk +k, k=1,.............[1] H.V. Poor, An Introduction to Signal Detection and Estimation,
where {4} is a sequence of independent and identically distributed New York: Springer-Verlag, (1988).
(i.i.d.) random variables (r.v.'s) with marginal probability density
function f. In order to test between these hypotheses, we consider (2] J.H. Miller and J.B. Thomas, "Numerical results on the conver-
threshold tests based on statistics of the form gence of relative efficiencies", IEEE Thans. Aerosp. Electron. Syst.,

SVol. II, pp. 204-209, (March 1975).
............... zn) = -g(xt)

k=1 [3] R.J. Marks, G.L. Wise, D.G. Haldeman, and J.L. Whited, "De-

where g is a measurable real-valued function. tection in Laplace noise," IEEE Trans. Aerosp. Electron. Spst., Vol.

A traditional way of comparing two detectors that operate in this 14, pp. 866-872, (November 1978).

way is to consider the relative sample sizes they require to achieve the (4] D.L. Michalsky, G.L. Wise and H.V. Poor (1982), "A relative
same performance in terms of the false-alarm and miss probabilities, efficiency study of some popular detectors," J. Franklin last. , Vol.
These required sample sizes are usually estimated through the use of 313, pp. 135-148, (1982).
the central limit theorem (CLT) in describing the behavior of the test
statistics T('). Such comparisons are conventionally made in terms (5] M.I. Dadi and R.J. Marks, "Detector relative efficiencies in the
of the asymptotic value of the ratio between required sample sizes, presence of Laplace noise," IEEE Trans. Aerosp. Electron. Spst.,
in the limits as 0 approaches zero at an appropriate rate (see, e.g., Vol. 23, pp. 568-582, (July 1987).
Poor (1]). With fixed error probabilities this limit forces the sample
size to infinity, and the corresponding limiting ratio is the (Pitman) [6] C.W. Helstrom, "Detectability of signals in Laplace noise," IEEE
asymptotic relative efficiency (ARE). Trans. Aerosp. Electron. Syst. , Vol. 25, pp. 190-196, (March 1989).

There are several practically interesting noise densities f (Gaus- [7] V.V. Petrov, Sums of Independent Random Variables, Springer-
sian, Laplacian, sech) and detection functions g (linear, signum, dead- Veriag, (1975).
zone) for which it is possible to calculate exact values of necessary
sample sizes. Studies (2-6] of such cases have shown that the ARE [8] R.S. Blum and S.A. Kassam, "Approximate analysis of the conver-

"*This "esearch was supported by the U. S. National Science Foundation under gence of relative efficiency to ARE for known signal detection," IEEE
Grant NCR-90-02767. Trans. Inform. Theory , Vol. IT-37, pp. 199-206, (January 1991).
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Robust Detection of Weak, Known Signals Using Higher-Order Moments

Kevin R. Kolodziejski John W. .Betz John G. Proakis
Dept. of Electrical and The MITRE Corporation Dept. of Electrical and
Computer Engineering 202 Burlington Road Computer Engineering

Northeastern University Bedford, MA 01730 Northeastern University
Boston, MA 02115 Boston, MA 02115

Locally optimal detection of a weak, known signal in inde- Rather than assuming that the nominal noise density and f
pendent, identically distributed (i.i.d.) noise with known proba- are known, we select the parametric form of the nominal density
bility density function involves a nonllncar correlator - a mem- and numerically determine c and a by finding a minimum of the
oryless nonlinearity that depends on the noise density function Fisher information of the least favorable density while satisfying
followed by a correlator [1]. In practice, the noise distribution the moments of the noise. Our results use the variance and kur-
may not be known precisely; but, several moments of the noise tosis of the noise and a normalized, truncated Cauchy nominal
may be known. We determine a robust detector using a limited density with a = [01,a2], where a, is the scale parameter and
number of moments that describe the c-contaminated noise. a2 the truncation point. Detection performance is examined us-

A unique robust maximin efficacy detector has been found for ing Monte Carlo simulations with noise distributions that differ

a nonlinear correlator and an f-contaminated noise model when from the Cauchy contaminated noise model. The noise realiza-

e and the nominal noise density are completely specified. The tions are from normalized densities truncated at ±a2 with either

least-favorable density for a strongly unimodal nominal density [2] a Gaussian-Gaussian mixture density, a Johnson-S. density, or

and for a nonstrongly unimodal nominal density [3] were obtained the least favorable density with parameters chosen to satisfy the

from the efficacy saddle-point property. For both the strongly and given variance and kurtosis. The number of samples n compris-

nonstrongly unimodal nominal density noise models, the robust ing the test statistic at the output of the nonlinear correlator is

nonlinearity depends on the least-favorable noise density in the equal to 1000. The input signal-to-noise ratio (SNR) is -25 dB.

same way that the locally optimal nonlinearity depends on the The output SNR is the simulation performance measure since it

assumed known noise density. In contrast, we assume a paramet- is approximately proportional to efficacy for a weak signal [1].

ric form for the nominal density of a mixture model and find the Performance of the robust detector compares favorably with
parameters that yield maximin efficacy, given a limited number the linear detector, sign detector, and the locally optimal detector
of moments of the noise. of the simulation noise. For very heavy-tailed noise, the robust de-

The problem is modeled as deciding between the null hy- tector performs as well as the sign detector, and significantly bet-

pothesis X = N and the alternative hypothesis X = Os + N ter than the linear detector. For moderately heavy-tailed noise,

where X is a n-element random observation vector, N is a vector the robust detector performs better than the sign detector and,

of i.i.d. noise random variables with univariate density f, s is in some cases, better than the linear detector. In many cases,

a vector of a known signal with finite, nonzero power, 0 = K the robust detector's performance approaches that of the locally
fo optimal detector derived with knowledge of the complete noisefor some unknown K > 0, and n is the number of samples. Let statistics.

the set of admissible noise densities be the absolutely continuous,
c-contaminated densities F = {fl f(z) = (1 - f)g.(x) + eh(x)} References
where ga, is an even symmetric, nonstrongly unimodal density
with unknown parameter vector a, h is any even symmetric den- 1. Kassam, S. A., 1988, Signal Detection in Non-Gaussian Noise,

sity from the convex class defined in [3], and f is the unknown New York: Springer-Verlag.

contamination parameter. Let 'P be the set of nonlinearities with 2. Huber P. J., March 1964, "Robust Estimation of a Location
derivatives almost everywhere with respect to Lebesgue measure. Parameter," Ann. Math. Statist., Vol. 35, pp. 73-101.
The robust maximin nonlinear correlator, in terms of efficacy 3. Warren D. J. and J. B. Thomas, May 1991, "Asymptoti-
q(f), is at the saddle-point ( )that satisfies cally Robust Detection and Estimation for Very Heavy-Tailed

maxi7(',fo) = rnini.(V,f) (1) Noise," IEEE Trans. Inform. Theory, Vol. IT-37, no. 3, pp.
*fEY 475-481.

where i 0 is the robust nonlinearity and fo is the least favorable
density in terms of efficacy. From the saddle-point property in Acknowledgemnt
equation (1) and the Cauchy-Schwartz inequality, the robust non- This work was supported in part by the National Science

linearity is the locally optimal nonlinearity O0 = -fo/fo, and the Foundation under Grant MIP 9115526 and in part by a MITRE
least favorable density minimizes the Fisher information and is grant to Northeastern University's Research Center for Commu-
given by [3] nications and Digital Signal Processing. John Betz's work was

((I - c)g(a)exp [-k(x - a)], a < j < (2) supported by the MITRE Sponsored Research Program.

=o• (I - f)gt(X), otherwise (2)

where k = -g.(a)/ga(a), a can be uniquely determined from c,
and b is chosen so that f. is absolutely continuous.
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ROBUST CONTINUOUS-TIME DETECTION OF LINEAR PROCESSES*

P. Srinivasa Rao Don H. Johnson
Electrical & Computer Engineering Department
Computer & Information Technology Institute

Rice University
Houston, Texas 77251-1892

ABSTRACT Equation (4) is symbolic and denotes equality in distribu-
Linear processes are suitable for modeling random received tion of (y, 0) and fx (z, 0) [II(dz) - A(dz)], VY E X.
waveforms in a scattering medium, which represents radar, Denote by Po and 3i the probability measures induced
sonar and multipath communication channels. We address by y(i) on X under Ho and H1. Using (4), we find that
a continuous-time detection problem where both the noise P1 < Po and that under H0 ,
(hypothesis Ho) and signal-plus-noise (HI) waveforms are
modeled as linear processes. Uncertainty in the nominal dP1  - dA 1  (5)
model is considered in the form of classes of probability (yl) = exp -K + In - (o z, )} (5)
distributions induced on t ;unction space by the processes dPo 1 J doII
under the two hypotheses. By embedding the linear pro- where K = At((X) - A0(X). Note that (5) is only a repre-
cesses in the larger class of infinitely divisible processes sentation formula and is not always computable in terms of
and using an integra3l representation for the latter class, y(t). The mapping of Ilo(.) into X defined by the integral
we identify the pair of distributions that are least favor- in (4) is not one-to-one and hence may not be invertible.
able for the discrimination of linear processes; an optimal
detector designed for these distributions is robust (or the 2. ROBUST DETECTION OF LINEAR
uncertainty classes considered. PROCESSES

1. PRELIMINARIES We address the minimax robust problem
A linear process y(t) is defined by min sup R(PI, 4$) subject to sup R(P0, 0) _< o, (6)

T # Pier, PoEPo

y(t) = 10 f(t,s)dz(s), t E [0, 7], (1) where R(P,,), j = 0,1 are the expected risks. The

x(s) being an independent increment process. classes Vj correspond to the c-contamination or total vari-ation neihbrhod (V inepndn inrven ofromialess.re
The characteristic function of y(t) = (y(ti), ... , Y(tn)) ation neighborh ( or £) of nominal measures

T Aj. If a least favorable pair of distributions P1' satisfying

In 4,(0(U) (e"" - iwv - 1)G(ds x dv), (2) R(P,0') Ž R(Pi, 0') VPj E -Pj, V likelihood ratio tests
J0 It 0' between P0 and P11 exists, (6) is solved by the likeli-

where w= up, f(tp,, s) and G(-) is a finite measure hood ratio test between Po0 and P1' with a statistic of the
given by Ez2 •)= u f, ) d G(.)d s x d finina mea-r form (5).

g n bf V2 G(ds x d). Defining a mea- Consider the robust discrimination of Poisson random
sure A,(A) = G((s, v) : (vf(tt, 8), ... , vf(t,, a)) E A) on measures on X with classes of distributions PA, gener-
IW 0 = {fi, ... I tn), (2) can be written as ated by intensity measures in 4j. Suppose that (A;, A',) is

the least favorable pair identified by Huber's theory after
In 4,u(D(U) = I (e'(Sb"} - i•n, ye) - 1) A,(dv,), (3) normalizing - to classes of probability distributions. It

JRe follows that the Poisson distributions PA, and PA^ cone-
which is a canonical form of an infinitely divisible random sponding to A' and A' are least favorable [3].
vector's characteristic function. Hence, y(t) is an infinitely The robust detector for linear processes now follows. Us-
divisible process [1]. ing representation (4) of linear processes in terms of Pois-

A projective limit measure A(.) on KI can be constructed son random measures, and the fact the likelihood ratio (5)
o tis identical to that between Poisson random measures, wefrom the family {A.(.)) such that A(g;/A) - A,(A), can show that the probability measures Po and P1 corre-

where gel(.) is the projection mapping from KR to IR. We sponding to A'0 and A' are least favorable [2].
assume that A(.) is restricted to X -t L2(I). The projec- REFERENCES
tive limit measure of y(t) is A(B) = G((s, v) : vf(., a) E
B), VB E B(X), the Borel sets of X (1]. [1] P. L. Brockett. The likelihood ratio detector for non-

Maruyama (cf. [2)) obtains an integral representation for Gaussian infinitely divisible and linear stochastic pro-
infinitely divisible processes by considering a Poisson ran- cesses. Ann. Stat., 12(2):734-744, 1984.
dom measure II(.) on B(X) with intensity A(.); For disjoint [2] P. Srinivasa Rao. Robust Continuous-Time Detection
B, E B(X), ll(Bj) are independent Poisson random vari- in Linear Process Noise. PhD thesis, Rice University,
ables with EH(B,) = A(Bj) and II(.,w) is a measure on Houston, TX, April 1992.
B(X) a.s. We then have [3] J. S. Sadowsky. On the robust discrimination of Pois-

fx son random measures. IEEE Trans. Info. Theory, IT-
S- z [1(dz) - A(dz)]. (4) 33(3):415-419, 1987.
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Abstract
This paper extends previous work on the likelihood detec- where W. is the linear time-invariant filtering of the observation

tion of cyclostationary processes in stationary Gaussian noise. In vector: w _ CoF- W, and is the positive definite square

contrast to previous developments, we use a Gaussian cyclosta- root of Co. The test is the sum of an energy detector and the
tionary signal assumption rather than a weak signal assumption, coherent sum of detectors for each cycle frequency [2].
Under the assumption of completely known statistics for signal
and noise, the likelihood ratio detector is derived for two related When the signal is strong, the sufficient statistic reduces to

cases: signal detection and detection of cyclostationarity. The A(W) - WtFW. The linear operator depends only on the statis-

difference between these two cases involves different models for tics of the noise, and does not involve cyclostationary statistics of

the stationary statistics under the two hypotheses. the signal.

One deviation from the assumption of known signal statistics
Summnary is when the cyclic phase is unknown but constant over the observa-

We formulate the detection problem based on the complex tion. The likelihood ratio test statistic A(W) = f A(W%4)f*(0)d0We ormlat th deecton robem ase onthecomlex where A(W]4') is conditioned on a fixed cyclic phase, and f#e(4)
n,-element observation vector W, whose elements are samples of ihe probabiit dity on ofite cyclic phase, Wn the
a bandlimited process w(t) with the first sample at index t = 0, is the probability density function of the cyclic phase. When the
abandiiteduent smpr ess sp)withthed first sampe ats, index a er cyclic phase is uniformly distributed over (0,2Z), the likelihood
and subsequent samples spaced by d. The noise, Z, is a zero- ai etde o eedo h n u nyo o
mean complex, stationary Gaussian random vector with Toeplitz, ratio test does not depend on the C,, but only on Co.
Hermitian, autocovariance matrix F. The signal, X, is a zero- The cyclostationary detection problem involves determining
mean complex, cyclostationary Gaussian random vector with a whether an observation has periodic statistics when the stationary
finite set of cycle frequencies that are harmonically related with statistics are the same under the two hypotheses. The observation
fundamental frequency a. (The extension to polycyclostationar- vector under the null hypothesis is W= Y+ Z, where Yis zero-
ity, with incommensurate fundamental frequencies, is straightfor- mean, Gaussian, and stationary with autocovariance matrix Co
ward.) The signal autocovariance matrix is C A Co + C., where while the observation vector under the alternative hypothesis is
Co is the Toeplitz, Hermitian component of C that corresponds W = X + Z where the statistics of X are the same as for the
to a stationarized version of X, and C. A Em,mo Cm, where Cm signal detection problem. When the signal and noise statistics are
corresponds to the mth cycle frequency. Each matrix Cm is the completely known, the likelihood ratio test statistic is a quadratic
Hadamard product of a Toeplitz Hermitian matrix and a Hankel form with operator L = (F + Co)-C, (F + Co + C.)-. When
matrix that is periodic on its diagonals. The (p, X) element of the noise is much stronger than the signal, the linear operator
Cm is (Cm)(p,X) = c=((p - x)d)exp{im(0b + 2ra(p - 1)d)}, where becomes L - F-' C.F-', which does not depend on the stationary
c,n(r) is the mth Fourier series coefficient of the autocovariance statistics of the signal.
function, at lag r, of the continuous-time signal from which X is
derived, and 4 is the cyclic phase: the phase offset of the fun- References
damental cycle frequency relative to the sampling instant for the 1. Chen, C. K., "Spectral Correlation Characterization of Modu-
first element in X. lated Signals With Application to Signal Detection and Source

The signal detection problem involves detecting a cyclosta- Location," Ph.D. Dissertation, University of California, Davis,
tionary signal added to stationary noise [1]. The observation vec- (1989).
tor under the null hypothesis is W = Z, while the observation 2. Gardner, W. A., and Spooner, C. M., "Signal Interception:
vector under the alternative hypothesis is W = X + Z. When Performance Advantages of Cyclic-Feature Detectors," Vol.
the signal and noise statistics are completely known, the likeli- 40, No. 1, IEEE Trans. Comm. (1992).
hood ratio test yields a sufficient statistic that is the quadratic
form A(W) = %4LW = trace{LWIV }, where I represents the Acknowledgment
adjoint, and L = F-'C (F + C)- 1 . The test involves knowledge of This work was supported by the MITRE Sponsored Research
the signal power and the noise power, as well as the cyclic phase Program.
of the signal.

When the signal is weak, the sufficient statistic reduces to

A(W) • A.(W.) A %4 WW + 0 trace{C0 CmCoWWwW}

m,m#01
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REDUCED-STATE SEQUENCE DETECTORS ARE NOT SIMPLER THAN THE

VITERBI ALGORITHM WITH GOOD CONVOLUTIONAL CODES

J.B. Anderson* and E. Offer**

ECSE Department Inst. Communications Eng.
Rensselaer Polytechnic Institute German Aerospace Research
Troy, New York 12180-3590 USA D-8031 Oberpfaffenhofen, Germany

Reduced-stated sequence detection is a method of reducing good codes of rates 1/3, 1/2, 2/3 and 3/4, and have found no code
the state trellis of channel code to a smaller structure. We show that admits of any RSSD trellis reduction. Only when the class-
that it does not reduce the complexity of BSC decoding for good finding algorithm is applied to codes with much poorer free
convolutional codes. distance, such as QLI codes and feed-forward systematic codes, do

The reduced-state sequence detector, or RSSD, has been non-trivial classes get formed. Then an interesting phenomenon
introduced in works of Eyuboglu, Qureshi, Chevillat, Elephtheriou, occurs: The number of classes so formed is invariably almost the
Aulin and Larsson. Because there exists some confusion over same as the number of states in the best-free-distance code with
precisely how an RSSD works, we will briefly review the free distance equal the parameter in the class formation. In this
procedure here. First, we define some ground rules for the encoder way, the RSSD idea seems to convert bad codes into good ones, so
design. We consider only decoders that never backtrack, as does far as the trellis size needed to attain a d is concerned.
the stack algorithm for instance; furthermore, they retain a fixed In conclusion, RSSD seems to point to some interesting
number of survivors at each trellis level, as do the Viterbi and M- structural properties of codes, but it does not create a simpler
algorithms; finally, the decoding is bounded-distance decoding, decoder for codes that are already good. It is also of interest to
which means that channel error correction is guaranteed so long as compare the RSSD to the M-algorithm, which obeys the same
the error sequence is of some size d/2 or less. With these ground rules. It is easy to see that the M-algorithm is the optimal
assumptions, the RSSD idea works as follows. Code trellis states non-backtracking decoder that keeps a fixed number of survivors.
at level n are grouped into classes, defined by the condition that no A more subtle proof shows that RSSD cannot keep fewer survivors
code words leading into states in a class are closer than d to any while attaining the same bounded-distance d parameter; we show
other code words leading into other states in the class. When the this in [1]. Examples can be given that show that the M-algorithm
decoder search moves on to the next trellis level, only one survivor actually retains many fewer survivors for the same d. For rate 1/2
leading into each class is kept. This contrasts with the usual state coding, RSSD must retain about 4" survivors, while the M-
trellis decoding, in which one survivor is kept into each state, algorithm needs only 2.414dn. The difference is much more
RSSD works because if the noisy received word satisfies the extreme in intersymbol interference problems. These facts make
bounded-distance condition, the transmitted path has to be among sense when one considers that RSSD makes its trellis reduction a
the survivors. The full bounded-distance potential of the code may priori, while the M-algorithm and other reduced-search decoders
be obtained if the d parameter is set equal to the code free distance, make their reductions after viewing the received channel sequence.

RSSD's should not be confused with reduced-search
decoders, which search only a small part of the original, large
trellis; in an RSSD, the trellis is reduced a priori and all of it is
searched.

We give a new algorithm that forms the optimally reduced [I] J.B. Anderson and E. Offer, "Reduced-state sequence

trellis for a convolutional code and a given d, and we show what detection with convolutional codes," in submission, IEEE

happens when the algorithm is applied to good codes. The class- Trans. Information Theory, August 1992.

forming algorithm depends on the linear-code symmetries of
convolutional codes and falls into three pans. The first two parts
act to form the class that contains trellis state 0. In part i, trellis
state i is tested to see whether it may be classified with state 0.
The procedure reduces to a dynamic program (i.e., the Viterbi
algorithm), run on the code trellis until the distance into each state This work supported by the Humboldt

in the trellis reaches a steady state. If the least-weight path into Foundat ion, Bonn, Germany.

state i in this steady-state condition is heavier than d, then state i
may be added to the class containing state 0; otherwise, it may not.
Part II tests whether a state that may be classed with state 0 may
be combined with other states j, k, ... that already have been
classed with state 0. Part [lI forms the other classes, based on the
class that contains state 0.

If the algorithm just described cannot find any state that
may be classed with state 0, then by code linearity, no states in the
code trellis may be classed with any other states, and the RSSD
idea fails to produce a smaller trellis structure than the original
state trellis. We have applied the algorithm to a large number of '9



Mapping the Boundaries Established by new encoder to reproduce the same sequence of
Ssymbols as the original. Although,State Diagram Connectivi technically, time is now a part of the encoder

state, the receiver does not have to estimate

Oliver Collins this variable.
Johns Hopkins University The time unraveled state diagram of this

encoder and, of course, the conventional shift

This talk will analyze how the intrasystem register encoder follows directly from its
communication between the different parts of a picture and looks like an endless succession of

partitioned Viterbi decoder is affected by FFT's placed one after the other in a line with

removing the restriction that states be the right hand circles of one overlapping the

permanently assigned to particular modules. it left hand circles of the next. If a suitable
is the strains on intrasystem communication decoding procedure is used it is easy to show
that limit the coding gains achievable with by using this time unraveled state diagram
VLSI technology. Some of the techniques that the memory of an outer code interleaver
outlined will also be useful for improving can be reduced without increasing the
concatenated coding systems using non- probability of there being an error somewhere
partitioned decoders. The talk will require in the interleaving block.
that the fundamental, atomic element of a Only one special property of the time

decoder, i.e., the add compare select unit, unraveled state diagram is necessary in order

remain unchanged but will impose no restriction to analyze the information flow in the decoder,
on which state a given processor handles at any viz. the two paths which leave a node remain

time. The lower bounds on intrasystem completely separate for K-2 time steps. This
communication will result from following the observation is sufficient to show the following
flow of imaginary tokens which move along the upper bound on the average residence time of a
same paths as the accumulated metrics. The token in a module where X is the total number
tokens will flow through an encoder state of state pairs which the module can hold:
diagram which has been unraveled in time. Each
column from left to right represents the next
decoded bit time and the nodes within a column 1+log(x) + 2"°t~x>)
are the different possible states at that time. n= &ioThe .-asiest way to discover what this new Lmaavg 5 1-20x)-K+2)
time-flow graph looks like is to examine a
logically equivalent but structurally different
encoder, i.e., given the same sequence of input Surprisingly, in certain special cases
bits this new encoder always produces the same this very coarse bound can be achieved with
sequence of output bits that a conventional equality as the following time unraveled state
convolutional encoder would; however, the diagram illustrating the split of a K=5 decoder
internal mechanics are very different. The into two equal parts shows:
state of this encoder will, of course, depend
on the most recent K bits of the data stream,
but instead of shifting all of the bits to the
right to make room for a new incoming bit, the
bits which make up the state are replaced
sequentially, and no shifting takes place. The
new encoder is time varying; it contains a
pointer which starts out at the first memory
cell and then moves on to the second, third and
so on. When it reaches the last cell it cycles
back to the first. The pointer indicates which
bit of the state will be replaced by the new
information bit. A suitably rotating set of
generator polynomials will clearly allow this

K-5 Equivalent Encoder

Function without To Channel
SInternal State

Bits in
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ON THE MAXIMUM DIFFERENCE BETWEEN PATH

METRICS IN A VITERBI DECODER

Andries P. Hekstra*

(Theorem II). By the hard decision path metric, we mt-an the path
metric if the (soft decision) Viterbi decoder were of the hard de-

Abstract cision type and the same signal were received. Since these results
were obtained obtained, we have learned that an exact expressionThe number of bits to be used in theo path metric calculus of Viterbi for maximum path metric differences can slso be found in a NASA

decoders depends logarithmically on the maximum possible differ- itrnax

ence between any two path metrics. Here, a recent upper bound report.

of Alston and Chau is generalised. In addition, we obtain an Theorem I
easy-to-compute exact expression for the maximum path metric Under the Assumptions I-III, for any (n.km, M, d1 •,) binary
difference. convolutional code and for an arbitrary received zequence, the max-

imum path metric difference max{._Xpm} equals s,,> times the
Introduction maximum hard decision path metric of a final state in a trellis

L branches deep, starting from the all-zero state (for arbitrary

Correct operation of the well-known Viterbi algorithm depends L > m).
only on differences of path metrics. As shown in [1], two's comple-
ment arithmetic can faithfully represent these metric differences, Let M denote the total number of shift register cells in the
which leads to an efficient implementation. The number of bits to encoder. Throughout the paper, a realization of the encoder as a
be used in this calculus depends on the maximum possible differ- parallel combination of k shift registers i = 1.2 .. k for which
ence max{Apm} of any two path metrics at an arbitrary depth L the i-th shift register is mi cells long [31 is assumed. The memory
in the trellis. Let Sm, denote the maximum symbol metric. As- order m is defined as the maximum of the m,, M = mi.
sutming nonnegative symbol metrics, an elementary upper bound Then, AI is defined as
on ti l maximum path metric difference max{Apm} is [1, 2. 31 AM = km - A1. (3)

max{Aprn} < smaxnm (1) Of course, for direct evaluation of Theorem I the case L = m

where m denotes the memory order of the rate R(= k/n) convo- is the easiest to evaluate. However, values L > m can be used to

lutional code. i.e. the maximum shift register length [3]. obtain an analytical upper bound to max{Aprn}.

Recently. Alston and Chau obtained a new upper bound for
decoders of binary R = 1/n codes, under certain assumptions on Theorem II (Generalized Alston and Chau bound)
the metric function [2], Under the Assumptions I-I, for any (nk.m,M, di,..) binary

convolutional code, the maximum path metric difference is upper

max{ApM)} < s,,[n(m + 1) - dfJ. (2) bounded by
(2 max{ Apm} !5 s_,•, min{ [n(rn + b)-

The assumptions of Alston and Chau can be simplified to the fol- d,(1 - 2-(+)J mn6 = 0,n..+.)-
lowing. (4)
I Symbol metrics are nonnegative integers.
II A branch metric is the sum of n symbol metrics.
III If transmission is over a noiseless channel and the Refer ences

transmitted bit differs from the hypothesis bit the
maximum symbol metric s,,0 is assigned, [1] A.P. Hekstra, "An alternative to metric rescaling in Viterbi de-
otherwise the symbol metric equals zero. coders," IEEE Trans. Commun.. vol. COM-37, pp. 1220-1222,

If negative branch metrics can occur, the addition of a constant Nov. 1989.

to all branch metrics will not affect the operation of the Viterbi [2] M.D. Alston, P.M. Chau, "An improved analytical bound
decoder. For binary codes, it can be shown that Assumption III on the maximum difference between path metrics in Viterbi
does not entail a loss of generality either, again because path se- decoders of binary tree convolutional codes", submitted to
lection is determined by the difference of symbol metrics. The IEEE Trans. on Co un, vol. COM-40, 1992.
difference of a symbol metric given that a zero was sent and the
symbol metric given that a one was sent can always be negative. [3] S. Lin, D.J. Costello,
irrespective of Assumption III. Error control coding fundamentals and applications, New

We show that rec,-ption of the all zeroes sequence constitutes Jersey: Prentice Hall. 1983.
the worst case for max{Ap.np , for any depth L > m. As a result, [41 PH. Siegel. C.B. Shung, T.D. Howell. H.K. Thaper, "Exact
we obtain an easy-to-com pute, exact expression for m ax{A pM ) [ u] for S ieel, d.c. path mel ri diff erences",(Theorem I) and a generalisation of the Alston and Chau bound bounds for Viterbi detector path metric differences",
(Theorem 1a aerlaooteAtProc. of IEEE Int. Conf. Acoust., Speech and Signal Proc.,

PTT Research. P.O. Box 421, 2260 AK Leidschendam; email: pp. 1093-1096. Ma) 13-16, 1991.
A P. IIekst ra' hresearch. ptt.nl
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LIST OUTPUT AND SOFT SYMBOL OUTPUT VITERBI
ALGORITHMS: EXTENSIONS AND CONNECTIONS

Christiane Niil Carl-Erik W. Sundberg
European Space Agency Signal Processing Research Department

ESRIN AT&T Bell Laboratories
Frascati, Italy 600 Mountain Avenue

Murray Hill, New Jersey 07974

ABSTRACT

The Viterbi Algorithm (VA) is the optimum decoding algo- output of length N and generates, by using the reliability values
rithm for a convolutional code. Improvements in the performance as "differences" for a 1-state SLVA (new implementation) decAd-
of a concatenated coding system that uses VA decoding (inner de- ing process, a list of length L. LVA and List-SOVA achieve equal
coder) can be obtained when, in addition to the stanard output, coding gains (for the Gaussian channel) of about 1.0 dB for a list
an indicator of the reliability of the VA decision is delivered to the size L = 2 and 1.5 dB for a list size L = 3 compared to the VA
outer stage of processing. Two different approaches of extending performance. Due to the higher slope of the error probability of
the VA are considered. In the first approach, the VA is extended the List-SOVA, the inferior performance for low SNRs changes
with a Soft Output unit (SOVA) that calculates, based on the into a superior performance for high SNRs when compared to
differepce between the cumulative metrics of the two paths merg- the LVA. We explain these results due to the use of interleaver for
ing at each time instant and state, reliability values for each of the List-SOVA. We attain with the List-SOVA an alternative List
the decoded information symbols. In the second approach, coding Output Viterbi Algorithm that achieves due to costs of higher de-
gains are obtained by delivering, in addition to the best path, the coding delays (interleaving) than the LVA a superior performance
next L - 1 best estimates of the transmitted data sequence. Here, for high SNRs. For a short list size the complexity of the List-
the output format is a list of size L. This is a List VA (LVA). SOVA is higher than the complexity of the LVA. We propose in
In this work, we evaluate LVA and SOVA in comparison to each future work to study the List-SOVA performance as a function of
other and attain extended versions of LVA and SOVA with low the update length bup to obtain possibly even for a short h,5, an
complexity that implement the other algorithm. We construct acceptable performance.
and evaluate a List-SOVA using the reliability information of the We introduce a low complexity Soft Symbol Output Viterbi
SOVA to generate a list of size L and that also has a lower com- Algorithm, based on the LVA (Soft-LVA) that uses the knowledge
plexity than the LVA for a long list size. Further, we introduce a of the positions where the L best path differ and the cumulative
low complexity algorithm that accepts the list output of the LVA metrics at state SN of the L best paths, to produce reliability
and calculates for each of the decoded information bits a reliabil- information for each of the decoded information bits. Due to the
ity value. The complexity and the performance of this Soft-LVA fact that the L best path sequences only differ at a limited number
is a function of the list size L. The performances of Soft-LVA and of information bits we discovered that with "soft" initialization of
SOVA are compared in concatenated coding systems. the reliability values coding gains can be achieved versus a scheme

with fixed initialization values where smaller coding gain could be
SUMMARY obtained. For the preliminary "soft" initialization method that is

The Soft-Output Viterbi Algorithm (SOVA) [11 and the Gen- based on a SOVA update (obtained from the SLVA) with update
eralized Viterbi Algorithm (GVA) or List output VA (LVA) [2] are length 6,p = v + 1, we achieve, e.g for a list size of L = 2 (low
further extended and compared in this paper. The LVA produces complexity) in comparison to hard output decoding a coding gain
a list of the L best estimates of the transmitted data sequence. of 0.5 dB at 10' for codes with memory 3 for the inner and outer
The SOVA, however, generates sequentially and continuously soft code and code rates 1/2 (inner) and 2/3 (outer). With list size
output symbols, where the amplitude of each symbol contains L = 8, 1 dB coding gain is achieved. We assume that in the
the reliability information for that specific symbol. Two differ- first 8 estimates of the sequence the significant error events in the
ent units are developed, both using the reliability information to VA output are considered for block lengths N = 32,64,128,512.
produce a list of size L. Assuming an ideal outer code, the per- Compared to the SOVA the proposed Soft-LVA has 0.2 dB lower
formances of these two List-SOVAs (SOVA and List Generating coding gain at a bit error probability of 10-3, N = 64, L =
Units) are compared to the performance of the LVA for the Gaus- 8. Concerning the complexity of the algorithms, the Soft-LVA.
sian and independent Rayleigh fading channels. A Soft Symbol especially when the SLVA is used, has a lower complexity than
Output Algorithm is defined, using the differences in the accumu- the SOVA, [3].
lated metrics of the best path and the L best paths (1 < I < L)
of the LVA as a measurement for the reliability of each decoded References
bit. The serial LVA (SLVA) [2] generates this list iteratively. A
new software implementation of the SLVA is presented. The new
Soft-LVAs and the SOVA are tested in a concatenated coding sys- [1] J. Hagenauer, P. Hoeher and J. Huber, "Soft-Output Viterbi
tem, where a convolutional code is chosen as the outer code. The and Symbol-by-Symbol MAP Decoding: Algorithms and
two algorithms of interest - LVA and SOVA - evaluate the re- Applications." In submission to IEEE Transactions on Comn.
liability of the VA decisions and deliver the attained information
to an outer stage of processing. L, case of erroneous decisions of [2] N. Seshadri and C-E. W. Sundberg, "List Viterbi Algo-
the VA, we observe in the VA outputs correlated information bit rithms and their Applications to Speech and Data Tsans-
errors and the SOVA outputs correlated symbol reliability values, mission." In submission to IEEE Trmnsactions on Corn

Motivated by the idea of finding algorithms with lower com- [3] C. Nill and C-E. W. Sundberg, "List and Soft Symbol Out-
plexity, which produce list output (long list size L) or soft output, put Viterbi Algorithms: Extensions and Comparisons." In
we extended the two algorithms by additional units to produce submission to IEEE Transactions on Con.

output according to the other algorithm. We defined a low com-
plexity list generating unit that accepts the deinterleaved SOVA
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NEW LOW COMPLEXITY SOFT MAXIMUM LIKELIHOOD Exammnpl We describe an array code (9.4,4) with generator matrix:

DECODING OF PARTIAL UNIT MEMORY CODES.

V.V.Zyablov, B.Honary., G.Markarlan" 101000101
011000011 101000000 000100001

") nstitute for Problem of Infoanaio TrazLsmisson. Russian Acdamy of Scienca, G GGOD - 0f 1

19 Enolov Str.. 101447, Mmosw C'.S. 000101101 011000000 001000100
")Hull-LancaMIer Commnuncatio Researcb Group. Lmcast Univasity, L me, 0 11011
LAI 4YR. UK.00011

Recent publication by Forney [1] has increased an interest paid Using the trellis diagram of array code [5], the trelis structure of

RecentMpubdecationebyeForneyea1]lhasTincreasedhan thterestopand

to trellis decoding of block codes and different combined coding PUM code can be derived easily. This code has the following

and modulation techniques. Partial unit memory (PUM) codes parameters: n=9, k=6 and d,.=4. The designed trellis diagram

introduced in [2] have advantages of both block and convolutional allows to implement the SMLD of PUM code with much lower

codes. Soft maximum likelihood decoding (SMLD) based on trellis complexity comparing with conventional techniques. Table 1

structure can be obtained for these codes, however such a decoder compares the complexity of trellis diagrams and number of

will have huge number of states and branches. The problem of operations for conventional Viterbi decoder (VD), SMLD using
J.Wolf's trellis structure of block codes [3] and for PUM code,

reducing complexity of such decoders has been investigated in [3],

where trellis decoding derived was based on technique described by proposed in the above Example. As it follows from Table 1, the

J.Wolf [4]. In [5] a new simple algorithm for trellis design, using proposed algorithm allows to achieve the lowest complexity.

generator matrix of array codes was proposed. This algorithm Table 1.

allows to derive the trellis diagram for any array code with reduced Decoding No of No of No of No of

number of states and branches. Algorithm Additions Comparis. Branches Nodes

In this paper a new low complexity SMLD for PUM codes, VD 2048 240 256 8

based on [5] is introduced. It is shown that, the new technique will SMLD[3] 29 148 296 152

provide the lowest implementation complexity together with better Example 172 75 100 28

distance properties in comparison with conventional techniques. Let

{X}={(x,,x2,...x )) be the sequence of input information symbols of In addition, the technique described above allows to increase the

length k, and the sequence of output codewords of length n (n>k) distance properties of PUM.

{Y)={(y,y 2.,...yd)} is defined as:
REFERENCES
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rank(G1 )=k1<k, such code is known as PUM code [2]. Matrices G. vol.34,1988,p.p.1123-1151.
and G, are defined as follows- 2. Lee L.N. Short unit-memory byte oriented convolutional

Go- I IGOOGo1 IT G - I JOG, 1 (2) codes, having maximal free distance.-"IEEETransactions on
Information Theory", vol.22, No 3, 1976, p.p.349-355.

whrer, Goo is a generator matrix of (n,k4) block code (k0=k-k,); G0, 3. Zyablov V.V., Sidorenko V.R. Soft maximum likelihood

and GI are (kn) matrices of rank k,; 11011 is k0n all zero matrix and decoding for PUM codes.-"Problems of Information

11.11T is the transpose of matrix 11.11. In order to design the PUM code Transmission". No 1, 1992.

with d.=dL, of block code, we choose the G, as a generator 4. Wolf J.K. Efficient maximum likelihood decoding of linear

matrix of array code, but matrices Go, and G,, must satisfy to block codes, using a trellis.-"IEEE Transactions on

following conditions: Information Theory", vol.24, No 1, 1978, p.p.76-84.

(i) the distances of block codes, generated by matrices Go and G, 5. Honary B., Markarian G., Darnell M. Trellis decoding

must be no less than d./2 of array code; technique for array codes.- "Proceedings of Eurocode'92",

(ii) matrix Udine, Italy.

G. - I lGOOG IGI, (3)

must be non-singular.
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On the Evaluation of the Error Performance of Trellis Codes

Christian Schlegel
Digital Communications Group
University of South Australia

The Levels, SA 5095, Australia

Summary calculating the union bound can be formulated as finding all possi-
ble paths through a graph with N2 states, where N is the number

The evaluation of the first event error probability P. of trellis codes of code states. We show that the number of vertices of this graph
is a difficult and complex problem. The best known approach is can be reduced in size in many cases. We show that the conditions
the truncated union bound P.b on P., but even the evaluation for quasi-regularity in 13] (or row and column uniformity in 14])
of P~b is rather complex for most codes, due to the nonlinear lead to sets of equivalent states, reducing the size of the graph
or nonregular structure of typical trellis codes, which requires a to N vertices. This approach does not explicitly use the linearity
double summation over all sequences, i.e., of the generating code generating trellis and is thus applicable to

nonlinear trellis codes such as some of the rotationally invariant

P. d(x, x') codes.
2 N )' The distance spectrum for some of these trellis codes can ac-

x/x' tually be calculated using a graph with fewer than N states, as in
the case of the 4-state 8-PSK Ungerboeck code, whose associated

where x, x' are the sequences of the code. The complexity of Euclidean distance graph has only 3 states. We expound on this
the search algorithm is thus proportional to N2 , where N is the and look at how the distance graph can be used to obtain bounds
inberm of states in the code. The above equation is often written for other distance measures which can be computed with small
in terms of the distance spectrum as complexity.

( d2o0) Ways of loosening the bound which leads to complexity reduc-

P.b - j AiQ di ) tions and the tighness of the bounds will also be addressed.
d~df,ee

where the infinite set of pairs {d2 , Al} is the distance spect References
and dr.. is the minimum squared Euclidean distance of the code. 1l G.D. Forney, "Geometrically Uniform Codes," Trans. on In-
We thus concentrate on evaluating the distance spectra of these form. Theory, vol. 18, pp. 1241-1260, September 1991.
codes.

A lot of effort has gone into designing regular trellis codes 121 E. Zehavi and J.K. Wolf, "On the performance evaluation of
and the condition for regularity (or geometric uniformity) are well trellis codes," Trans. on Inform. Theory, vol. 33 no. 2, pp.
understood now [11. The reason why regular codes are so popu- 196-201, March 1987.
lar is that their error performance can be evaluated by regarding [3] M. Rouanne and D.J. Costello, Jr., "An Algorithm for Com-
a single, arbitrary correct sequence, i.e., the double summation puting the Distance Spectrum of Trellis Codes," IEEE Jour.
above is reduced to a single summation. The complexity gain nil on Selected Areas in Communicationrs, vol. 7, No. 6, pp.
thus achieved is significant and searching a trellis with N states, 929-940, August 1989.
where N is the number of code states is considered acceptable. In [4] E. Biglieri and P.J. McLane, "Uniform distance and error
this scnse, calculating the error performance of regular codes is probability properties of TCM schemes," ICC'59, Boston,
equivalent in complexity to calculating the error performance of Mau., June 11-14,1989.
linear codes.

Various researchers 12, 3, 4, 5] have successfully looked at re- (5] E. Biglieri et. al. Introduction to Trellis.Coded Modulation
ducing the complexity of calculating the union bound of trellis with Applications, Macmillan, New York, 1991.
codes, using the linear structure of the underlying generating trel- [61 C. Schlegel, "Evaluating Distance Spectra and Performance
lis. All these methods are essentially equivalent 161, in the sense Bounds of Trellis Codes on Channels with Intersymbol Inter-
that the liicarity of the code generating the trellis is extended to ference", Trans. on Inform. Theory, May, 1991.
the average symbol sequence.

In this paper we look at this problem from tl.e ý.rspective of
graph theory and finite-state machines. The r,.. problem of
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each, called bands, then p/ is also regarded aS the confidence
value of the jth asoband (i.e., subset) of the ith band of H.

Abstract The weight of a collection of subbands belonging to different
(not necessarily consecutive) bands, is defined to be the sem of

A recursive algorithm is presented for accomplishing the confidence values of the elements of the collection.
maximum likelihood soft syndrome decoding of trellis ceded The decoding procedure starts with the computation of Z. If
modulation codes. It consists of signal-by-sinal hard decod- z -0 then v is the most likely sequence of coded bits. Other-
ing, followed by a sesrch for the most likely error pattern. As wise, ML decoding is achieved by finding the least weighing
error trellis, alternatively a decoding table, is devised for des- error collection of subheds that sam i. to z and then comple-
crihing the decoding procedure. Methods for degenerating the meeting the bits of v at the positions corresponding to the col-
error trellis enable identification of the surviving error path by oumas included in this collection. Am errer trellis is devised
a relatively mall number of real additions. In comparison with for compactly describing all the possible error collections. The
the Viterbi algorithm, the syndrome decoder achieves substan- trellis is degenerated according to the composition of the syn-
tial reduction in the computational complexity, especially for drome sequence.
moderately noisy channels.

The following Table exhibits a comparison between computa-
Summary tional complexities of the Viterbi algorithm and the proposed

syndrome decoding algorithm, applied to a simple four state
trellis code for 8-PSK modulation. The two algorithms will

Trellis coded modulation (TCM) codes are usually generated decode to the some code sequence and thus give identical per-
by employing an kl(k-l) rate binary convolutional encoder. formance. However, the Viterbi decoder's computational co
The k-i coded bits select one of 2 k+1 subsets of a redundant mplexity is independent of the channel signal to noise ratio
2 k4'+"I-ary signal set, while the m uncoded bits determine (SNR) while the syndrome decoder's average computational
which of the 20 signals of this subset is to be transmitted. The complexity decreases as the SNR increases (in similarity with
signals are transmitted through on additive white Gaussian the case of syndrome decoding of binary convolutional codes
noise channel, hence maximum likelihood (ML) decoding is [3]). The complexity is measured in terms of the total numbers
equivalent to minimum squared Euclidean distance decoding. of real additions and comparisons, required for decoding

The ML decoding of TCM codes is customarily accomplished 300-bit truncated sequences. The average complexities were
in two steps: a) within each subset of signals, the nearest obtained by simulations. The worst case complexities ar fixed
neighbour to the received signal is determined by a procedure and independent of the SNR.
called subset decoding, then b) the Viterbi algorithm is applied
for finding the signal path through the codeword trellis with SNR Viterbi Syadrome Syndrome
the minimum squared Euclidean distance from the sequence of [dB] salgorithm worst case average
received signals [2]. We replace step b) by an efficient ML syn-
drome decoding algorithm, suited to deal with nonbinary mod- 3 1300 1500 670
ulation signals. 6 1300 1500 320

Let H be an infinite dimensional parity check matrix of an6

(k+1,k) binary convolutional code C employed for a TCM 8 18sm ism0 124
scheme. Given some received sequence of channel output sig-
nals,r -(rl,r 2 ,r3,-.-), signal-by-signal hard decision yields References
V -(v,,v 2,V 3 ,""). By hard decision we mean finding the clo-
sest code sipnal to the received signal in terms of squared Ruc- [1]0).D. Forney, Jr., 'Convolutional codes 11. Maximum likelihood
lidean distance. The subset decoding is also accomplished as decoding,' Inform. Contr., vol. 25, pp. 222-266, July 1974.
part of the hard decision procedure. We then expand each [210. Ungerboeck. 'Channel coding with multilevel/phase sinals,'
signal in v into its k 41 coded bits representation (i.e., discarde IEEE Trans. Inform. Theory, vol. IT-28, pp. 56-67, Jan. 1982.
the encoded bits). Subsequently, we compute the corresponding [3] M. Ariel, and J. Snyders, -Soft syndrome decoding of binary con-
sequence of syndrome bits X -(z j ,x 2 ,zx.'")t, defined by volutional codes,' submitted for publication.
z -Hv' (where the superscript t indicates transposition). A [4) J.P.M. Schalkwijk, AJ. Vinck, and K.A. Post, "Syndrome decod-
measure of confidence, named confidence svlue, is assigned to ing of binary rate kin convolutional codes,' IEEE Tram. Ia/orm.
each of the 2k+1 signals, Theory, vol. IT-24, pp. 553-562, Sept. 1978.

c1i ;j --0,1,2,-- -2k+1- I , [5]J. Snyders, and Y. Be'ery, Maximum likelihood soft decoding of
belonging to the reduced signal set (i.e., the signals determined binary block codes and decoders for the Golsy code•' IEEE

by the subset decoding). The coafidence value, denoted pij, is Trans. Inform. Theory, vol. IT-3S, pp. 963-975 Sept. 1989.

defined by [61 H. Miyakawa and T. Kaneko, 'Decoding algorithms of error-cor-
=d2(c 1 ~ - d2  recting codes by use of analog weights,' Eleacs and Cmmo-

PSij -d2(cj ,ri) - (vd,0r), icaions in Japan, vol. 58-A, pp. 16-27, Jan. 1975.
where d2(--) stands for squared Euclidean distance. The col- [7] J. Sayders, 'Reduced lids of error patterns for maximum ikeli-
umne of H are partitioned into sets of k+41 consecutive columns hood soft decoding,' IEEE Tram. Inform Theory, vol. IT-37, pp.

1194- 1200, July 1991.
This research was supported in part by the Basic Research [8] AJ. Viterbi 'Convolutional codes and their performance in com-
Foundation administered by the Israel Academy of Sciences munication sysems," IEEE Tranm. Comman. TechnoL. vol. COM-
sad Humanities. 19, pp. 751-772, Oct. 1971.
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In Full State (FS) Viterbi decoding, N = N, x Nh is the number and the upper bound of the bit error probability is obtained as in [2].
of states of the FS trellis and of a super-encoder which includes the In the calculation of T(:, I), the Chernoff bound of the pairwise error
convolutional encoder and the channel number of states, given by N, probability is taken, and the elements of all the defined matrices are
and Nj, respectively. In Reduced State (RS) schemes [I], reduction of calculated. We call this the Union Bound (UB).
the channel states to Nrch (1 < N~h < Nh), yields the size 1IF"I of the The second method consists in the estimation by Gaussian Quadra-
FS super-encoder mapper also diminished, with a N'-state RS super- trre Rules (GQR), of the CDF associated to the pairwise error proba-
encoder with mapper's size 1Fl. Thus, per each state (or symbol)in bility of Eq. (1). This is based on the calculation of a set of moments
the RS trellis we have p = NCh/N.h = 1T.I"/I1Yj unknown states (or of the r.v. related to the branch metrics. Since the path metric is
symbols), where the symbols are estimated by the Viterbi decoder and constructed by succesive branch metric additions, the moments of the
then fed back to equalize the unknown ones in the next decoding step. correspondent r.v. are obtained from succesive binomial expansions
If among the p potential survivors, an incorrect sequence is selected, in the form of moments convolution. When an error event is defined,
the error propagation (EP) effect occurs. The feedback mechanism such moments are used to estimate the CDF, from where the pairwise
prevents the attainment of error probability bounds from the RS state error probability is computed. In this case, we use an algorithm and
transition diagram. To overcome this difficulty, the N' reduced states include all the error events by traversing in a general N2-state trellis
can be combined with the p unknowns, to obtain the N-state FS diagram based on pairwise states [3]. The bound thus obtained is called
trellis (N'p = N), with labels including symbol estimations. Since Moments Bound (MB).
in RS decoding at least two error events are involved, we consider Although the pairwise error probability of Eq. (1), based on the path
the occurrence of multiple error events in the FS trellis resultant from metric condition, holds equally for trellises with or without parallel
splitting of the RS states, where all the states so, s1 . ... Sp- are seen transitions, in the first case, an additional condition is satisfied since
the same by the decoder. Its upper bound is obtained as a decoded branch symbol is, among the members of the parallel

000P- P- transition, the nearest in Euclidean distance to the received signal.
PE < ) F _ , P,4SKLj] _ P-[is,] _ P[SKL - SK..L/s, -- sJ] By union bounding all the sequences arising from parallel transitions

A'=1 L=1 SK.L sk.L i=o j=1 concatenation, an upper bound is obtained. An element taken from it
(1) will have a branch metric that is calculated from a truncated Gaussian

where the correct sequence is denoted by SK.L and its occurrence noise pdf, with limits depending on how the decision space is divided
probability as Pc,[SK,L]. K stands for error event order and L represents by the parallel transition symbols. The tighter bound like this obtained
its length. PK [s;] is the K-th error event starting state s, probability, is called Elementary Bound (EB).
and P[S'.L -' S -.si ý sj] is the pairwise error probability for The results shown below correspond to a 16-QAM TCM scheme,

with N, = 4, NVh = 8, N,,'h = 1. The tight upper bound (TUB) [2]
the incorrect path S'1,L between s, and sj. From the first error event shown can be applied only for complete Gaussian noise pdf or UB.
definition, the term (K = I) in Eq. (1) carries no EP effect. By
assuming that the same starts from the transmitted state so, P1 [so] = I - ,
and P, [si] = 0 (i = 1, 2 ..... p - I). For K > 2, the error events may .- . COSFFCENTS
start from any si but from so, since at that time at least one error event 10 • .
have already happened (i.e. PK [so] = 0 for K > 2). These termis 10

will contain the EP effect. Moreover, all error events will end at any 1L

si (i =,2..., p - 1), where so is excepted since at the time of RS I0".
decision, the transmitted and decoded states are not fully coincident.

Now, we calculate Eq. (1) by two methods. The first considers 2 10"
the error weight matrix transfer function [2]. We define two transfer a. RS US -

function matrices : Ta(.) which represents the transfer function of the I0 RS ES -

first error event starting from so and ending at sj Q = 1, 2. p - I), IB

and Tb(z) that corresponds to the error events starting from ., and 10-1c RSPA(Ee)

ending at sj (i~j = 1,2,...,p - i). z is a parameter resulting from R S nmulton
the Chernoff bound. An element (i, j) of the matrices is an error event
probability upper bound associated to the paths between si and sj. 10-" A 10 012
Then, we define two other transfer function matrices T.(:) and Tb(z ) E^ (dB)
with elements (i,j) containing the pairwise error (rather than the error
event) probability upper bound. The total transfer function matrix Figure 1: RS 16-QAM TCM performance bounds
becomes then, T(z) = Ta(z) + T'(:)tI - ¶'b(z)]'-Tb(:) where all References
the factor multiplying Tb(z) gives the starting state probabilities for [I] P.R.Chevillat, E.Eleftheriou, Decoding of Trellis-Encoded Signals in the
(K > 2) and I is a N x N identity matrix. To obtain the bit error Presence ofintersymbol Interference, IEEE Trans. Commun. VoLCOM-- )adls dniymarx ooti h i ro 37, No.7, pp.669-676, July 1989.

prbability upper bound, we extend T.(z) and Tb(--) to include the 3.N..p.6-7,Jl 99
[2] Y.J.Liu, l.Oka, E.Biglieri, Error Probability for Digital Transmission

number ( of incorrect input bits resulting T.(z, I) and Tb(:, I), where Over Nonlinear Channels with Application to TCM, IEEE Trans. on
I is an indeterminate whose exponent is F. The total extended transfer Inform. Theory, VoL.IT-36, No.5. pp.1101 -1110, September 1990.
function results then T(:, 1) -= Ta(z, I) +T'(:)[I - Tb(z)j-'T b(:, 1) [3] C.Valdez, H.Fujiwart, l.Oka, H.Yamamoo, Error Probability Analysis

in Reduced State Viterbi Decoding. IEICE lbctmical Report. Vol.92.No.193, pp.55-60. August 1992.
This work was pWtially supported by granted aid of Fujitsu Laboratories. Ltd.
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EFFICIENT MAXIMUM-LIKELIHOOD SOFT-DECISION

DECODING OF LINEAR BLOCK CODES USING ALGORITHM A*'

Yunghsiang S. Han, Carlos R. P. Hartmann, and Chih-Chieh Chen2

Abstract Table 2: Simulation for the (128,64) code

In this paper we present a novel maximum-likelihood soft-decision -yb 5 dB 6 dB 7 dB 8 dB
decoding algorithm for linear block codes. The approach used here max ave max ave max ave max ave
is to convert the decoding problem into a search problem through N(r) 216052 42 13603 2 1143 1 0 0
a graph which is a trellis for an equivalent code of the transmit- C(r) 38219 8 1817 2 91 2 1 1
ted code. Algorithm A* is employed to search through this graph. C(r) 16626 7 856 18 965 1 1 10
This search is guided by an evaluation function f defined to take 1

advantage of the information provided by the received vector and where
the inherent properties of the transmitted code. This function f is
used to drastically reduce the search space and to make the decoding N(r) = the number of nodes visited during the decoding of r;

efforts of this decoding algorithm adaptable to the noise level. Sim-
ulation results for the (104, 52) binary extended quadratic residue C(r) = number of codewords constructed in order to decide on the

code and the (128,64) binary extended BCH code are given. closest codeword to r;

Summary M(r) = maximum number of nodes stored during the decoding of
r;

The use of block codes is a well-known error-control technique for max = maximum value among 35,000 samples;
reliable transmission of digital information over noisy communica-
tion channels. Linear block codes with good coding gains have been ave = average value among 35,000 samples;
known for many years; however, these block codes have not been used
in practice for lack of an efficient soft-decision decoding algorithm. yb = E6/No.

In this paper we present a novel maximum-likelihood soft-decision Simulation results for the above linear block codes attest to the
decoding algorithm for linear block codes. This algorithm uses Al- fact that this decoding technique drastically reduced the search space,gorithm A* [3], which is a generalization of Dijkstra's algorithm [2] especially for the majority of practical communication systems where

to search through the trellis for a code equivalent to the transmitted the majority of practial communication ste wherecod. Tis each s gide b anevauatonfuntio fdefined for the probability of error is less than 10-2 ('yb greater than 6.8 dB) (1].
code. This search is guided by an evaluation function f der e d for For example, the results of Table 2 at 6 dB indicates that for the
every node m in the trellis. f(m) = g(m) + h(m), where g(m) is no 35,000 samples tried, this decoding algorithm is approximately 15
estimate of the cost of the minimum cost path from the all-zero node oresfmantdmreficninieadspehnWl'.at depth 0 to node m, and where h(m) is an estimate of the cost of orders of magnitude more efficient, in time and space, than Wolf's.
athdepmiimu cotpth 0 node m, tod thewaler o nodisanest te at dpthe cThus, this decoding procedure has not only resulted in an efficientthe minimum cost path from node m to the all-zero node at depth soft-decision decoding algorithm for hitherto intractable linear block

n. The function f is defined to take advantage of the information codesion dn algorithm for hithertinactableli b
provided by the received vector and the inherent properties of the codes, but an algorithm which is in fact optimal as well.
transmitted code. The use of this priority-first search strategy for de- References
coding drastically reduces the search space and results in an efficient
optimal soft-decision decoding algorithm for linear block codes. Fur- [1] G. C. Clark, Jr., and J. B. Cain, Error-Correction Coding
thermore, in contrast with Wolf's algorithm [4], the decoding efforts for Digital Communications. New York, NY: Plenum Press,
of our decoding algorithm a-e adaptable to the noise level. 1981.

The proposed algorithm is applicable to any linear block code
and does not require the availability of a hard-decision decoder. Fur- [2] T. H. Cormen, C. E. Leiserson, and IL L. Rivest, Intro-
thermore, any stopping criterion ensuring that a solution has been duction to Algorithms. Cambridge, MA: The MIT Press,
found can be easily incorporated into this algorithm. 1991.

Simulation results for the (104,52) binary extended quadratic
residue code and the (128,64) binary extended BCH code when these [3] N. J: Nileson, Principle of Artijicial Intelligence. Palo Alto,
codes are transmitted over the AWGN channel are given in tables 1 CA: Tioga Publishing Co., 1980.

and 2, respectively. These results were obtained by simulating 35,000 [4] J. K. Wolf, "Efficient Maximum Likelihood Decoding of
samples for each SNR. Linear Block Codes Using a Trellis," IEEE Trans. on In-

formation Theory, pp. 76-80, January 1978.

Table 1: Simulation for the (104,52) code

Yb 5dB 11 6dB 7dB 1 8dB
max ave max ave max ave max ave

N(r) 142123 19 129181 1 221 1 0 0
C(r) 32823 5 519 2 35 2 1 1
M(r) 13122 4 1912 1 155 1 0 0

'This work was partially supported by the National Science Foundation under Grant No. NCR-9205422, and used the computational facilities of the Northeast Parallel
Architectures Center (NPAC) at Syracuse University.2

y. S. Han sad C. R. P. Hartmann are with the School of Computer sad Information Science at Syracuse University, Syracuse, NY 13244-4100. C.-C. Chen was
with the Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218. He is now with the Department of Computer Scieace,
University of California, Los Angeles, CA 90024. Mr. Chen participated in this research during the summer of 1991 while he was working under the Syracuse Canter of
Computational Science Research Experience for Undergradaate Program grant from the National Science Foundation (NSF-REU award No. CDA-91m06).
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Abstract w(B) = min {ly,, Ily 2 1 ...... l. (2)

The performance evaluation of a priori probability (APP)

decodable codes is considered. In particular, we are interested in We proceed to evaluate the conditional characteristic function of

a decoding method, which uses an approximation [2] to the the random variable w(B)(2B-I), conditioned upon the

weight functions -involved in the decoding process. The channel orthogonal symbol C. We then make use of the fact that given

is assumed to be additive white Gaussian, and the modulation the orthogonal symbol, the parity check equations are

format is assumed to be binary phase shift keying (BPSK). Two independent, and derive conditional characteristic function of the

cases are considered: in the first case, analog (unquantized) decision variable in Type-Il AAPP decoding. An efficient

demodulator output samples are used in soft decision technique to numerically evaluate the probability of first

approximate APP (AAPP) decoding. In the second case, we decoding error from the characteristic function of the decision

assume that the demodulator output samples are quantized using variable is also described.

an analog-to-digital (A/D) converter, and these quantized
samples are utilized in the AAPP decoding process. In both the We evaluate the probability of first decoding error for
cases, expressions for the probability of first decoding error are threshold decodable block codes using the analysis described

derived using characteristic functions. We compute the above. We compare the numerical results to simulation results,

probability of first decoding error numerically for b,)th block and and show that they are in good agreement. It is shown that when

convolutional APP decodable codes using the analytical the demodulator output samples are quantized to 8-levels and

expressions derived, and these results show good agreement with AAPP decoding is used, the degradation relative to unquantized

simulation results. Finally some interesting aspects of large block case is about 0.25 dB only when the length of the threshold

length threshold decodable codes are discussed [5]. decodable code is small. When the length of the threshold
decodable code is large, the degradation Ls close to 1.0 dB. A
new decoding algorithm 15] for the quantized sample case is

Summary proposed, which eliminates the above mentioned drawback for

APP decoding was introduced by Massey [I ]. It provides threshold decodable block codes with large block length.

a soft decision decoding algorithm that minimizes symbol error
rate for threshold decodable codes [ I, 3]. In APP soft decision Discussions with my collegue Y. Hebron are greatly
decoding, a set of orthogonal parities are computed from the appreciated during the course of this work.

hard decisions, and each of these parities are assigned "weights"
based upon the channel reliability information. In exact APP References

decoding, these weights are complex non-linear functions of the
channel reliabilities of the components of the parity equations. II. L. Massey, Threshold Decoding. MIT Press. 1963.
Hence in reality, exact APP decoding is rarely implemented.

In [2], an approximation to the weight function which [2] H. Tanaka et al., "A novel approach to soft decision decoding
depends only on the least reliable component of the parity check of threshold decodable codes," IEEE Transactions on

equation was suggested, and shown via simulations to perform
extremely well (degradation relative to exact APP decoding s Information Theory, vo. IT-26, pp. 244-246, Marh 1980.
less than a tenth of a dB) even at low Eb/No for a large set of
threshold decodable codes. This approximation is widely used in [3] S. Lin and D. J. Costello, Error Control Coding, Prentice
practical realizations of soft decision threshold decoders [4]. Hall, 1983.

in our work, we derive analytical expressions for the
probability of first decoding error for AAPP soft decision [41 P. Lavoie et al., "New architechtures for fast soft-decision
decoding. In our analysis, we assume that already decoded threshold decoders," IEEE Transactions on Communications,
symbols and their reliabilitiers are not fed back in the decoding of

subsequent symbols. We also assume for the purpose of analysis, vol. COM-39, pp. 200-207, February 1991.

a "Type-fl" decoder [ I, 3] where any orthogonal parity
[51 S. A. Raghavan et al., "On the application of approximate

B = + r2+ ........... + r. (1) APP decoding to digital video transmission," Accepted for

is an estimate of the orthogonal symbol C. In (I), ri represent the publication. IEEE Journal on Selected Areas in

hard decisions on the demodulated matched filter samples yi, and Communicarions, Special issue on HDTV and digital video

the symbol 9 represents modulo-2 addition. In AAPP communications, December 1992.

decoding. the weight of the parity B, denoted w(B), is given by
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Abstract. The problem of efficient maximum-likelihood soft decision de- We now indicate how the direct-sum and the concurring-sum structures
coding of binary BCH codes is considered. It is known that those primitive BCH may be employed for efficient maximum-likelihood soft decision decoding.
codes whose designed distance is one less than a power of two, contain subcodes Let s be the logarithm of the maximum number of states in the minimal
of high dimension which consist of a direct sum of several identical codes. We
show that the same kind of direct-sum structure exists in all the primitive BCH proper trellis of a linear code C. This parameter governs the complexity of
codes, as well as in the BCH codes of composite block length. We also introduce a maximum-likelihood decoding of C using the trellis diagrams of [2]. It follows
related structure termed the "concurring-sum". and then establish its existence in from the trellis construction of Wolf [6], that s < min{K, N - K}, where N
the primitive binary BCH codes. Both structures are employed to upper bound the and K are the block length and the dimension of C. We employ the direct-
number of states in the proper minimal trellis of BCH codes, and develop efficient sum and the concurring-sum structures of C to substantially improve upon
algorithms for maximum-likelihood soft decision decoding of these codes, this upper bound. Assume that C contains a subcode which is a direct-sum

In [2] Forney has shown that the binary Reed-Muller codes contain direct- of h identical codes, each of dimension k. Then by arranging the coordinates
sum subcodes of high dimension. It is well known that certain BCH codes, of C in alignment with its direct-sum structure, it follows that a _< K-(h-1)k.
namely the primitive binary BCH codes with designed distance one less than Substituting the parameters of the direct-sum structures, that we were able
a power of two, are supercodes of punctured Reed-Muller codes. Hence these to find using the techniques described herein, into this expression yields upper
BCH codes evidently share the direct-sum structure of the RM codes. This bounds on s which are often tighter than the bound of Wolf. Arranging the
fact was used by Kasami et al. [3] to construct efficient trellis diagrams for coordinates of C in alignment with its concurring-sum structure also yields
the (64,24,16) and (64,45,8) extended BCH codes, and also several double- low values of a in all the primitive binary BCH codes. Some of the bounds
error correcting BCH codes. The following question, hence, arises: do other on a, resulting from the direct- and concurring-sum structures, are listed in
BCH cod, also contain direct-sum subcodes of high dimension? We settle the table below. The table als lists the complexity of decoding the primitive
this question affirmatively for all the primitive BCH codes, and also for the binary BCH codes using the proposed techniques, as compared to the com-
BCH codes of composite block length. The direct-sum structure is in a sense plexity of the the conventional decoders (Viterbi decoding based on the trellis
a counterpart of the concept of "zero-concurring" codewords of [1, 4], ob- of Wolf [6] for high-rate codes, and Fast Hadamard Transform decoding [1] for
tained by substituting a code for each codeword. We also study a different low-rate codes). These figures are given in terms of the number of real opera-
structure, where we allow the constituent codes to overlap over a fixed set of tions per bit of information. The computational gain obtained reaches several
coordinates. This concurring-sum structure is the corresponding counterpart orders of magnitude in many cases. For instance for the (64,30,14) extended
of the "concurring" codewords of [1]. We show the existence of concurring-sum BCH code the proposed techniques are about 1,000 times more efficient.
structures in all the primitive binary BCH codes. Both the direct- and the
the number of states in the minimal proper trellis of BCH codes, and provide Code Wolf DS and CS Lower Conventional Proposed

cocurngsm tucuesmkei psibetost otrvalupeuouddo sttue deodn tehiqe
a clue for efficient soft-decision decoding. 11 bound structures bound decoding I t

Let C be a binary BCH code of length n and dimension k, let a be a BCH[8,4] 4 3 3 16 6
primitive nlh root of unity, and let ." be a subset of {0, 1,... n-1i. Denote BCH[16,11] 5 4 4 66 26
by CM the subcode of C which consists of all those codewords that an BCH[16,7] 7 6 5 128 42
nonzero only on the positions contained in 1. Let C(Z) be the code obtained BCH[16,5] 5 4 4 32 13
from C[Z] by puncturing out all the positions not in 2. BCH[32,26] 6 5 5 160 66

Proposition 1. Let 11 and 22 be subsets of the set {0, I.... n-1}, such that BCH[32,21] 11 10 9 3413 1094
forsomeaE{0, 1 .... n-1} wehave {ci:iEI2 }={ao.ai:iEi}. Then BCH[32,16] 16 9 9 20480 251
C(Z-) = C(2-). BCH[32,11] 11 10 9 2048 398

BCH[32,6] 6 5 5 64 27
Now assume that the block length of C is composite, say n = ill n2 , and let Z BCH[64,57] 7 6 6 3.48 102 1.32- 102
be the set of zero frequencies of C. Define S = {s r z (mod ni) : z E Z). BCH[64,51] 13 12 11 1.91.104 6.76- 1os

Proposition 2. Let "1 = {0,n 2 ,2n 2 , ... (ni-1)n2}. Then the code C(1") is BCH[64,45] 19 14 11 9.67 105 2.19- 104
a BCH code of length n, and dimension k, = ni - IS. The zeros of C(11 ) lie BCH[64,39] 25 20 11 4.04.107 8.81 102
at {f' : a E S), where 0 = a"n is a primitive nth root of unity. BCH[64,36] 28 19 15 2.16 10' 3.77. 10

BCH[64,30] 30 21 16 6.08.10' 6.06 10o
In order to obtain direct-sum subcodes of high dimension in BCH codes of BCH[64,24] 24 16 14 1.68.107 1.96- 104
composite block length, it would now suffice to partition the set {0,1 .... n-1} BCH[64,18] 18 17 16 2.621. 10 3.37. 104
into n2 disjoint subsets satisfying the condition of Proposition I with respect BCH[64, 16] 16 15 14 6.55. 104 1.16- 104
to the set ." defined in Proposition2. Note that the sets Z and S are unions BCH[64,10] 10 9 9 1.02 103 4.61. 102
of cyclotomic cosets modulo n and ni, respectively. Thus the definition of S BCH[64,7] 7 6 6 1.28.102 5.49.101
in conjunction with Proposition 2 induces "coset aliasing" between the cyclo- I I I
tomic cosets modulo n and modulo n1 . In particular, certain high frequencies
of C alias as low frequencies in C(11 ). This is intuitively plausible since 11 is References
just the "time-domain sampling" of C. [1] Y. Be'ery and J. Snyders, "Optimal soft decision block decoders based

In the sequel we consider the primitive BCH codes. Henceforth let C on Fast Hadamard Transform," IEEE Trans. Inform. Thesr, vol. IT-32,
denote an extended primitive narrow-sense BCH code of length n + I = 2'. pp. 355-364, 1986.

Proposition 3. Let I and2"2 be subsets of the set {O,l,... n-1,oo}, such [2] G.D. Forney, Jr., "Coset Codes [I: Binary lattices and related codes," IEEE
that for some a E {0, 1,...n-1} we hate {o':iEI22} = {c+c :iE I}. Trans. Informn Theory, vol. IT-34, pp. 1152-1187, 1988.
Then Q(11 ) = Q(12 ). [3] T. Kasami, T. Takata, T. Fujiwara, and S. IAn, "Trellis diagram construc-

tion for some BCH codes," IEEE 1nt. Spinn, Inform. Theory and Appd.,
Proposition3 may be thought of as the "addition counterpart" of Proposi- Hi, 1990.
tion 1. Thus we can exhibit the existence of direct-sum subcodes in the ex- Hawaii, 1990.

tended primitive BCH codes by partitioning the set {o, al,... an-i,ao-} [4] A. Vardy and Y. Be'ery, "On the problem of finding mero-concurring code-
into disjoint subsets satisfying the condition of Proposition3 with respect to words," IEEE TIrans. Inform. Theory, vol. IT-37, pp. 180-187, 1991.
some given subset. Yet this set is just the field GF(2'"). Thus it would suffice [5] A. Vardy and Y. Be'ery, "Maximum-likelihood soft decision decoding of
to regard GF(2") as a vector space, and partition it into a subspace and BCH codes," IEEE TDans. Inform. Theory, submitted for publication.
its comets. Notably, Proposition 3 may be also employed for the derivation of [6] J.K. Wolf, "Efficient maximum-likelihood decoding of lar block codes,"
the concurring-sum structure in the primitive binary BCH codes. For more IEEE Trans. Inform. Theory, vol. IT-24, pp. 76-80, 1978.
details on this see [5].
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Inst. fir Netzwerk- und Signaltheorle, Technical University of Darmstadt
Merckstrafie 25, 6100 Darmstadt, Germany; email: uliOnesi.e-technik.th-darmstadt.de

Abstract

We propose a Reed-Solomon code decoding algorithm based on polynomial A(z) of smallest degree solving
Newton's interpolation to speed up Generalized-Minimum-Distance
(GMD) decoding. This algorithm uses a modified Berlekamp-Massey S(z)A(z) = t0(s) - K1(z). (3)
algorithm to perform all necessary GMD decoding steps in only one with deg(A,(s)):> deg(K,(s)) (see (2)). This solution is then neces-
run. The solutions generated by a Berlekamp-Massey algorithm if i sarity unique up to a constant factor.

least reliable symbols are erased are used to generate the solutions

for 2 erasures less. By then using a time domain decoder the over- If we have solved (3) we wish to solve the next problem (i+1-.i)

all asymptotic GMD decoding complexity becomes O(dn) with n the using the old solution.

length and d the distance of the code. It can be shown that this GMD However, we do not only need the minimal solution of (3) but also

decoding complexity is asymptotically minimal. another second solution.

We can show the following:

Let Ai(z), de(A-(z))=l be the minimal polynomial solving (3) and

Summary At(z) of degree 2i-l11 be another solution of (3) that is not divided
by A,-(s). Then the nonzero polynomials

Up to now the coding and decoding of Reed-Solomon codes is based Aýj (z) ....
on the Fourier transform. The approach proposed here uses Newton's 2)= ,+ 2 ( (z)AB(z ) (4)
interpolation. To use interpolation for coding was already proposed A•+l(s) = A(s)A-(z) - B(z)A,+(z) (5)
by Mandelbaum [4] back in 1979. Newton's interpolation has the wth
advantage that if one wants to add a new interpolation value then B(z) = gcd [ti(=)/*2,,2(Z),f-(Z)] (6)
only one additional coefficient has to be calculated. We use this for )

GMD decoding. and A(z) the minimal solution of

We assume that the distance of the Reed-Solomon code is odd A(z)fl'(X) - B(z)flt(z) = n3+(_) fl+(z) (7)*2+2(=) i+•
(d=2t+l) and wl.o.g. that the Reed-Solomon codewords over GF(q) solve (3) with i--i+1. One of them is minimal with degree k. The
are defined by the evaluation of polynomials of degree less or equal other has degree 2(i+1)-k+1 and it is not divided by the minimal
n-1-2t with n<q. (I.e. the generator polynomial has all zeros at solution.

the higestsloctions.
the highest locations.) This proves that there exists an algorithm that solves the GMD de-
Let ' _j(_) = ,( - zj) be the erasure locator polynomial coding problem in only one run. By transferring this algorithm into
erasing the least reliable 2(t-i) locations. We get the key equation the time domain as in [2] the overall complexity of the algorithm
on erasing these locations [2]: becomes O(nt).

j 2,(z)A,(s)E(z) = (,n - 1)fl,(Z) (1) It is easy to see that this asymptotic complexity is minimal: Even
if there existed an algorithm that generates the GMD list without

with E(z) the transform of the error vector, Ad(z) the error locator
polynomial and fli(xi) the error value polynomial. Let E(z) be given any operation, only the operation to search for the nearest codewordin Newton coefficients: would already take O(nt) operations. Thus is cannot be better.

t-- i-I
E(w) = to + E [I f(Z - Zj) References

i.1 j.0O
,i-t--i-

(s) +$S(s) fI (s-z) [1] Elwyn R_ Berlekamp: Algebraic Coding Theory, London,

j-0 McGraw-Hill, 1986, pp. 176-199

Le. S(z) = s+ = 1si"rr;.: ( - z-) and S = C.-,,2,. Note [2] Richard E. Blahut: Theory and Practice of Error Control Codes,

that for a received word R(s) = E(z) + C(z) and that then S(z) is Addison-Wesley Publishing Company, 1984, pp. 207-245
a (known) Newton syndrome. With [3] G. David Forney: Concatenated Codes, M.I.T. Press, Cambridge,

K,(z) = %z0)_,(z (2 Man.
fl11 p. 1(s - Z[4] D. M. Mandelbaum: "Construction of Error Correcting Codes

and as to(s) = (s" - 1)/fI•o--j•( - zi) the subproblems of GMD by Interpolation", IEEE Trans. Inform. Theory, vol. IT-25, No.1,
decoding become: If 2(t-i) least reliable locations are erased find the Jan. 1979
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SUBOPTIMAL SOFT DECISION DECODING OF LINEAR CODES

Ilya I. Dumer
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Abstract
Suboptimal decoding of linear codes in "symmetric" memoryless chan- Moreover, the complexity exponents c = R( 1 - R) and c = (I - R)/2
nels is considered. For the q-ary codes of length n - oc and code rate are valid for all linear cyclic codes and for all linear codes respectively.
R the number of decoding operations is upper bounded by the value Suboptimal decoding can also decrease the complexity for the short
qn(C+0O)), where o(I) - 0 and c = min(R(l - R),(I - R)/2). The code lengths. For example, the binary (24,12) Golay code can be
decoding error probability e is upper bounded by the double error decoded using the most reliable 64 trellis nodes on two information
probability e, of maximum likelihood (ML) decoding, while ( - ee, sets of the first 12 positions and the last 12 positions. Note, that the
when n - oo. For the channels with discrete (quantified) output the complete trellis diagram includes 4096 nodes.
better estimate c = R(I - R)/(1 + R) is obtained.

Theorem 3 Virtually all q-ary linear codes of length n -- oc and code
Suboptimal decoding rate R,0 < R < 1, can be decoded in memoryless discrete symmetric

Wolf's trellis algorithm [1] provides ML-decoding for all linear codes channel with error probability, which is equivalent to the error proba-
in memoryless channels with decoding complexity qn(c+o(1)) , where bility of ML-decoding, and complexity x = q"(C+C0l)), where o(1) -. 0
n - oo, o(1) --. 0 and the exponent c = min(R, 1 - R). Below we con- and c = R(l - R)/(1 + R).
sider the decoding of linear codes in "symmetric" memoryless channels
with similar correcting capacity and smaller complexity. These chan- Suboptimal coverings
nels include as examples the discrete symmetric memoryless channels The known information set decoding algorithms are found on subopti-
[2], AWGN-channel or the memoryless channel with 2-dimensional mal coverings in Hamming metric. These coverings can be constructed
wight Gaussian noise and q-PSK modulation. We consider also the by random search [51 and provide asymptotically e - et, when n - co.
complete minimum distance (MD) decoding algorithms and construct We construct suboptimal coverings with polynomial complexity, pro-
the corresponding suboptimal coverings with polynomial complexity. viding therefore the complete minimum distance decoding with the

Consider a channel with a discrete set X of Q inputs and an arbitrary error probability Ce and the same complexity exponent.
output set Y (IYI -< -). Let Pylx(ylx) define the probability measure Let S(n, t) be the set of vectors of Hamming weight t in F'. A
for each x E X. For any finite output set Y., C Y, IYI = J,, consider rubset of S(n,t) is called a covering T(n,t,l), t > 1, if any vector
(Q x J.)-matrix P, = P(ylx),x E X,y E Ye, using inputs as rows in S(n,l) is covered by some vector(s) from T(n,t,l). We call the
and outputs as columns. Following [21, the channel with an arbitrary covering T(n, t, 1) suboptimal if it has the lowest exponential order:
output set Y is defined to be symmetric if Y can be partitioned into log2 IT(n,t,l)I - log2 ((,)/(*)), when n - oo. If the covering vector in
disjoint finite subsets Y., Y = UcYn, in such a way that in any matrix T(n, t, l) can be constructed in polynomial time c(n) for any vector in
P. each row is a permutation of each other row and each column (if S(n, 1), we call T(n, t, 1) a polynomial covering of complexity c(n).
more than one) is a permutation of each other column.

For any output y E Y order all Q elements x E X into (any) set Theorem 4 Suboptimal covering T(n,t,l) of complexity O(n log 2 n)
Xy = {x(1),x(2),..., r(Q)}, where P(ylx(i)) ' P(ylx(i + 1)) for al can be constructed, when ni - o, t = on,I = On, 0 < 0 < a < 1.

i = 1 ... , Q - 1. Let N(x) denote the number of the vector x E X in
the ordered set XY. Let any subset A of S = IAI inputs be used with Conclusion
equal probability 1/S. For any received output y E Y let D(y) be the The minimum distance decoding algorithms of the papers [3], [4] are
ML-decoding solution: D(y) = x' E A : N(x') < N(x), Vx E A, x 3 generalized for the suboptimal decoding in an arbitrary memoryless
x' For the given subset A of M inputs define the decoding algorithm channel, providing the new estimates of the soft decision decoding
Dm by the following rule: complexity.

DM(y) =z' if N(z') <_ M
0 otherwise. References

Let c(M) be the error probability of DM. Obviously, e(Q) = e, is the [1] J.K. Wolf, "Efficient maximum likelihood decoding of linear codes
probability of ML-decoding. The following theorem generalizes lemma using a trellis". IEEE Trans. Inform. Theory, vol. IT-24, pp.76-80,
1 [3] and gives an upper estimates on e(M) for M > N, N = fQ/SI. 1978.

Theorem 1 The error probability of DM-decoding in any symmetric [2] R.G. Gallager, Information Theory and Reliable Communication.
channel can be upper estimated for any M = iN, i = 2,..., S - 1 as New York: John Wiley & Sons, 1968.
f(M) < e+ Ce/(i - 1). [3] G.S. Evseev, "On the complexity of decoding linear codes", Prob-

The following theorem generalizes algorithms [3], [4] for the suboptimal lemy Peredachi Informatsii, vol. 19, no. 1, pp.3-8, 1983.
soft decision decoding in symmetric memoryless channels. [4] 1.1. Dumer, "Two algorithms for linear codes decoding', Problemy

Theorem 2 Virtually all q-ary linear codes of length n -, co and code Peredachi Inforratsii, vol. 25, no. 1, pp.24-32, 1989.
rate R,0 < R < 1, can be decoded in memoryless symmetric channel [5] P.Erdos and J.Spencer.Probabilistic methods in combinatorics.
with error probability, which is equivalent to the error probability of Akademiai Kiado,Budapest, 1974.
ML-decoding, and complexity o = qnbc+'(l)), where o(1) -- 0 and c =
min(R(1 - R),(I - R)/2).
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An Efficient Soft Decision Decoding Algorithm For Array Codes

Xiao-Hong Peng A P.G. Farrell
Department of Electrical Engineering

University of Manchester
Manchester, UK.

A soft decision decoding algorithm for array codes, using less 4.Decode the sub-codes, using full minimum soft distance,
computation and. with better performance tha a previous algorithm. is Le., in the following order, high confidence +'matched' ->
intrduced. The new algorithm uses received symbol had decision and high confidence +'unmatched' -> low confidence +'matched' -
confidence values to optimise which sub-codes are selected for full soft- -> low confidence +'unmatched'. ( if both factors are same
minimum-distance decoding, and corrects more erro patterns than the choose the one with the larger number of rows/columns)
previous algorithm. 5.After decoding each sub-code, re-calculate confidence sums

of related sub-codes and change syndrome signs if necessary.
SUMMARY 6.Rapeat 3, 4, and 5 until all symbols in the array have been

A number of soft decision algorithms exist which aim to involved in the decoding procedure.
reduce the number of computations required to perform
Maximum Likelihood soft decision decoding (MLSDD) with as • •
little loss in performance as possible. They are designed, The simulations assume a binary input. 8-ary output AWGN
according to different purposes and applications, to minimise channel. The results obtained for the (16, 9) array code are
either the symbol error rate or the codeword error rame. shown in the following figure.

A soft decision decoding algorithm for array codes is
introduced in this paper. By taking advantage of the array code's - -. -4iod decisionI ! .1
characteristics, this algorithm is designed to optimise decoding of I - I algorithm
the array's sub-codes, with overall performance which is close to .1 IP"Orum.

MLSDD under certain conditions. As an improved scheme from Pe na.mm. n liklihood
the original proposals [1] [2], it decodes only selected sub-codes .oi -.- _-1- I g
instead of all the sub-codes of an array code, and also has the
ability the old algorithms lack to correct full hard erors. .001 -

Cocean Of New Algoriihm .0001 --,-
It is possible to reduce the number of soft decision

computations required due to the fact that the distribution of the 0
number of errors within one codeword is dynamic, and the -2 2 4 6 a

number of errors is very small compared with the full code array Ebqo

size. There always exist some sub-codes of the code with few
errors or error free. We can begin by applying full soft decision Due to the ability of being able to correct full hard errors and
decoding on the sub-code with the fewest errors. After being its other advantages, the new algorithm has a lower error rate
decoded successful, all symbols of this sub-code are considered with respect toEb/No than that of the old algorithm.
to have the highest confidence, and are used to decode other sub- With regard to decoding complexity, the new algorithm
codes. The procedure continues until all symbols have been reduces the number of soft decision computations required over
involved rather than all sub-codes have been decoded. For the the old algorithm to a fraction of 0.5 or less. Alternatively, a
error free sub-codes, of course, soft computation is not needed. more powerful code can be used with no increase in complexity.

The new algorithm can be developed for use with more complex
Sarray codes and other types of error-control code.

The new efficient soft decision decoding algorithm is stated
as below (for simple two-coordinate parity check array codes):

I.Compute the row sub-code and column sub-code Yr UL
confidence sums. (1] P.G. Farrell and SJ. Hopkins, "Decoding algorithm for a

class of burst-error correcting array codes," ISIT, Les Arcs,2.Conpute the syndrome for each sub-code using the hard France, 1982.
decision algorithm. Sub-codes with syndrome •' and syndrome [2] J.S. Daniel, "Synthesis and decoding of array error control
'1' are labeled 'matched' and unmatched', respectively, codes," Ph.D. Thesis, University of Manchester, 1985.

3.Rule out sub-codes with full confidence sums and the

fs, =H~b" =0
'matched' sign, ie., satisfying, .ý" p ( r /1) +M

These sub-codes do not need soft decision decoding, and their
symbols are taken as correct.
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A NEW EFFICIENT ERROR-ERASURE LOCATION SCHEME IN GMD DECODING
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Introduction Each key equation has a space of solutions denoted by

We consider Generalized Minimum Distance (GMD) de- Ei. In a first step we obtain the spaces Ej and the
coding, proposed by Forney in [1]. Let a received vector corresponding spaces

r and an ordering of the positions in r according to Wi = {u: u = oGU,,a E Es}
some reliability information be given. One of the key
problems in GMD decoding is to decode a collection of described by generator matrices Gw.. In a second step
vectors ri obtained from r by erasing more and more we find the subspaces of Wi which are zero in the desired
positions. We solve the problem of finding error and erasure positions.
erasure positions in different ri efficiently by using rela- We define a matrix 1 by
tions between the decoding branches correcting different
numbers of erasures. f = Hv~diag(r)G7,

Error-Erasure Location and denote the submatrix of f" consisting of the elements

Given.a linear code C and a received vector r we want in the first a rows and first b columns as i(',b). The
to correct t errors and p erasures. Formally erasure po- following relation holds:
sitions are set to zero. An error-erasure location for C fs(n-kv,,ku,) = r,.
can be done with a so called error locating pair of vec-
tor spaces (U, V) ([3],p.347). The dimension ku of U The efficiency of the proposed procedure resides from
is greater than t + p, the minimum distance dv of V is the fact that we can find the solution spaces of all key
greater than t and equations by dealing with only one matrix r. We apply

to Ir a slightly modified version of the fundamental itera-
tive algorithm (FIA) proposed by Feng and Tzeng in [2]

U * VL = ((u1v1,u 2V2 ,. .. ,u,vn) : u E U,v E Vi). which gives us the spaces Ei. The E satisfy Ei-i 9_ E
and so Wi-I C Wi. We find a generator matrix Gw,

Let Gu be a generator matrix for U, Hv a parity check containing a generator matrix for Gw.,_ in the leading
matrix for V and let diag(r) be the diagonal matrix rows. The second task is now to find the subspaces of
containing r in its diagonal. The first step in finding Wi that are zero in the desired erasure positions. This
an error-erasure locating vector is to find the space of is done by applying simple row operations to the matrix
solutions a to the key equation Gw,.

We have found an efficient procedure to obtain error-
raT = 0, a E iU where 1 = Hvdiag(r)GT. erasure positions in every branch of a GMD decoding

scheme. The asymptotic complexity of this procedure isDenote this space by E. Using E we find a subspace in the general case given by 0(n3 ).
of U spanned by vectors aGu, o E E. We denote this
subspace by W. Finally we restrict W to the space of References
vectors which are zero in erasure positions thus yielding
the space of vectors which locate errors and erasures [1] G.D. Forney Jr., Generalized Minimum Distance De-
with zeros, coding, IEEE Trans. on Information Theory, IT-

Error-Erasure Location in GMD Decoding 12:125-131, 1966.

In the case of GMD decoding we have a collection [2] G.L. Feng and K.K. Tzeng, A Generalization ofin th erof GMD decding w aves collectin the Berlekamp Massey Algorithm for Maltisequence
{U,, V, $ of error erasure locating pairs correcting t Shift-Register Sgnthesis with Application to Decod-
errors and p, erasures. We assume Ui C U,+i and ing Cyclic Codes, IEEE Trans. on Information The-
V1 C Vj+.. We then can write Gu,+, containing Gu, ory, 37(5):1274-1287, section III, november 1991.
in the first ku. rows. In the same way Hv. is contained
in the first n - kv, rows of Hv,_,. The corresponding [3] M.A. Tsfasman and S.G Vlidut, Allebruic-Geomet-
set of key equations is ric Codes, Dordrecht/Boston/London, Kluwer Aca-

ro"T = 0, a E R/F"qt where r' = Hvdiag(r)GT,. demic Publishers, 1991.
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In this paper, we will provide an efficient algorithm for GMD (Gen-
eralized Minimum Distance) decoding in which an algebraic errors-and-
erasures decoding procedure, the W-B method, is required to execute only d~al 'O-i~a (13)

one time, whereas in a conventional GMD decoding at most Ld/2J times The W-B method is a kind of the iterative rational interpolation method in
algebraic decoding must be necessary. (diminirmum distance of code) which 0~(z) and 6(z) are numerator and denominator polynomial of

1. Generalized syndrome Polynomial for errors-and-erasures rational function, respectively, as well as, ad and S(a&) corresponds
prescribed sampling point and sampled Value 2. In order to stress an

We let R(z) a received word polynomial, C(z) a code word polyno- iterative meaning, we will write df$5)(z) and J&)(z) by the iterative index k,
mial, E(z) an error polynomial, e(z) an erasure polynomial and which means the k-th solutions, Le. they satisfy

D(z)-E(z)+e(s) an errata polynomial, which have the following relation. $)S().h)a) (-,...ii)1)

R(z) - C(z)+E(z)+e(z) - C(z)+D(z) () where fljor)-O for jef is, . . . i,.. ,..i}) and m means the number of

Here we will propose a generalized syndrome polynomial S(Z) 3, as follows; roots of t114.

5() .E X Tz) - Ta')(2 IV. Efficient algorithm for GMD decoding

In the Forney's procedure (GMD decoding) ', (d-1) most unreliable
where T(z) is an arbitrary (d-I)th degree polynomial and Rd is the i-th received symbols, Rd. R,, .. Rd are selected with decreasing reliability
coefficient of R(z) and the generator polynomial is given by odr ~. . 9_ hs yuiga rirrns fTzw

G(z) - (-)(-'' (za" (3) will choose T(z) such that

When T(z) - zd 1 , 5(z) becomes a conventional syndrome polynomial. TAz)-(z-a^t-o ... (z-aij(5

By( ) a d ( z) we ge the foll win rel ati n For the (d-1 -k) erasures and Lk/2J errors decoding, the erasure locations
S~)_EDat ~)- are)(4 i. . ... , id 2 ). The errata values can be calculated by (11) or (12).

iej0) z dNote alothat 6,(51(z) is actuaLy an error location polynomial with Lk/2i

where f{D) is a set of indices of errata location. From (4), we have the fol- errors and is not including an errata portion. Following Forney's pro-

lowing key equation for decoding; cedure, we can derive an efficient algorithm for GMD decoding. This pro-

ojz)S(z)-tV(z) T(z)+w(z) (5) cedure is schematically shown in Fig.l.

where ou(z)- ][ (z-a')- fI 0z-01111za'-'azo.z (6la)
se4D) it(S) dt4.) Received word R(7) and Relisbility infornations 9 isle given.

s~~~~~(z)-~~~~~~~~ ( i(-',i4)-ED~a~)I z )(i) d-1) most utirellabe received symtbols are selected with decressing reliability arder.

ie{D ieD d{)jCD T14 and Sz) are calculsted casin the reliability oeder.

H. Reduced key equation kOallz)0O, cP(z).1

We will modify the key equation (5). At first, a set of indices { T} k _,,,.4d-l)Ye
and a polynomial ar(z) are defined such that mi

f{TI-f ilo.(a')-0 and T(a')-0, iE[0,1, . . . ,- (7) tg

0,1<z)- 11 (Z-ai) (8) C * od(.)icaultd

T(z) and a.(z) are known polynomials for the receiver, so that o2<z() is
also known before the decoding process. By (5), w(z) has also a factor of ld1Ye

a~~),as for ou(z) and T(s), so that we have c
d(z) S(z) -'7(z) 11 z)+cý(z) (9) (P~z).-oV Failure

where ajz)-d(z)ard(z), T(z)- I(z)o7<z), w(z)-0(z)ar7(z) (10) Fig.I Flow chart of an elricieut (3MD decoding algorithrm

We will call (9) a reduced key equation. When the solution of d(z)
and O~(z) are obtained, we can also calculate the errata value as follows; V. Concludina Remarks

For ~a'*0 T~a'aj 11) In our algorithm, the GMD solution can be found only by one pass
For T(cr')-G I4 [~a)u (a)i a) T (a')a'1 (12a) using the W-B method.

erj-S(a')i0 (-')Id (-')] / IT'(-')aj (12b) B~ftiiisac

111. Application of the W-B method [I1) G.D.Forney, Jr., "Generalised minimum distance decoding," ZU

We will apply the W-B method to solve (9). For the index i such Trns IT-12, pp.125-13l, April 1966

tha t~')- w hae fom 9)121 L.R.Welch and E.R.Berlekamp, "Error correction for algebraic block
thatVal-, wehavefrom(9)codes," presented at St. Jovites ISIT'82, 1982

Thi wok ws prtl supored y he eleommnictios Avanemet 131 K.Araki and I.Fujita, "Generalized syndrome polynomials for decoding
Thiswor wa patlysuportd b th TeecomuncatonsAdvnceent Reed-Solomon codes," MEICE Trans. Fundametals , pp. 1026-1029,

Foundation.Aust19
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A Family of BCH Codes for the Lee Metric

RON M. ROTH* PAUL H. SIEGELt

Let C(n, r; p) be the (shortened) BCH code of lower bound applies. An error pattern in the Lee
length n over GF(p) with a parity-check matrix space is viewed as additions of +l's and -1's at[ of=l:] ý1, where the •e's are distinct nonzero ele- (not necessarily distinct) entries of the codeword.
ments of the smallest field GF(p') of size greater The positive (respectively negative) error-locator
than n. The minimum Lee distance of C(n, r; p) polynomial a+(z) (a-(z)) is the product of terms
will be denoted by dc(n, r; p). 1 -ajz that correspond to all location j, counting

Theorem. multiplicity, in which Lee errors of the +1-type
(-1-type) have occurred. A key ingredient in the

dr- (n,r;p)>{ 2r for r < (p - 1)/2 decoding algorithm of C(n, r; p) is computing a- p for r > (p + 1)/2 polynomial O(z) which is congruent modulo Xr to

the error-locator ratio p(z) = o+(x)/a-(z). The
Comparing the codes C~n, r; p) with polynomial O(x) is computed using the equality

Berlekamp's negacyclic codes, it follows that the
theorem yields the same lower bound on the min- p(x) S(x) + p'(z) = 0,
imum Lee distance as that of extended negacyclic taken modulo Xr, where S(z) stands for the syn-
codes; however, given p, r, and redundancy, the drome polynomial. The polynomials a:(x) are
maximal length of the codes C(n, r; p) is twice then obtained by applying Euclid's algorithm on
as large as that of their negacyclic counterparts. O(z) and Xr.
Furthermore, the decoding algorithm of C(n, r; p) One of the applications that motivated this
appears to be simpler than Berlekamp's decoding work was analyzing the correction capability
algorithm for the negacyclic case. of spectral-null codes for partial-response chan-

For fixed p and r, the codes C(pr - 1,r;p) nels [1]. These codes can be modeled as sets
approach the sphere-packing bound on the mini- C(n, r) of integer vectors [cj]j%_1 satisfying the
mum Lee distance as m tends to infinity, equalities E"=, jic# = 0 for i = 0, 1,..., r - 1.

When n < p - 1, the codes C(n,r;p) become The 2r lower bound (1) applies also to C(n,r).
(generalized) Reed-Solomon codes and the lower In particular, the bound applies to codes with an
bound in the theorem can be improved to rth-order spectral null at zero frequency [1]. Fur-

thermore, the decoding algorithm for C(n, r;p)
d(n, r; p) > 2r, (1) can be adapted to the codes C(n, r) and thus can

be used in the scheme suggested in [11 for improv-
which, for r > 7, can further be improved to ing the reliability of information transmission in

+1 (r + 1)2 noisy partial-response channels by matching the
dc (n,-r; + 4( - - r) spectral nulls of the codes with those of the chan-

nel.

The codes C(n, r; p) have an efficient decoding
procedure, based upon Euclid's algorithm, that References
corrects all errors up to Lee weight r - 1 and
detect all errors of Lee weigh' r whenever the 2r [1] R. KARABED, P.H. SIEGEL, Matched

"Computer Science Department, Technion - Israel In- spectral-null codes for partial-response chan-
stitute of Technology, Haifa 32000, Israel. nels, IEEE Trans. Inform. Theory, IT-37

tIBM Research Division, Almaden Research Center, (1991), 818-855.
650 Harry Road, San Jose, CA 95120.
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On minimum Lee distances of generalized Reed-Muller codes

Tomoharu Shibuya, Hajime Jinushi and Kohichi Sakaniwa

Department of Electrical and Electronic Engineering,
Tokyo Institute of Technology

O-okayama, Meguro-ku, Tokyo, 152 Japan
Tel. +81-3-3726-1111(Ext. 2184), Fax. +81-3-3729-0685, E-mail. sakaniwa@ss.titech.ac.jp

1. Introduction 3. Numerical Examples

To meet an increasing demand for high speed communication, high density Since the true minimum distances of GRM and e-GRM codes with shorter
recording etc., the use of multilevel signaling has been widely considered and code length can be obtained rather easily by computer search, the expression
developed. In those systems employing multilevel signaling, it is important of lower bound derived in this paper enables us to get a lower bound of the
to develop bon-binary error control codes for improving the reliability of minimum Lee distance of a GRM code having a longer code length.
the systems. Although binary codes based on the Hamming metric have We show in Tables 1 and 2 the lower bounds of the minimum Lee distances
attracte,4 much attention of most researchers, not a lot has been investigated for GRM codes obtained by Theorem 1 together with the minimum Hamming
on non-binary error control codes, distances for comparison. From Tables 1 and 2, we can ,ee that there are

It is well known that the Lee metric is suited to multiple-valued systems many GRM codes, marked by t, whose minimum Lee distances really exceed
such as communication systems employing multi-phase shift keying, etc.[1]. the minimum Hamming distances. It is also confirmed that the lower bounds
Since it is obvious that the Lee distance is not less than the Han- ing dis- shown in Tables 1 and 2 all agree with the true minimum Lee distances, some
tance, in order for a non-binary code to be used as an error control code in a of which, marked by *, are obtained by Theor.ms 2 and 3, and others by
multiplc-valued system, it is necessary for a code to have a larger minimum finding c-dewords whose Lee weights are actually equal to the lower bounds.
Lee distance than the minimum Hamming distance. Therefore we may conjecture that dLi._(Eq.(1)) gives the true minimum

In this paper, we study the minimum Lee distances of generalized Reed- Lee distance of the v-th order GRM code, while it is a further study to give
Muller (GRM) codes[2, 3]. (Complete solution is given on the minimum a rigorous proof.
Hamming distance[4].)

A GRM code is defined as follows. Denote by P,,- the set of polynomials Table 1: Lower bounds of minimum Lee distances of GRM codes for m = 2.
over GF(p) with m variables X 1 ,...,X, and the total degree not greater
than v. Also denote by k = (kA, k2 . .... k-,) the expression of an integer k order v cd e h 7 111 13 [ 17119
in the number system with radix(base) p, i.e., I _ (code length) (24)1 (48) (120) (168) (288)

1 .min "T24 48 120 T 168 "288 360
k = ipi-' 0<O kA < p. dHmin 19 41 109 155 271 342

i 2 dzt~i. 18 t48 120 168 t 88 5 360-

In the following, we regard k.'s (i = 1, 2,..., m) as elements of GF(p). d_____ 14 34 98 142 254 322
3 d.•-i. "9 - 39 T 120 I 168 r2 288T8 360

Definition 1 For f = f(X. X-) E P,.-, let d5 ,,, 9 27 87 129 237 303
k 4 f.min "4 F 26 T-120 t 168 r28-8 - 360

Ct /(k) (Iik,..k. ) (0•k < pn) dl,,in 4 20 76 116 220 284

and define c€ and c' by 5 dL 105 -1 13 T 2 168 360
dHmin 3 13 65 103 203 265

C! = (CxC2 ..... cp--0), Cf = (cO,c1,..... cP--). 6 d . -t "6 85 t 151 1 288 1 360

Then the v-th order generalized Reed-Muller (GRM) code C with code length dsiin 2 6 54 90 186 246
p

m 
- 1 and the '-th order extended generalized Reed-Muller (e-GRM) code

C* with code length p-
m 

are defined by[4, 5] Table 2: Lower bounds of minimum Lee distances of GRM codes for rn = 3.

C={cflf€P...}, C'{C=IfcP- .,tm}. rder p 1 5J 7[ 111 131 171 191
(34__ 1 121 2)6858)110 1e~ode length) 11(124') 1342) (13310) (296) 41)(58

2. Main Theorems 1 Ltmin "1124 "1342 "T1330 "T2196 '14912 "?6958
dffmin 99 293 1209 2027 4623 6497

Our main results are as follows. 2 diT9,,98 T 342 7T1330 T 2196 r4_912 f68&58

Theorem 1 A lower bound, d zin, of the minimum Lee distance of the d_ dt,. 74 244 1088 1858 4334 6136
v-th order GRM code with code length p

m - 1 is given by 3 -,m 49 t291 t1330 2196 r 4912T 58
d__ in- 49 195 967 1689 4045 5775

fLmin dLAO + (pm'- - 1)dLA1 (1) 4 d Lmin "24 T-194 T71330 7_2196 T 4912 -r6T,58

where dLAo and dLAl denote the minimum Lee distance of the '-th order dH,"n 24 146 846 1520 3756 5414

GRM code with code length p - I and the minimum Lee distance of the Y-th 5 dLmn - *97 T 1205 2196 r 4912 ' 68,
order e-GRM code with code length p. respectively. _ ds,m,'i 19 97 725 1351 3467 5053

6 dLin - "48 T 965 ' 2023 t 4912 T 6&%5
Theorem 1 implies that a lower bound of the minimum Lee distance of the dM.n 14 48 604 1182 3178 4692

v-th order GRM code with code length p
tm -1 (m > 1) can be obtained only : Also obtained by Theorem 2 or 3.

from the minimum Lee distances of the cor.-esponding P-th order GRM code t : Exceeds the minimum Hamming distance.
and e-GRM c( de with rn = 1.

We also give the true minimum Lee distances for special classes of GRM
codes. References
Theorem 2 The minimum Lee distance dL-in of the first order GRM code [1] E. R. Berlekamp, Algebraic coding theory, McGraw-Hill, 1968.

with code length p
m 

- 1 is given by [2] N. Mitani, -Error Detecting and Error Correcting Code", Bulletin of the

dLmin MP_ - 1 > dimmjn Electrotechnieal Laboratory, vol.15, no.5. pp.18-22. 1951 (in Japanese).

where dnm~i denotes the minimum Hamming distance of the code. ( (3] D. E. Muller, "Application of Boolean algebra to switching circuit deoign

Theorem 3 The minimum Lee distances of the (p - 2)-th and (p - 1)-th and to error detection". IRE Trans., EC-3. pp.6-12. 1954.

order GRM codes are given by [4] T. Kasani, N. Tokura. Y. lwadare and Y. Inagaki. Coding Theory,

(p - 2)-th order: dLni = 2p'-' - 1 (= dfn.n) Corona Publishing Co., Ltd, 1975 (in Japanese).

(p - 1)-th order: dL,,i = p'
m ' - 1 (= dnm,,) [5] F. J. MacWilliams and N. J. A. Sloane, The theory of error-correcting

and both equal their minimum Hamming distances. codes. North-Holland. 1977.
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A CLASS OF ERROR MAGNITUDE SUBSET The above defined code corrects any single-error pattern with

CORRECTING CODES OVER GF(q) error magnitude belonging to the set (.8i ) (if (1) holds, the n'a
syndromes of the above error patterns are distinct).

A. Di Porto (*), F. Guida (*), E. Montolivo (*), As a simple example consider the case q=5, a=2, =-1, 2--4.

G.M. Poscetti (**) By putting h=2, a1 =1, a 2 =2 in (2), a SE-EMSC code can be

(*) Fondazione Ugo Bordoni derived from the (6, 4) Hamming code over GF(5) whose parity

(**) Universitd di Roma "La Sapienza" check matrix H is

i4 0 12 41 1 (3

Most non-binary error correcting codes are designed for 1 0 1 2 3 4

correcting error patterns regardless of error magnitudes and exhibit

the best perfomance when error magnitudes are equally likely. Decoding a SE-EMSC code is only slightly more complex than

However in non-binary digital transmission links with fairly good decoding the Hamming code used for its construction. As (1) holds,

SNR only a subset of error magnitudes occurs with not negligible the first non-zero element of the syndrome univocally defines the

probability. This circumstance suggests to search for codes that are error magnitude and the n-symbol sub-block (among h sub-blocks)
that contains the error. The error position in the sub-block is found inable to correct only error patterns composed of errors belonging to

the usual way by dividing the syndrome by its first non-zero elementthe said magnitude subset. Such codes will be called EMSC codes -and by looking for the coincidence against the rows of HT.
(Error Magnitude Subset Correcting codes). It is reasonable to

conjecture that t-error correcting EMSC codes exist which exhibit a As a practical example, we considered the application of the SE-
EMSC codes to a q-ary memoryless PAM channel with negligible

better rate in comparison with all possible conventional t-error

correcting codes with the same codeword length. probability that, when an error occurs, the received amplitude level is

In this paper a class of Single Error correcting EMSC codes not adjacent to the transmitted one. In the said application, for c=l,

(SE-EMSC codes) is obtained and an efficient decoding procedure is some of these codes are EMSC-perfect. while for c>1 they are

proposed. The above mentioned conjecture is proved for these codes equivalent to codes with c=l. EMSC codes with c > 1 result

by showing that they have a code rate greater than the value given for attractive in case of multiple error correction or multi-dimensional

conventional codes by the Hamming bound, signal sets.

In order to evaluate EMSC code performance an extension of the Work carried out in the framework of the agreement between the Italian PT

Hamming bound has been worked out as a function of the error Administration and the Fondazione Ugo Bordoni.

magnitude subset cardinality. With respect to this bound EMSC-

perfect codes have been defined and the existence of EMSC-perfect

SE-EMSC codes has been proved.

A SE-EMSC code is defined by building its parity check matrix

H. We derive the matrix HT of a (n', k') SE-EMSC code over

GF(q) (q=pC, p prime) starting from the matrix HT of an (n. k)

Hamming code over the same field with n<n' and (n-k)=(n'-k')=m.

Let P3i, i=l, 2,..., a, (a5q-l) be the field elements representing

the a error magnitudes that the code can correct and aj ,j=l, 2,...,h,

be h distinct elements of GF(q) such that

,0i aj *#r as for any i;r and j¢s (1)

For any set (P3i )and (aj ) satisfying (1) with h>2, a SE-

EMSC code exists and it is defined by

at,
a• 2 -ft

H7!- a .(2)

L ah Tr

and therefore n'=hn and k'=n'-m.
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A CLASS OF SINGLE ERROR CORRECTING CODES
FOR CHANNELS WITH LOCALIZED ERRORS

Per Larsson
Dept. of Electrical Engineering, Link~ping University

S-581 83 Link6ping, SWEDEN

Introduction possible. Since A must be an integer we take A equal2f'-1-']
to 2.S4WJ. It is easy to check that A is less than or

A channel with localized errors is characterized by the equal to the size of the code used in the first block as
property that possible error positions are known to the long as i = 0, 1,... ,2m - 1. With this choice of A the
encoder but not the decoder. Equivalently we can say size equals A2 2-'.
that the encoder knows the positions that will be error-
free after transmission. The other positions are unreli- Summary and Conclusion
able.

We construct block codes for binary channels with lo- Denote by A(n,t) the optimal size of an ordinary er-

calized errors. Of course ordinary error correcting codes ror correcting code of length n and error correction ca-calied rros. f curs orinar eror orrctig cdes pability t. It has been proved [3] that A(2m+l - 3, 1)
can always be used on a channel with localized errors by pal s been pod that A(2-+' - 3, 1)
simply ignoring the additional information about possi- equals 22"+'-(+) and that A(2-+' - 4,1) equals
ble error positions. Some of our codes, however, are bet- 2
ter than any possible ordinary codes of the same lengths It is easily verified (with i = 1, 2) that our codes outper-
and error correction capabilities, form the doubly and triply shortened Hamming codes.

Result The construction can be generalized in several ways.
First we can find other single error correcting codes by

Theorem Given a shortened Hamming code of length using others than Hamming and shortened Hamming
2n - 1 - i and a Hamming code of length 2m - 1, where codes. Second the ideas can be used for constructing
m = 3,4,.... and i = 0,1 .... 2 m - 1, then a single error- codes correcting more than one error.
correcting code for localized errors of length 2m+' - 2 - i
and size 22References

[2m+- - iJ [1] L.A. Bassalygo, S.I. Gelfand, M.S. Pinsker, Coding

can be formed. for channels with localized errors,
Soviet-Swedish Workshop in Information Theory,

Proof:(Construction) A block of length n is divided SwedeU, 1989.
into two subblocks of lengths no and ni, where no = [2] L.A. Bassalygo, S.I. Gelfand, M.S. Pinsker, Coding
2' -1-i and ni = 21- 1. Notice that n = 2m+l -2-i. for partially localized errors,
Denote by r0 the observed number of possible errors in IEEE Trans. on Information Theory, vol.37, no.2,
the first block. IE rn.o nomto hoy o.7 o2pp. 880-884, May 1991.
For ro = I we use one of A codewords from the short- [3) M.R. Best, A.E. Brouwer, The Triply Shortened
ened Hamming code in the first block and any vec- Hamming Code is Optimal,
tor in the second block. For ro = 0 we use one of Discrete Mathematics 17, pp. 235-245, 1977.
22"---i - A(21 - i) vectors in the first block (outside

the decoding spheres of the A vectors used in the pre- [4] P. Larsson, A class of codes correcting localized er-
vious case) and one of the codewords of the Hamming rors, Proceedings of the International Workshop
code in the second one. The size of the resulting code on Algebraic and Combinatorial Coding Theory,
is min {A2 2m'-1, (22"-1-i - A(2 m - i)) 22-m-mI). We Voneshta Voda, Bulgaria, 1992.
choose A so that these two quantities are as close as

38



On Perfectness of Binary Block Codes
for Correcting Asymmetric Errors

G. Fang liro S. Honkala
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Eindhoven University of Technology, University of Turku
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The Netherlands

Abstract - Binary block codes for correcting asymmetric errors We will call the weakly perfect codes defined in fl as r-WP
are called binary AsEC block codes. In [1], the definitions of per- codes. The existence of r-WP C.(n, A) codes was exampled in
fect and weakly perfect binary AsEC block codes were introduced, [1). In this paper, we introduce a different parameter s(c) instead
and some properties of such codes were studied. In the present of r(c). Generally, s(c) is bigger than r(c). By using the same
paper, we generalize these concepts and results to a larger class definition for r-WP codes, the so called a-WP codes are defined in
of AsEC codes. the present paper. We denote by X.(n, A) the maximum number

of codewords in a s-WP CQn, A) code, A.,(n, A) the maximum
Summary number of codewords in a CQ(n, A) code and W.(n, A) the max-

A binary asymmetric error-correcting code (for short, AsEC code) imum number of codewords in a r-WP C.(n, A) code. It can be
C of length n and minimum asymmetric distance A, denoted by readily verified that any r-WP Ca(n, A) code is a s-WP code.
C.(n, A), is a non-empty proper subset of {0, 1}" in which any Thus, W.(n, A) • X.(n, A) ! A4(n, A). On the other hand, one
two distinct vectors are at asymmetric distance at least A apart can find examples of existence of s-WP codes which are not r-
and this distance is realized at least once. With the asymmetric WP codes. Hence the class of s-WP codes is larger than that
distance metric, the notion of the minimum distance r(c) from a of r-WP codes. So, any property derived for s-WP codes can
certain codeword c to all other codewords was defined in [1J. r(c) be certainly applied to r-WP codes as well. For s-WP Co(n, A)
presents a kind of measurement of error-correcting capability of codes, the following main results have been obtained in this pa-
the codeword c which is better than that in terms of the minimum per: (1) A C0 (n, A) code C is s-perfect if and only if C is the
asymmetric distance of the code. Also in [11, with the properties repetition code. (2) If n > 2A, then Xa(n, A) < A.(n, A), which
of perfect codes for the binary symmetric channel in mind, natural also implies that if n > 2A, then any nontrivial s-WP Co(n, A)
definitions of perfect and weakly perfect binary AsEC block codes code cannot contain a codeword of weight greater than n - A.
were given, which is related to the distance r(c). Some properties Therefore, a s-WP Co(n, A) code with n > 2A can always be
of such codes were derived simultaneously there. enlarged with the all-one vector 1 to a bigger C.(n, A) code.

Since the packing spheres defined for asymmetric cases with re-
spect to the asymmetric distance metric extend only downwards,
namely only towards smaller weights, it follows that for a binary References
AsEC block code one sometimes could increase the sizes of those
packing spheres no matter how they are with radii in terms of the o1] G. Fang, H. C. A. van Tilborg, F. W. Sun and I. HonkalAs,
minimum distance of the code or r(c)'s, such that all these im- Some Features of Binary Block Codes for Correcting Asym-
proved packing spheres still remain disjoint mutually. Therefore,
in the sense of error-correcting capabilities of codes, other param- [2] T. R. N. Rao and E. Fujiwara, Error-control coding for com-
eters rather than the minimum distance and r(c)'s would be able puter systems. Prentice Hall Series in Computer Engineering,
to be introduced for binary AsEC block codes, and subsequently Prentice Hall, 1989.
be used for the study of perfectness of such codes.

On the other hand, for the decoding of a code, one should
realize that a received word y only comes from the codewords
covering it. The strategy of a maximum likelihood decoder is of
course to decode the received word y to one of the codewords of
lowest weight covering y. In view of the error-correcting capability
of codes, one also should be aware of the two following facts. First
of all, if c is the codeword of a CQ(n,A) code C of weight less
than A, then the error-correcting capability of c may be referred
as any number which is greater than w(c). Hence r(c) does not
give an appropriate measure for the error-correcting capability of
c. Secondly, sometimes a codeword c may be able to correct more
than r(c) - 1 errors. Therefore, for the error-correcting capability
of codes, other parameters would be able to be introduced instead
of the minimum distance and r(c)'s. This motivates us to consider
perfect and weakly perfect codes capable of correcting asymmetric
errors in view of these new parameters, which leads to the present
paper.
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Single Byte Unidirectional Error Locating Codes
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1 Introduction
Error control codes such as single-bit erro correcting snd double-bit er-

rot detecting (SEC-DED) codes are popularly used in computer hit-speed ~ Is tie.~ . . .. 01'ý ' 10-1- .. 2 -

mmre 111. This paper proposes a new type of error control code Rwhich iI
indicates only a location of unidirectional errors clustered in I bits (b > 2) ~ R=rIg s sa4,x,,iett arx saix,,zr
length, called byte, but does not indicate accurate error bit positions in we -. +'1.i .xb ett arx 6 sab b a

the byte. This is considered to be cost-effective due to its low redundancy.I
Also, this is very useful especially for dignostic purposes in coptree matrix and aj expresse a coeffcient column vertor of vi mod g(z),
temua which give the information to exchange faulty packages or faulty chips whr )is rmtv oyoilwt ereo R-b)
Code construction method of the single i-bit byte unidirectional Cewro lo- hr ~)i miieplnoilwt erec R-4)
cating code, called SIUEL code, and its lower bound on redundancy are (4) By appending the check bytes to the original input word D, the code.
demonstrated in this paper. word of C yields to

2 Code Construction [ D ICE 1, CE 2 ....CB,,CB,+,1 .0
Let X = (X 1 ,X2,.-X.) and Y = (Y 1,Y2,. .. ,Y,), whaew-X,,Yg e Theorem 2 :The set of codeword obtained from tic aieve steps (1) to (4)
(0 1i=l1, 2,..., %, be two distinct binary codewords each having length is an SbUEL code.

of n bytes, included in code C, i.e., X, Y e C. In this case, every byte Of 3 Evaluation
Xi = (xO,,242,.-.. -, Xi,) and Yj = (Yij,1V.,2, .- -, 4,b) has b-bit length, where
x,,i, {ojrc(, 11, = 1, 2.... u, and = 1,2....,b Theorem 3: Let k It the namber of informastion bytes with I Wits/yte.

0 i , 2, and p 1,, 4.Then, any code thAt locales single byte unidirectional errors needsi latkst
Definition 1 (3): The function Nis defined as flo,9(k -ib+ 1)1 check bit. 0

N(Xi, Yi)=!' lj I xi = I A~ yj O Figue 1 shows an example of the relation between the check bit-length
and the information bit-length of the S4UEL codes when b = 4 bits. In

where JAI denotes the number of elements in the set A. Then the unidirec- this figure, the dotted line shows the lower bolund on the check bit length
tional bite distance VP is defined as mentioned in the Theorem &~ The broken line shows the case of a code

* proposed by Dunning et &L15 which is originally a double byte unidirectional

'D(X, Y) = DX.Y) error detecting code for the met of weight symbols of the input word over
GF(p), where p is a prime larger than b, and therefore can be regarded as

where an S SUEL code.
I'2 if N(X., Yi $0 A N(Y, Xi) j60. &x-klnt

V(Xil YO) I if Xi 0Yi A (N(Xi, Yj)= 0 V N(Yi, Xi) 0).J
0 if X = Yi..S Lcd s ---- a

Definition 2 V'1: Unordered byte number between X and Y is defined as

I(X, Y)= ji I V(X., Y.)= 2) ----.

Theorem 1 Code C is en SbUEL code iff any words X and Y included in 63

C satisfy the following relation: 5 oe on

V(X, Y) Ž 3. or 6 (X, Y) 2:1. ~if ho-ilnl

Code construction algorithm: Figure [:Check-bit length vs. intoemmion-bit length of' the S4U1EI Code

(1) Let the input word having k bytes be D = (DI, D 2,. -.. , DA), where 4 Conclusion
Dj, i = 1,2,..,k, represents the information byte with fixed length of This paper has proposed the construction method of a new type of uni-
I bits, directional error control code which indicates the location of single byte

unidirectional errors in the received word. It has clarified the necessary and
(2) Let w(D) be a concatenation of weight of each information byte, that sufficient conditions for this type of code, and the lower bound on the check

is, bit length.
u4D) = (u,(DI),u,(D2 ),. .,u(D&)} If the linesr code having the minimum Hamnming distance dff over

where ui(D.) represents the weight of the information byte Di) and has GF(2'i) is appilied to the proposed code construction method, we can get,
value ranging from sero to b. Therefore, bit-length of w(Dj), shown as in general, the ~¶'bytes unidirectional error locating codes for an odd

b., is equal to Plog2 (b + 1)1, where rfil represents the smallest intege ubrrlan h bytes unidirectional error locating and dm bytes
greater than or equal to P. unidirectional error detecting codes for an even number dm.

(3) The maximal linear code of the single b. -bit byte error correcting code References
(Sb.EC code)[4) is applied to encode the above defined iu(D). That is, [11 T.R.N.Rao and E.Fujiwara, Error-Control Ceding for Computer Sys-
multiplying w(D) by the encoding parity check matrix of the trmia tems., Prentice-Hall, 1969
code of the Si.EC code, Hp, i.e., wa(D) - HTS, generates the check [2J J.K.Wolf and B.Elspas, "Error-Locating Codes - A New Concept in

bytes, CE1, CE2 ,..., CB,+,, where CB., i = 1,2,..,r, is a check byte Error Control", IEEE Transt. mif Theory, pp. 113-117, Apr. 1963
having length of b. and CE,,1 is the last check byte having length S, [3] Y.Saitolt and H.Imai, "All Unidirectional Byte Error Detecting Codes",
0: # < 4,.. In this case, Hs of the maximal code a4 s shown as The Institute of Electronics, Information and Coumuaication Engi-

seena, Autumn National Convention, A-160, 19900
[ 0.* , Oa... 0.,, ....6 - Ob.... 06. (41 S.i.Hong and A.MPatel, *A General Class of Maximal Codes for Comn-

I37 0&. ... pager Applications", MEE frans. Comput. pp1322-l331, Dec.1972
KIT = H .O- ~ (51 L.A.Dauning, G.DiaI sad M.R.Virmaaai, "U'nidirectionaal Byte Ervro

(4.,.Detecting Codes for Computer Memory Systems", IEEE ru.Cv

I ~put. Vol.3, pp.592-595, April 1990

40



EFFICIENT MAXIMUM LIKELIHOOD DECODING ALGORITHMS FOR LINEAR CODES OVER

Z-CHANNEL
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School of Information Science, Japan Advanced Institute of Science and Technology
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Abstract This paper presents three new maximum likelihood decod- 3. Find c._,, which minimizes w(c, 1 9 c.) among c, E C. satisfying

ing (MLD) algorithms for linear codes over Z-channel, which are much c, A r = o. Then c, - cl S c,,,_ and go to 2.

more efficient than conventional exhaustive algorithms. In the proposed 4 cl is the desired codeword. 0

algorithms, their complexities are reduced by employing the projecting set

C, of the codewords, which is determined by the "projecting" structure of

the code. Namely, the complexities of algorithms mainly depend upon the

size of C, which is several times smaller than the total number of code- 1. Let i = 1, cl = o and rj = (rI,r 2,.- .,rj,0,--. ,0) (j = 1,2,-.. ,n)

words. It is shown that the complexities of three decoding algorithms are 2. If r, • c1 , find c ... which minimizes w(ci ff c.) among c, E C,
in proportion to the number of zeros in the received word, Hamming weight satisfying ri ! (c, s c.). Then c1  - cl s

of the received word, and the number of parity bits, respectively.

1. Introduction 3. Ifi < n then i - i + I and go to 2.

In the optical communication system or semiconductor memory, it is

known that the communication channel can be usually modeled by Z-

channel. In Z-channel, symbol '0' does not change to symbol 'I', though MLD Algorithm III] For the received word r = (r ,r2, ,

'I' changes to '0' with probability e. To make the most of the error cor-

recting ability of codes, a maximum likelihood decoding (MLD) algorithm 1. Let i = I and rj = (rirs,..., rk+j,0,.-,0) (j = 1, 2,---, n - k). Let

for cyclic codes over Z-channel has been reported[l]. However, in order c1 be a codeword specified by

to improve the performance of communication employing error correcting c1 = (c1 ,1 ,c 1,2 ,'", c1,.) = (r ,r2,..., rk)G,

codes, it is important to develop efficient MLD algorithms for much wider where G is the k x n generator matrix of the code C.

class of codes such as linear codes. This paper presents three new MLD

algorithms for linear codes over Z-channel, which are much more efficient 2. I C U ( 1,ifind c, w c.) among

than conventional exhaustive algorithms, and clarifies the complexities of

these algorithms. 3. Ifi <n-k then i- i + land go to 2.

2. Preliminaries 4. c1 is the desired codeword. 0
Consider a linear binary (n, k, d) systematic code C, where n, k and d are

the code length, the number of information bits and the minimum Hamming In these algorithms, their complexities are mainly depend upon the size

distance of C, respectively. Assume that all codewords are equally likely, of C,. Since the size of projecting set IC.I is several times smaller than the

and an MLD algorithm is defined as follows: total number of codewords (2k), both computational and space complexities

[Definition 1] (MLD algorithm) For a received word r, an MLD al- for these algorithms are significantly reduced compared with conventional

gorithm chooses a codeword c to maximize the the conditional probability exhaustive algorithms. The upper-bound of the complexities of the algo-

Pr(rlc) that a word r is received when a codeword c is sent. rithms are shown in the Table 1. It should be noted that the combination

Here, we introduce the concept of "projecting" and "projecting set" as of Algorithm I and II yields an MLD algorithm with maximum number of

follows(2]: comparisons min{w(r), n - w(r)}lC.I.
[Definition 2] (Projecting) If nonzero codewords cl and c 2 satisfies 4. Conclusion

c, Ac 2 = c 2, cl is projected by c 2, and we denote c2 < cl, where A denotes This paper proposes some efficient MLD algorithms for linear codes over

a bit-by-bit and operator. Z-channel, and clarifies their complexities.

[Definition 3] (Projecting set) The projecting set of a linear code C, References

denoted by C., is the smallest subset of nonzero codewords of C such that [11 H. Inaba, M. Morii, and M. Kasahara: "Notes on Fast Maximum-

for any nonzero codeword c E C and c V C., there exists a c. E C. which Likelihood Decoding-Algorithm of Cyclic Code on Z-channel",

projects into c. Trans. IEICE, vol.J74-B-I, no.10, pp.769-777, Oct. 1991 (in Japanese).

It is reported that the actual number of codewords in C, is at most [21 T. Y. Hwang, "Decoding Linear Block Codes for Minimizing Word

several times smaller than the total number of codewords[2]. Error Rate", IEEE Trans. on Inform. Theory, voL.IT-25, no.6, pp.733-

3. MLD Algorithms for Z-channel 737, Dec. 1919.

By employing the projecting set C,, we propose the following efficient

MLD algorithms for Z-channel. In these algorithms, let w(z) denote Ham-

ming weight, let wk(z) denote Hamming weight of the first k bits of z, and Table 1. Complexities of the proposed algorithms

let + denote the modulo-2 addition. Algorithm Number of M,•aximum
codewords stored number of comparisons

MLD Algorithm I ] For the received word r: I IC.I (n - w(r))IC.I

1. Find a codeword c1 E C such that r < c•l. II ICI w(r)1C.1

Ill IC.I + k (n - k)IC.I

2. If u,(ci + c,) > w(cl) for all c, E C. satisfying c, A r = o, go to 4. Exhaustive 2 * or k 2h

'If (1, I. , I) is a codeword of C, this codeword always satisfies the condition.
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Reduced State Sequence Detection
for Asynchronous Gaussian Multiple-Access Channels

MAHESH K. VARANASI

ECE Department, University of Colorado, Boulder, CO 80309

Abstract: The problem of coherent multiuser detection is consid-
ered for the K-user asynchronous Gaussian Code-Division Multiple- filters (matched to the orthonormal bases of the K dimensional signal
Access (CDMA) channel. The maximum likelihood sequence detector space) onto the perp space of the subspace spanned by the users not
(MLSD) is asymptotically optimal in that it achieves the highest er- in the group G1. In generalizing this approach to the asynchronous
ror exponent of the bit error probability for each user. However, the channel, the two subspaces in the direct sum decomposition gener-
MLSD can only be implemented by a dynamic programming algorithm alize to those spanned by all time-shifted ( by integer multiples of
whose complexity depends exponentially on K. In order to mitigate symbol durations) versions of signature signals of users belonging to
the complexity of this scheme, a class of group detection strategies the group under consideration and those that do not belong to this
is derived based on optimal statistical inferential procedures. Each group. The number of orthogonal projections that need to be corn-
member of this class of detectors corresponds to a L group partition puted in this case is MNIGII (N is the packet length!) and it can be
of the K users, and consists of a bank of L group detectors, one for shown that there is no solution with a complexity that is indepen-
demodulating the information symbols of users in each group. Each dent of the packet length. A key result of this paper is the derivation
group detector is a reduced state sequence detector with the dominant of an alternative oblique projections-based group detection strategy
complexity determined by the computation of the solution of a com- where the MNIGLI oblique projections can be computed by a forward
binatorial optimization problem via a forward dynamic programming dymanic programming algorithm whose complexity is independent of
algorithm. This algorithm has a complexity that is exponential in the the packet length and depends exponentially only on the number of
number of users in the corresponding group. The overall complexity is users in the group that it demodulates. Since the group size is a de-
determined by the size of the largest group which is a design parame- sign parameter, it can be chosen to be only as large as complexity
ter that can be chosen to be only as large as complexity considerations considerations allow.
allow. The performance analysis of the group detection scheme is ob- It wvas seen in [2] that the performance analysis of the group de-
tained by deriving asymptotically tight upper and lower bounds on the tection scheme for the synchronous channel could be deduced from a
bit error probability, thereby characterizing its multiuser asymptotic result on the equivalence of a group-G detector with a maximum like-
efficiency. lihood detector in a fictitious IGI-user synchronous Gaussian CDMA

channel. However, this equivalence doesn't hold for the oblique
projections-based group detector for the asynchronous channel. In

Summary fact, it is shown that the orthogonal projections-based group detector
of [Var92] when generalized to the asynchronous channel, though not

The idea of group detection was introduced by the author in [2] in practically implementable, has an asymptotic efficiency performance
the context of multiuser detection over a QAM synchronous Gaussian that is an upper bound on the performance of the oblique projections-
CDMA channel. The synchronous channel is memoryless and there- based group detection scheme. The second key result of this paper is
fore single-shot decisions can be optimal. However, the more general the derivation of asymptotically tight upper and lower bounds on the
asynchronous problem is inherently a sequence detection problem and bit error probability of the proposed group detection scheme for the
new problems arise in generalizing the results in [2]. L asynchronous channel thereby characterizing its asymptotic efficiency.

It was shown in [2] that ful wn arbitrary L group partition U G1 = The design and analysis of the reduced state group detection scheme
1=2 obtained in this work provides a unifying treatment of the niultiuser

{1,...,K} of the set of K active users in a M-ary QAM synchronous detection problem in the sense that two detectors corresponding to
CDMA channel, a generalized likelihood ratio test-based group de- two trivial partitions result in previously proposed schemes. The case
tection scheme can be implemented in parallel as a bank of L group of a partition of users into one large group of size K yields the MLSD
detectors, one for each group in the partition. The i1h group detector obtained in [3] with the highest possible asymptotic efficiency for each
jointly demodulates the users in the group G, and the time complex-
ity per symbol (TCS) of the Pth group detector is O(MIAJG/1GiI) for user, but at the price of an exponential complexity in K. The other

extreme case of a partition that consists of K groups, each of size one.
I-ary QAM alphabets. From complexity considerations alone, the results in a group detection scheme wvhich reduces to the decorrelating

trivial single-user partition U {} = {1. K) is the most desirable detector [1]. This detector requires only a K-input K-output digital
1=1 filter following tie bank of miatched filters. All other partitions yield

and yields the decorrelating detection scheme with a complexity that filterflon the ank the ilters. All the partitio nd
is independent of hK. Performance considerations, however, tell a dif- iew dfetectioii schemes and the interplay between the complexity and
ferent story. A key result in [2] establishes that a group G detector is the perfornance of these schmes will be presented.
optimally group near-far resistant in the sense that, for each user in
G, it achieves the highest achievable worst-case asymptotic efficency References
over the signal amplitudes of users not in G. As a consequence, viewed
from the performance viewpoint alone, membership of a given user in [1] R. Lupas and S. Verdu. Near-far resistance of mnultiuser detectors
a larger group is preferred over that in a smaller group contained by in asynchronous channels. IEEE Trmis. Commun., COM-3S:496--
it. A larger group size, however, brings with it a higher complexity. 508, April 1990.

A vector space interpretation of the group detector for the syn- [2] M. K. Varanasi. Group detection in QAM synchronous CDMA
chronous channel involves the direct sum decomposition of the space channels. Procadings of the 1992 Conference on 'Information Sci-
spanned by the signature signals of all the users into two subspaces, enccs and 1?ystfis, 2:920-825, 1992.
one of which is spanned by the signals of the users in the group to be
demodulated and the other by the rest of the signals. The complexity [3] S. Verdu. Minimum probability of error for asviychrolious Gaussian
of the group detector is due to the computation of orthogonal projec- nuhltiple-acccss chaimels. IfEE Tris. nim Info. Thromy, hF-32:8$.
tions of certain transformations of the outputs of a bank of matched 96, Janlually 9P6.
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ERROR PROBABILITIES FOR FIBER-OPTIC CODE DIVISION
MULTIPLE ACCESS SYSTEMS
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Abstract where Ai is the decision region for Hj, i = 0, 1.

Performance analyses of fiber-optic code division multiple access Importance Sampling : We obtain the Importance Sampling es-
(FO-CDMA) systems are intractable and often, Monte Carlo sim- timator by rewriting the error rate in (3) as
ulations that yield realistic estimates of system performance re- 1
quire a large number of simulation trials for the estimates to be Pe = pR.IH,(r I Hi)w(r I Hi)], (4)
in a reasonable interval of confidence. We develop an Importance A--.

Sampling technique to estimate the performance of direct detec- where w(r I H.) = are the weights under Hi. The "gain"
tion FO-CDMA systems, where the "gain" of Importance Sampling PRAtH1

over Monte Carlo simulations is shown to increase linearly with the of Importance Sampling over Monte Carlo simulations is given by

system performance. The quick simulation technique developed ex- r = where MMC and Mis are the number of trials under

tends to avalanche photodetection and is also compatible with a the respective methods. The sufficient conditions for achieving a

wide variety of coding schemes. Using these efficient simulations, realistic "gain" reduce to pR.IH.(I H,) > pp.1gi(r I H), Yr E Al,.

we present a comparitive analysis of systems employing optical- Since the optimum solution to maximizing r yields a degenerate

orthogonal-codes and prime-sequences, where only 50-100 trials are biasing density (1], we look for a suboptimal solution satisfying the

required for estimating error probabilities of 10 -7 and below. Based sufficient conditions as given above. To make the problem of de-

on an inexact Fourier expansion of the Poisson complimentary prob. termining the suboptimal biasing density tractable, we choose not

ablity distribution function, we derive approximations for the prob- to bias the multiple access interference parameters [1] and look for

ability of error that require computations increasing linearly with biasing densities of the form

the number of users as opposed to an exponential increase in the p.(K-1)

case of exact evaluation of the error probability. The inaccuracy of PR-IH,(r) = E pr,)(k)pR.Io,,H.(r I vi), i = 0, 1. (5)

the results are shown to be bounded. =
Further, we show that when an exponential change of measure yields

System Description : A FO-CDMA system is considered where the biasing density (i.e., pR.(r) = e- jrO-6j), the sufficient conditions
the information bit of each user is modulated onto the intensity of reduce to solving the following minmax problem [1]:
the laser transmitted through a single-mode fiber channel. If user iJ+ vdN+k
k is sending bit i, under hypothesis Hi, then the intensity of the min max {[-(iJ+uidN + k)+ v• +k]+rlog[ ÷ a k ,
modulated light is given as P ,1 '4+

N where k E [0,p,(K- 1)] and PR*IH. is parametrized by the parameter

A)(t)= -'A~k)(n )IT,(t - nT), i =0,1; fort E [0,T) (1) K "
n=1 Approximations : In the evaluation of the analytical probabil-

and IlT,(t) is a unit rectangular pulse of duration Tc, and P(-) - ity of error in equation (3), we need to compute the expectations
[,•k)(1),.. .,,•k)(N)] is a signature sequence of length N = T/TC in (2) over all the information paths of the process. In general,

the distributions of the sum of the interfering intensities do not
with each AIk)(n) E {0, 1}. At the receiving end, this gives rise have closed form expressions, and since each Pt) E {0,1,...,pc},
to the following two hypotheses at receiver of the desired user roughly (Pc + 1kK- computations are required. If we decom-

(taken to be user 1) in the time interval [0,T) as Hi : VI)(t) = pose the photoelectron count at the output of the photodetector

",\ 1
)(t) + LK2 4k)(t), where the symbol b denotes the information as R = R, + R", (where R, and Rr are contributions due to the

of the kth user. The receiver corresponding to user 1 has a replica user intensity and the interference intensities, respectively) then we
of the signature sequence assigned to this user, and the light in the can write EA, PRiHo(r I H0) = E,, PRZ(r1)QR,(7 - r), where QR.
channel is correlated with this replicated signature sequence. The is the complimentary cumulative distribution function of the Poisson
correlated intensities are incident on an ideal photodiode and the random variable with mean Vd, y the detector threshold, and pR,
resulting photoelectron count is compared to a threshold for data is the probability mass function of the photoelectron count due to
recovery. Without loss of generality, we assume that each user is em- interfering intensities. By representing Q R. in terms of an approx-
ploying on-off keying, and hence at the 181 receiver, the intensities imate Fourier series as QR,(X) = E'_o. cmef"' + c(z), where w•
are correlated with A_1), since 0I) = 0. For an {N, J,p..,pc) optical is the angular frequency term and tI(z) an error term, we can write
code sequence (i.e., a sequence of length N, weight J, and, auto and E'&, pRlIjo(r I Ho) = E.=-.o c=ei'7(I[ 2 #j(-rmw))+6, where
crosscorrelation constraints p. and pc respectively) the probability Rr has been decomposed into the sum of K - 1 independent random

of r photoelectrons occurring, tinder Hi, in the sampling interval T variables, i.e., R 1 = -Kk=2 Rk and 6 = F-,,, PR,,C( - rT). The mo-
is given as ment generating functions fR,5 can be evaluated from knowing the

M(K-i) probabilities PA,). If we can truncate the above series to M terms,

pRIH,(r) F pl i)(k)pRji..H.(r I vi), i = 0,1, (2) we see that the computations required are equal to pc(K - 1)M.
k=0 Thus we have reduced the number of computations to be linear in

where pRiC,.H,(r iP,) is the conditional photoelectron probability K as opposed to being exponential in K.
and prI)(k) is the probability that the multiple access interference

term I(')(- L=21)) takes on the value k. The probability of REFERENCES
error can be computed for equiprobable hypothesis as

I 1 [I] N. B. Mandayam and B. Aazhang, "Importance Sampling

2= jZ _ PRIH,(r)]' (3) for Direct-Detection Optical Communication Systems," IEEE
_0 A-, Trans. Commun, To Appear.
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ABSTRACT ence is not equivalent to no interference.) Let PiX(Al) denote. the op-

Performance results for optimum demodulation of optical code timum error probability for user I and &-(A,) the known-interference
division multiple access (CDMA) signals wre obtained. Upper and lower bound. For a given error probability P. = P.,(A1 ), let A, reprm-
lower bounds on minimum probablity of symbol error for a K-user, sent the energy required for user 1 to achieve P. in known interference
symbol-asynchronous optical CDMA system with optical orthogonal (P,(i() = PA). Then the asymptotic relative efficiency is given by
codes (OOCs) are derived and evaluated. An asymptotic efficiency de- - (

fined relative to the performance in known interference is introduced. w 7 t i o tei t a

The results obtained exhibit the asymptotic efficiency of optimum where the energies of the interferers are held proportional to the en-

demodulation and suggest the existence of a significant performance ergy of user 1, i.e. AX = ch.A\, Vk > 2.

gap between the optimum receiver and the conventional correlation In Figure 2, the asymptotic efficiency of the optimum receiver for
receiver even in mild near-far environments. a 2-user synchronous system with arbitrary {0, 11 signature sequences
Overview and Ad = 0 is plotted versus e2, the near-fr ratio, for various values

of r, where 1 - r represents the fraction of symbol energy transmitted
In this paper, we consider the performance analysis of optical CDMA during periods of isolated transmission.
communications. Such formats are of interest in several emerging ap-
plications, including indoor wireless communications and all-optical
processor interconnects. Because of its low complexity, the conven-
tional correlation receiver has been the focus of much work. It is well
known that conventional receiver performance suffers when the signals
of different users are received with unequal energies. In this situation, I _ o ýftd M • o ... 1 •• t.• ..

the performance of optimum demodulation is of special interest. - , .. t-I d-1-...

In direct sequence optical CDMA, each user k is assigned signa- • e -.r .r b.. l

ture sequences •(0) ,4) E {0, 1)i, which effectively divide the symbol e __-_ _ _ _ _ _

interval into J "chips". User k signals a symbol bh by transmitting an 1 . ...lfl .... bo...

optical pulse in each of the chip intervals corresponding to a "1" in the • -i0

signature sequence • The K signals are combined non-coherently
on the channel, which may be free-space or guided."-2 Figure 1

Demodulation is based on knowledge of the transmitter delays, en- -... ..
ergies, and signature sequences and on direct detection of the received -2 0 2 4 6 a 10

signal over each chip interval. The observations may be modelled as ...-f.r .. t. (dB)

conditionally Poisson randR.n6,,5 -aiables with ravn by
kij = 46Ai. + Ek. -Xj +~j ~ Ado

for the observation over the it'l chip or Te lth iymbol of the desired
user, user 1. The integer r represents a chip-synchronous transmit- ý0.
ter delay relative to r1, AA, corresponds to energy of user k, and Ad
represents photodetection dark current.

Z- 0. 8The error probability analysis of this paper avoids the unreal-
istic assumptions of symbol-synchronous transmission and random >
codes which previous analyses have required (1]. The performance 0.7
measures considered include the single-user lower bound, the known-
interference lower bound (achieved by the likelihood-ratio test when . a
for k j i arc known), the Cheinoff upper houna, and tue nerformarncz
of a modified conventional detector [2], which ignores observations :.
from those chips during which interfering users are transmitting. The Figure 2
correlation receiver performance in known interference is also evalu-
ated. The use of OOCs [31 with maximum cross-correlations equal to 0 1 1.

1 allows the optimum decision for b (l) to be made symbol-by-symbol. r... ..r

We also employ saddle-point approximations [4], which expedite nu- References
merical analysis and provide mceptionally good approximations.

Numerical results are presented in Figure 1 for a 4-user system [1] M. Brandt-Pearce and B. Aazhang, "Unequal Received Power Ef-
in which A, = A2 = A3 -. Curves are plotted versus the near-far ratio fects on Single-User and Multi-User Detection of Optical CDMA,"

(NFR), defined here as A4/A 1 . The OOCs utilized have weight equal in Proc. 1992 CISS, Princeton University, Mar. 1992.

to 4 and length equal to 73. Even when all users have equal energies [2] D. Brady, "Asymptotic Multiuser Efficiency for Optical Chan-
(NFR = 0 dB), optimum performance is still more than two orders of nels," in Proc. 1991 CISS, Johns Hopkins University, Mar. 1991.
magnitude better than conventional receiver performance.

In [2] an ausymptotic multiuser efficiency for the optical CDMA [3] J. A. Salehi, "Code Division Multiple-Access Techniques in Op-

channel is defined relative to single-user performance. Here we define tical Fiber Networks-Part I: Fundamental Principles," IEEE

an efficiency relative to performance in known-interference. (Unlike Trans. Comm., Vol. 37, No. 8, pp. 824-833, Aug. 1989.

the analagous situation for radio-frequency channels, known interfer- [4] C. W. Helstrom, "Computing the Performance of Optical Re-

"This work was supported by the U.S. National Science Foundation under ceivers with Avalanche Diode Detectors," ISEE Trans. Comm.,
Grants NCR-90-02767 and EID-9-19951. Vol. 36, No. 1, pp. 61-66, Jan. 1988.
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Abstract with the number of users (2]. The receiver is "near-far resis-
tant eliminating the need for strict power control. The draw-
back of this approach is that the parameters of all users includ-

A fully asynchronous single user receiver in a code-division ing signatures, timings and carrier phases have to be known.
multiple-access (CDMA) system is considered. It is assumed The accuracy in estimation of these parameters strongly in-
that the receiver has no knowledge of the signature waveforms fiuences the single user detection process and instability can
or timing information of other users. The receiver is trained by spread to other users making whole system unstable. The
a known training sequence prior to data transmission, and con- CLMD is considerably complex relative to the conventional sin-
tinuously adjusted by an adaptive algorithm during data trans- gle user detector. The CLMD proved that the capacity limita-
mission. An adaptive, fractionally spaced least mean square tion of the CDMA system by MAI is consequence of the conven-
(LMS) filter is employed for each user separately, instead of tional single user approach rather then the inherent property
matched filters with constant coefficients. The proposed re- of the CDMA system. Moreover, it proved that this limitation
ceiver is as simple as a standard single user detector receiver but can be overcome by a linear receiver.
it achieves essential advantages with respect to timing recov-
ery, multiple-access interference elimination, narrowband in- In this paper we consider a single user detector approach. A
terference suppression and user privacy. In comparison to the single adaptive minimum mean square error (MMSE) filter as-
centralized linear multi-user detectior it has the same bit error signed to each user eliminates interference from other users to
performance while the computation complexity is substantially the same extent as it does linear multi user detector. However,
lower and independent of the number of users. The receiver timing, signatures or carrier phase information from other users
structure is investigated and tested by simulation using a set are not needed. Receivers perform independently making the
of Gold sequences of length 31. Experimental results show that system more stable and suitable for adaptive implementation.
a considerable improvement in bit error rate is achieved with An adaptive filter is necessary to handle time varying system
respect to the conventional mingle-user receiver, parameters. It is important to note that in contrast to the

centralised multi user receiver the observation vector is not the
output from the bank of matched filters, but the sampled sig-

1 Introduction nal itself. Another important feature of the proposed receiver is
the use of a fractionally spaced filter which is insensitive to the
time differences in the signal arrival times of different users.

Several approaches to the CDMA demodulation problem have Thus, the receiver timing recovery is extremely simplified (if

been considered so far. The conventional approach consists necessary at all) [4].

in demodulating each signal using a single user detector with
a matched filter, thereby ignoring the multiple access inter-
ference (MAI) caused by cross-correlation between signals of References
different users [3]. This approach has two major shortcomings:
(1) high sensitivity to the near-far effect, and (2) the channel [1] S. Verdu, "Minimum probability of error for asynchronous
capacity being interference limited, instead of being limited by Gaussian multiple-access channels," IEEE Trans. Inform.
the AWGN level. On the other hand this approach has the Theory, vol. IT-32, pp. 85-96, Jan. 1986.
advantage of being very simple to implement. [2] R. Lupas and S. Verdu, "Near-far resistance of multi-user

An alternative receiver structure is a maximum likelihood detectors in asynchronous channels," IEEE Trans. Coin-
multi-user demodulator for synchronous and asynchronous mun., vol. COM-38, pp. 496-508, Apr. 1990.
transmission. The maximum likelihood multi user receiver con- [3] M. B. Pursley, D. V. Sarwate and W. E. Stark, "Error
sists of a bank of matched filters followed by a Viterbi maximum probability for direct-sequence spread-spectrum multiple-
likelihood detector [1]. The computational complexity of the acces communications, Part I: Upper and lower bounds,*
optimum demodulator increases exponentially with the number IEEE Tlans. Commun., vol. COM-30, pp. 975-984, May
of users. 1982.
In a number of papers a tes complex class of suboptimal cen- (41 R. D. Gitlin and H. C. Meadon, Jr. "Ceuter-tap trucking
u lualgorithms for timing recovery, I Bell Syst. Tech. J., vol.

tralised linear multi user detectors (CLMD) is propnoed where 66, no. 6, pp. 73-78, Nov. 1987.
the computational complexity of the receiver increases linearly 45



FADING RESISTANT MULTIUSER DETECTION FOR
CDMA COMMUNICATIONS

Subramanian Vasudevan AND Mahesh K. Varanasi

Department of Electrical and Computer Engineeriug
University of Colorado
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Coherent detection of asynchronous Code-Division Multiple- strated resistance to specular interference, and the additional
Access (CDMA) data transmissions over a Rician fading channel computational considerations, our results make the case for the
is considered in the context of a multipoint-to-point communica- use of the faded decorrelators for multiuser detection over asyn-
tion system, where a centralized receiver that is assumed to have chronous Rician faded CDMA channels.
knowledge of the signature signals of the system users, including The plots of Figure I are an illustration of the implications
the arrival times of the former, observes a superposition of the of our results for detector Bit-Error Rates (BERs) in realistic
specular and faded signal components of each of the users in ad- as opposed to asymptotic environments. We observe that, over
ditive noise. The channel itself is assumed to be non-dispersive, a two-user channel, even with a weak interferer specular sig-
and with no fading memory, i.e., the random attenuations and nal, the first user of the faded decorrelator alone exhibits an
phase shifts experienced by the users' transmissions over differ- exponential decay in BER with increasing Signal-to-Noise Ra-
ent bit intervals are assumed to be independent of each other, tio (SNR) with both the conventional detector and the AWGN
rendering them inestimable. decorrelator forced by the non-zero, fixed interferer fading, to

It turns out that this channel is equivalent to a fictitious approach error floors.
CDMA-AWGN (Additive White Gaussian Noise) channel from
the point of view of optimal detection [1]; it may be shown that
the optimum decision rules over the two channels as well as the References
statistical characterization of the sufficient statistics in each case
parallel each other. Unlike the optimum AWGN multiuser de- [1] S. Vasudevan & M. Varanasi, Muititer Detectors for
tector however, the optimum faded detector is unimplementable Asynchronous CDMA Communication over Rician-Fading
using a Viterbi algorithm. This motivates the derivation of the Channels, To appear in the Proceedings of the 1992 IEEE
polynomial-complexity faded decorrelator for this channel. Global Telecommunications Conference (GLOBECOM),

Detector performance in a multiuser faded environment may December 1992.
be adversely affected by both the interferer specular (or known) [2] S. Vasudevan & M. Varanasi, Mrttnuer Detectors for
and faded (or unestimatable) signal components. The perfor- Asynchronous CDMA Communication over Rician Fading
mance limiting effect of the former on conventional detection as Channels : Par.s I and 2, DSP Technical Reports 508 and
well as the ability of fading channel strategies to withstand such 509, Department of Electrical and Computer Engineering,
interference has been studied earlier [1]. The issue of the limita-
tions on detector performance, if any, due to interfering fading University of Colorado, Boulder, CO 80309.

is addressed here. To this end, we introduce the fading suscep-
tance and fading resistance measures; the former as a measure of
whether degradations in detector performance due to interfering
fading are so great so as to prevent them from being compete-
tive with optimum detection strategies over single-user channels,
and the latter as a measure that captures the ability of detec-
tors to withstand such interference. These asymptotic measures Fading Limitations of Detectors
characterize detector performance in regions where the fading of
the interfering users as opposed to their specular energies, is the
dominant impediment to detection. O,(-o, -..: .....

An analysis of the conventional detector's performance in the
multiuser faded environment reveals that fading interference is
capable of limiting detector performance in a manner similar to e,-s
specular component interference bringing out the hitherto un-
recognized performance limiting effect of fading interference in ,
Rician fading CDMA channels. The AWGN multiuser detectors ,
(optimal and decorrelating), which are designed for the CDMA- A.I G

AWGN channel, while sub-optimally resistant to specular inter- at- F~ 01s.w

ference, pay a penalty for ignoring the presence of fading in that O,(-,3

they are also found to be susceptible to fading interference. Thus a s 5 ' 40 ;4 s ,
we demonstrate that, even in environments where specular inter- SNA (User I) In d9
ference is marginal, both of the above detectors are incapable of
competing with detectors of isolated transmissions, if the fading
of an intefering user dominates the background noise. The faded
detectors, both optimal and decorrelating, are however found to Figure 1. BERs of the conventional detector, the AWGN and
withstand such interference. In light of their previously demon- faded decorrelators versus SNR.
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Equalization Techniques for Direct Sequence Code-Division
Multiple Access Systems in Multipath Channels
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Information Systems Laboratory
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Abstract Implementation at the chip rate has the advantage of not
We address the problem of Code-Division Multiple explicitly needing to evaluate the interfering users' channel re-

Access (CDMA) systems in a multipath environment where sponses. For the chip-rate equalizer we can treat the interfering
a high data rate introduces intersymbol interference as users as noise, and estimate the covariance matrix via a training
well as inter-user interference. We discuss a linear equal. sequence [4].
izer as well as a reduced-state-sequence estimation (RSSE) The RSSE algorithm is an implementation of the MLSD that
scheme for CDMA channels with intersymbol interfer- reduces the number of states from 2" to 2. In each state the
ence. The linear equalizer is a modification of the decor- elements differ by at least 2 user values. We use a mo,'Uied
relating detector proposed by Lupas and Verdu. The Viterbi algorithm where first we search among possible rairs of
RSSE collapses 2K states into 2 states where K is the inputs within one state, then we find the minimum cost imo each
number of users. Both techniques are superior to a tra- of the 2 states of our trellis. The new minimum distance for the
ditional matched filter detector (RAKE) when the in- RSSE is the minimum of the trellis distance and the distance
teruser interference and/or the intersymbol interference between the pulse responses to the elements within the states.
is relatively strong. In a severe near-far environment, the The trellis minimum distance is determined by the smallest user
RSSE can show significant (2 - 3 dB) improvement over
the linear equalizer in terms of receiver signal-to-noise received energy. By forcing the elements within a state to differ
ratio, by at least two values, the system must mistake the output from

two different users before deciding incorrectly. In a severe upar-
far environment, the minimum distance of the trellis will often be

Direct Sequence Code-Division Multiple Access (CDMA) has the smaller of the two distances, guaranteeing optimum detection
been proposed for commercial data networks. Its strength is it in the presence of additive white Gaussian noise.
can increase the capacity of a system due to the absence of a We have simulated the performance of the linear equalizer
guardband requirement[5]. Its weakness is that it can suffer from and the RSSE and compared them to the output of a matched
the near-far problem: a user experiencing strong interference filter (RAKE) detector in multi-channel environments where one
from other users (near) while its own signal is relatively weak user experiences a near-far problem. We have found that both
(far). Techniques such as power control have been proposed techniques have a SNR 15-20 dB greater than the traditional
for combating the near-far problem. We propose two additional RAKE, with the RSSE performing 2-3 dB better than the linear
signal processing methods for when power control is not feasi- equalizer in most severe near-far environments with intersymbol
ble. The first technique is a linear equalizer, a modification of interference.
the decorrelating detector proposed by Lupas and Verdu [2], [3].
The second is a reduced-state sequence estimation (RSSE), an
implementation of the Maximum-Likelihood Sequence Detector References
(MLSD) for CDMA channels with intersymbol interference (ISI) [1] M. V. Eyobojlu and S. U. Qureshi. Reduced-state sequence
as well as interuser-interference f1]. e1] M. V. paro a. dechi. feedbate IEEE

For modeling the CDMA channels with multi-path, we as- estimation with set partioning and decision feedback. IEEE
sume a maximum delay spread of 250 nanoseconds, with 40 chips Transactions on Communications, 36:13-20, January 1988.
per bit and a bit rate of 5 Mbs. We modulate the chips with [2] R. Lupas and S. Verdu. Linear multiuser detectors for
a square-root raised-cosine pulse. We experience ISI from the synchronous code-division multiple-access channels. IEEE
adjacent data bit, as well as interuser interference. In simulation Transactions on Information Theory, 35(l):123-136, Jan-
we have restricted ourselves to 2 and 3 users, but the techniques uary 1989.
can be extended to multiple users. At the data and chip rates
and delay-spreads we have assumed, our single-user ISI chan- [3] R. Lupas and S. Verdu. Near-far resistance of multiuser
nel is analogous to a 1 + aD channel. We also assume that the detectors in asynchronous channels. IEEE Transactions on
chip sequence is repeated each information bit and the multipath Communications, 38(4):496-508, April 1990.
channels share the same group delay. In both the Linear Detec-
tor and the RSSE we assume a good knowledge of the effective [4] D.D. Falconer M. Abdulrahman and A. U. H. Sheikh. Equal-
multi-dimensional channel. ization for interference cancellation in spread spectrum mul-

In the Linear Detector, we match the received signal with tiple acess systems. In Vehicular Technology Conference VTC

each user's multipath channel and chip sequence. The effective '92, Denver, Colorado, April 1992.

channel response after matching has the form of an invertible [5] K. Gilhousen I. Jacobs R. Padovani and L. Weaver. In-
matrix. We can invert or decorrelate the channel with either creased capacity using cdma for mobile satellite communi-
a zero-forcing or minimum-mean-square-error solution. It can cation. IEEE Journal on Selected Areas in Communications,
be shown using the matrix inversion lemma that this solution is 8(4):503-514, May 1990.
eguivalent to a linear equalizer at the chip rate.

Tids work w- upported by CASIS project number NAGW-419-.IO and JSEP project number DAALO*34M5C-OO11
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A Comparison of Differentially Coherent and Coherent Multiuser
Detection With Imperfect Phase Estimates in a Rayleigh Fading Channel

Zoran Zvonar and David Brady
Department of Electrical and Computer Engineering
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Summary the error probability floor is observed, which depends on the error
variance related to the phase tracking inaccuracies.

Multiuser detectors have superior performance over their single- Considering the carrier recovery as the estimation of the fading
user counterparts in a multiple-access channel, assuming perfect distortion we reveal a means for comparing coherent and differ-
knowledge of system parameters 11-31. In this paper we extend the entially coherent detectors [6]. In the case when we are not able
analysis of multiuser detectors in fading channels by incorporat- to estimate complex channel coefficients, both signal energies and
ing the effects of imperfect parameter estimates on symbol error phases of all users are unknown at the central receiver, and wt re-
probability. This type of analysis should be useful in designing sort to differentially coherent decorrelating detector, applying the
multiuser receivers, showing the error rate sensitivity to channel differential decision logic after the decorrelating filter [2). Tak-
parameter mismatch. ing into consideration the performance degradation due to channel

We focus on a synchronous CDMA channel shared by K users phase changes over two consecutive signaling intervals, the error
where the signal of each user arrives at the central receiver through probability expression for the kth user is
an independent flat Rayleigh fading channel. The central receiver
has the knowledge of the signature waveforms of all users, and the 1 ! r:((2)
outputs of a matched filter bank provide the sufficient statistics. 2 [ 1 +I!R.Jaa(2
We also assume that a state space description of the fading distor-
tion is available, where E zk(i):;(i 1))

In a single-user situation an optimum receiver structure in the r:(1) = E { ( - (3)
flat fading channel [41 consists of an adaptive estimator of fading EbE cL.
distortion, and a detector which utilizes these estimates. The esti- and Eb is energy per bit.
mation of the complex channel distortion performs the task of the Several numerical examples will be provided for the compar-
carrier recovery. Given the state-space model of the channel dis- ison of these multiuser detectors. For the coherent decorrelating
tortion, the Kalman filter is the optimal, minimum variance state detector the comparison of two analyzed carrier recovery strategies
estimator. A suboptimum, realizable receiver can be implemented indicate that the joint phase detection results in smaller variance
using the decision-directed approach where the data dependence is of the phase estimate, resulting in better performance of the detec-
removed from the matched filter output. tor. This is to be expected since the decorrelating filter enhances

Multiuser carrier recovery can be accomplished in two ways. the noise prior to carrier recovery. Although an error probability
The first approach is proposed in [5] in which the matched fil- floor is observed for both analyzed multiuser detectors, the coher-
ter outputs are decorrelated and each user employs phase estima- ent detector outperforms the differentially coherent one. However,
tors which assume isolated transmission. In this case the multiple- this is true comparing the lower bound, when perfect elimination
access interference is removed from the matched filter outputs at of the symbol phase has been assumed, to the exact expression for
the expense of noise enhancement and correlation, which affects the the error probability of the differentially coherent scheme.
performance of the carrier recovery circuit. We also consider the References
vector generalization of the receiver proposed for the single-user
channel [4]. Due to synchronism among the users, the data depen- Code-Division Multips Detel s for onor-
dency can be removed in a decision-directed manner and the joint maoion Theory, Vol IT-35. No 1 n pp 123-136, January 1989.
phase estimates are obtained by using a multi-input nmulti-output mainTerVlT-5No.pp2336Jnuy19.Kalman filter. [21 M.Varanasi, B.Aazhang, -Optimally Near.Far Resistant Multiuser

Welman focu ur. aDetection in Differentially Coherent Synchronous Channels", IEEE
Trans. on Information Theory, Vol IT-37, No 4, pp 1006-1018, July

tiuser detectors, the coherent and differentially coherent decorre- 1991.
lating detector. The coherent decorrelating detector utilizes phase [3] Z.Zvonar, D.Brady, -On Multiuser Detection in Asynchronous
estimates obtained by the aforementioned carrier recovery tech- CDMA Flat Rayleigh Fading Channels", Proceedings of The Third
niques. In this case, the probability of error can be calculated International Symposium on Personal, Indoor and Mobile Radio
using Stein's unified analysis [7]. Assuming perfect symbol phase Communications, Boston, Massachusetts, October 1992, pp 123-
elimination, the lower bound on the error probability is given by 127.

r [4] R.Haeb, H.Meyr, "A Systematic Approach to Carrier Recovery and
Ps.Ih. = 1 1 - Gk Detection of Digitally Phase Modulated Signals on Fading Chan-

2 + _ nels", IEEE Trans. on Commun., Vol. 37, No 7, pp 748-754, July
1989.

where Gkk is the error variance of the phase estimate, [R-]k is the (5] S.Miller, "Detection and Estimation in Multiple-Access Channels",
element of the cross-correlation matrix inverse and -tk is the average PhD Thesis, Princeton University, 1989.
signal to noise ratio, all corresponding to the k"h user. Note that [6) R.Haeb, "A Comparison of Coherent and Differentially Coher-
the error probability of the coherent decorrelating detector does ent Detection Schemes for Fading Channels", Proceedings of VTC
not depend on interfering signal amplitudes, although it depends 1988, pp 364-370.
on the cross-correlations of normalized signature waveforms and [7] M.Fitz, "Further Results in the Unifie~l Analysis of Digital Coin-
the estimation error. In contrast to the case of perfect estimation, munication Systems". IEEE Trans. on Commun., Vol. 40, No 3.

pp 521-532, March 1992.
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MMSE DETECTION OF CDMA SIGNALS: ANALYSIS FOR RANDOM SIGNATURE SEQUENCES

Upamanyu Madhow and Michael L. Honig
Bellcore

445 South Street, Morristown, NJ 07960

Absfracr. The performance of a finite complexity Minimum Mean where the vector ai is the signature sequence of the jth user, Aj is the
Squared Error (MMSE) linear detector for demodulating Direct received amFlitude of user j, and the noise vector a is Gaussian with
Sequence Spread-Spectrum (DS/SS) Code Division Multiple Access mean zero and covariance matrix 012 IN, where IN denotes the N xN iden-
(CDMA) signals is studied. The MMSE detector is near-far resistant, tity matrix. The signature sequences an =-(aj O1,a[IJ] ..... aj[N-1])f,
and can be implemented adaptively when no explicit knowledge ot the j = 1 .. K, are assumed to be random. That is, a, [11, 1 < j < K,
interferers' signature sequences is available. We assume that users are 0< 1 <5N-I, are independent random variables each taking value +1 or
assigned random binary signature sequences and derive upper and lower -I with equal probability.
bounds on the average near-far resistance of the MMSE detector. For
synchronous CDMA, the MMSE detector considered has the same near- The near-far resistance of the detector is a measure of the robust-

far resistance as the maximum likelihood and decorrelating detectors, so ness of the detector with respect to variations in the received interference

that the bounds derived apply to these detectors as well. Approximate power (see [21-[31 for a technical definition). If the users' signature

expressions Ior average error probability and signal-to-interference ratio sequences are not orthogonal, then the near-far resistance of the matched

are also presented, and are compared with the analogous results for the filter detector is zero. For the MMSE detector considered, the near-far

matched filter receiver with random signature sequences. resistance is evaluated by letting the interference amplitudes A/ -ý-. In
this case the MMSE solution for c is the orthogonal projection of aI onto

1. INTRODUCTION the space spanned by the interfering vectors a2 ... a. MThat is, the
MMSE solution becomes the zero-forcing solution in the sense that the

Minimum Mean Squared Error (MMSE) linear detection for interference is completely suppressed (at the expense of enhancing the
direct-sequence spread-spectrum (DS/SS) signals has recently been con- noise). Denoting the preceding orthogonal projection as or, the near-far
sidered in [t1, [41-151. In 141 MMSE linear detectors of varying complex- resistance of the MMSE detector is given by in =I oJ 24 a J 2.
ity were proposed, and in [51 the near-far resistance and error probability
of these detectors were evaluated for a specific assignment of signature Let R denote the normalized crosscorrelation matrix of the interfer-

sequences. Assuming that the complexity of the detector is matched to ing users' signature sequences. That is, Rij = (aTaY)/N for 2!9i .j <K.

the number of strong interferers, these detectors do not suffer from the Also define the normalized crosscorrelation of the desired vector with the

near-far problem. Furthermore, the MMSE criterion leads to adaptive i th interference vector as pi = (a rai )N. Then the nwar-far resistance of

implementations in which the interference parameters are not explicitly the MMSE detector considered can be written as il = I - pT Rtp, where

known a priori. These schemes are decentralized in th• sense that they Rt is a pseudo-inverse of R. Our main results are bounds on the

are designed to demodulate a single user in ihe presence of multiple- expected value of TI, where expectation is with respect to the users' sig-

access interference, as opposed to the centralized demodulation of all nature sequences. Specifically, we first show that E [£11 = 1 - E [d, 1/N,

active users described in [21-[31 and the references therein, where d, is the (random) dimension of the subspace of RN spanned by
the interference vectors a2, .... at. We then obtain upper and lower

Here we analyze the performance of the N-tap MMSE detector (N bounds for E [d, ]/N, and thereby obtain the following upper and lower
is the processing gain), introduced in 141, assuming that the signature bounds for the average near-far resistance,
sequences assigned to different users are independeat random binary
sequences. The performance measures are averaged over the signature I -(K-I)IN <E[11] < 1 -f(K-1)[(K-I)IN],
sequences of all the users. Although deterministic sequences are used in
practice, the assumption of random signature sequenices yields a rough where f (n J] [I - 2-N0. Note that the upper and lower bounds are
characterization of system performance in terms of a few key system tight fork <<N. Further, the upper bound can be tightened by applying
parameters (the processing gain N and the number of active users K in a stochastic domination argument.
this case). This approach has been extensively employed to analyze the
performance of the matched filter receiver. It is shown that the N -tap We also consider two other performance measures, the signal-to-
MMSE detector achie"- significant performance gains relative to the interference ratio and the error probability. Approximations assuming
matched filter. large N are derived for the expected values of these quantities. Numeri-

cal results contrasting the different performance of the MMSE and
The N-tap MMSE detector consists of an N-tap linear filter fol- matched filter receivers for random signature sequences will be presented

lowed by a threshold detector. The tap spacing is a'sumed to be the chip at the conference. In addition, analogous results for asynchronous sys-
interval, and the taps are selected to minimize the Mean Squared Error tems will be mentioned.
(MSE) between the detected and transmitted symbols. We derive upper
and lower bounds on the average near-far resistance of this detector, REFERENCES
together with approximations for the signal-to-interference ratio and the
error probability. For a synchronous system, it is in"Tresting to note that
the MMSE detector has the same near-far resistance as centralized detec- [11 M. Abdulrahman, D. D. Falconer, and A. U. H. Sheikh, "Equaliza-
tion schemes such as the maximum likelihood detector and the tion for Interference Cancellation in Spread Spectrum MultipleAccess Systems," Proc. VTC '92, May 1992.

decorrelating detector (see 121-(31). so that the bounds on near-far resis- [ c.usa S . Vrdu. "Linear m s e f n

tance given here apply to these latter detectors as well. m2u R. Lupas and S. Verdi, "Linear multiuser detectors for sy.chro-
nous code-division multiple-access channels," IEEE Trans.

For the purpose of exposition, we consider a system in which the Inform. Theory, vol. IT-35, no. 1, pp. 123-136, January 1989.
transmissions are both chip- and symbol-synchronous. Results for asyn- 131 R. Lupas and S. Verdil "Near-far resistance of multiuser detectors
chronous systems have ,dso been obtained, but are omitted from this in asyhnous cels."N e rans. ommwiu. vol. cors

summary.in asynchronous channels," IEEE Trans. Commun., vol. COM-38,
II. SYSTEM MODEL AND RESULTS no. 4, pp. 496-508, April 1990.

Consider the equivalent discrete-time system obtained by sampling [41 U. Madhow and M. L. Honig, "Minimum mean squared error
the output of a filter matched to the chip waveform at the chip rate. There interfer rnce suppression for direct-sequence spread-spectrum

which form a received vector code-division multiple-access," Proc. Ist Int. Conf. Universal Per-are then N samples per bit interval, sonaiComun.oDalls, TcSet.v2-Octvect992
re IR. Denoting the kth bit of user one (the desired user) as sonalCommun.,Dallas, TX, Sept. 28-Oct. 1,1"2.
bIk II-1.11, the N-tap MMSE detector forms the estimate [51 U. MadhowandM. L. Honig."Errorprobabilityanduear-farresis-
t;,(k I = sgn (cr r), where c is selected to minimize tance of minimum mean squared error interference suppress*,m
MSE =E ((crr-bi1k1)2). For a syrnhronous system, the received vec- schemes for CDMA," to appear, Proc. Globecom '92, Orlando,
tor rE RN corresponding to the k th bit is given by FL, Dec. 6-9, ;992.

rik I hi lklAja, +njk],
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ASYMPTOTIC MULTIUSER EFFICIENCY FOR 2-STAGE DETECTORS
IN AWGN CHANNELS

David Brady, ECE Dept., Northeastern University, Boston, MA 02115

Abstract

In the AWGN multiple-access channel with binary phase- where l(1,j) = +I, i,j E 1, ±1), and a(t,j) are constants.
shift keying modulation, the kih user error probability for a An exact form for the exponential rate of this probability is
given demodulator vanishes exponentially with the noise level as crucial to the solution of the asymptotic multiuser efficiency for
-t1k SNRk/2, where t1k is the asymptotic multiuser efficiency the two-stage detector, and is found via the following lemma.
(AME), and SNRk is the received signal-to-background-noise Let the noise vector [n2(-l),nl(O),n 2(O)]T be Gaussian with
ratio. Thus, the asymptotic multiuser efficiency is an attenu- zero mean vector and autocovariance matrix a2K = ,2SST,
ation of the error rate exponent for isolated transmission and and let the i:h row of S be denoted by ST. Let g = [gl,g2, q3]T
maximum a posteriori demodulation, and provides a simple yet denote a Gaussian vector with zero mean and autocovariance
precise means of comparing multiuser receivers for sufficiently matrix o,21, and let X" .- {g : l(-l,i)Sl "g > 1(-l,i)a(-1,i)}f
low noise levels. To date, this parameter is only known for the {g: S2 .g > wt-2(ip2 1+jp 12 )}n{g: l(O,j)S3 .g > 1(O,j)a(O,j)),
following receivers in the 2-user, asynchronous AWGN channel: where Si• g denotes a vector inner product.
the maximum likelihood sequence detector, the decorrelating Lemma
detector, the linear MMSE detector, and the conventional de- log [i
tector. In this talk the asymptotic multiuser efficiencies for a lim ...., =

class of detectors for the 2-user, asynchronous AWGN channel 0-0

will be presented. This class may be loosely described as re-
ceivers which estimate and subtract multiple-access interference where q is the vector which satisfies
(MAI) by using tentative data decisions, and includes the two-
stage detectors with both conventional or decorrelated tentative
decisions. The asymptotic multiuser efficiencies for this class of
detectors clearly indicate regions for which a given user should
avoid updating tentative decisions and suggest combinations of Numerical Example
the above receivers to improve single-user performance. This
technique applies to the AME of soft tentative decision strate- Figure I shows the AME for user I in the asynchronous,
gies as well, and we demonstrate that the near-far resistance of 2-user AWGN channel with significant correlation among the
two-stage detectors may be markedly improved using soft deci- norn.alized waveforms. As usual, the AME is displayed as a
sion nonlinearities. Below we present an outline of the approach function of the relative en,!rgy of the interferer. We have shown
for conventional tentative decisions. the AME for the maximum likelihood sequence detector (MLS),

the decorrelator, and the conventional detector, and the two-
System Model stage detector with both conventional and decorrelated tenta-

tive decisions. Note that the AME of the two-stage detectorThe matched-filter output for user s at time 0 may be writ- with decorrelated tentative decisions dominates that using con-
ten as ventional tentative decisions. Also of interest is to note that

yj(0) = bl(0)Wl + b2(-l)P21 + b2(0)P 12 + nj(0), the AME of the two-stage detector with conventional tentative
where bk(i) is the binary antipodal data of user k during time decisions is dominated by that of the conmentional detector for

[iT, (i+ l)T), wk is the energy of the waveform sk(t), the symbol sufficiently weak interference, iud that the near-far resistance
waveform for user k, and Pjk describes the (2) partial cross- of the former detector is zero. Both two-stage detectors exhibit
correlation among the asynchronous waveforms sj(t) and sk(t ). similar error rate exponents to their tentative decision counter-

In general, we define nk(j) as the Gaussian noise component parts when the energies of the users are roughly the same.
in Yk(W), the matched-filter output for user k at the end of the

t~h symbol period. A general two-stage detector forms a final
decision for bl(0) via sign detection A &

b1(0) = sgn[yI(0) - 2(-1) P21 - b2-()P 12] t

where b denotes a tentative decision for the symbol b. If con- "Z
ventional tentative decisions are to be employed, then 41

2i) = sgn[y2(i)].

It has been shown that the error probability for user 1 may be 2.6
expressed as a finite number of terms, each one is proportional $,

to

E [ .. 1{ 0(0)> ,-2(' j P,2)) I, . 2,. 1
AM to g I M 60 . b2-1U. Asyw.. AWGK h #W1 4(Oj)n2(o)>I(o0)Jf(0j)l] V. . . . . ,
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Universal coding of non-discrete sources based on distribution
estimation consistent in expected information divergence

Andrew R. Barron, Lisz16 Gy6rfil and Edward C. van der Meuleni

We show how a certain distribution estimator p•, arbitrarily fine quantizations of the data in the fol-
which is consistent in expected information diver- lowing way.
gence leads to a universal code for the class of all Since X is not a discrete space, data sequences
probability measures p on a non-discrete space X Xl,..., ,Xn cannot be represented exactly by a noise-
which are dominated in I-divergence by a known less source code. Nevertheless, for any given parti-
probability measure v. tion Pn = {A,.,j} of A"', no matter how fine, we can

Let p be an unknown probability measure on X = code the element of the partition that includes the
IRd and consider the problem of estimating p based data in a uniquely decodable way, using a Shanno:
on i.i.d. observations X 1 ,_..., Xn from p. As a priori code, which assigns a codeword O(An~j) of length
information we assume that there exists a known [log 1/q.(A.,j)] to An, for any giveni probability
probability measure v on X such that I(p, v) < oo. distribution Yn on X". The redundancy 1l?('Pn) of
Define integers mn,O < in < n, and real numbers this code equals ! (p", ibn), where !,,n(i", in) de-
h, > 0. Let notes the information divergence between i" and rin

restricted to Pn. The least upper bound It (over
" n= {A',, .... A,.,,,, } all partitions ,Pn) on the redundancy is provided by

be a sequence of partitions of X such that each A' (p, 7n). Based on our distribution estimator it,
is a sequene of pridthons ad sh tt eh d ni we can construct a distribution %j, such that.
is a cube of width hi, and v(A'i) > h.. Let 0 <
an < 1 be a given sequence with nl ) =

n I ,7.)=n 1

lim an = 0. k=1
noo The latter term, being a Ceshro average, will tend

Let In denote the standard empirical measure for to zero as E(I(p,pn)) - 0. llence, using v,, to
Xl,..., Xn. In (1] we introduced the distribution encode elements of a partition rn, we obtain

estimator pn, defined by Theorem 2 For all discrete memoryless sources

v(A nl A'n,i) with marginal distribution it for which I (p, w) < 0*,
p,(A) = (1 -an)ZPn(Aj,i) , +anv(A) there exists a universal uniquely decodable code for

n=A any partition "Pn such that

and proved the following theorem. him RJ? - 0.
r-oo

Theoren 1o Ifo ni , ,lr .=0 n We conclude that the estimator u,*,, being consis-

limsup < • 1, then tent in expected information divergence, provides a
n -x universal code for arbitrarily fine quantizations of

the data for the class of all distributions it on IRdlim E(l(p, pn)) 0
n 0- with I(p, v) < 00.

for all it such that I(p, v) < o0. References
Hlence our distribution estimator p, is consis-

tent in expected information divergence for all p [1] A. R. Barron, L. Gy6rfi, and E. C. van ider
for which I(p, v) < 00. This consistent estimation Meulen, "Distribution estimation consistent in
leads naturally to a universal source code (in the total variation and in two types of infornma-
sense of [2]) for the same class of distributions for tion divergence," IEEE Trans. Inform. Theory,

*Department of Statistics, Yale University, New Haven, vol. IT-38, no. 5, pp. 1437-1454, Sept. 1992.
CT 06520. USA.

tDepartment of Mat hematics, Technical University of Bu- [2] L. Davisson, "Universal noiseless coding," IEEE
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Sequential Model Estimation for Universal Coding and the
Predictive Stochastic Complexity of Finite-State Sources

Marcelo J. Weinberger " Meir Feder t Jorma Rissanen t

In this work we consider sequential universal coding of Finite-State- The most interesting case is a fully predictive one where, in addi-
Machine (FSM) probabilistic sources. A unifilar FSM source X over tion to the parameters, F is also estimated sequentially. Thus, such an
a discrete alphabet A with a iettcis is defined by an FSM F and a algorithm assigns to each symbol a probability that depends only on
set of parameters 0 = {p(zls),s E S,x E A}, where the number of past outcomes and hence can be used to define a universal process. It
states S = jSI is finite, and F has an initial state so and its progress is was conjectured in [2), [3] that the fully predictive stochastic complex.
determined by a next-state function ity is also asymptotically equivalent to the non-predictive stochastic

complexity. The rnmin result of this work is a proof of this conjecture
Si = f(si•-., x). in a probabilistic setting, where it is assumed that the data is generated

by some FSM source. Specifically, if at each time t, F is estimated by
In the sequel we refer to F as the machine supporting the model, and
it is assumed irreducible and aperiodic. The probability that AX assigns (t)-argmin [(z' F) + 2C&S log(t + 1)1 (5)
to a string x' = zx.... ,zx is F I I

n where the minimum is taken over all FSM models F and C > 1 + 1/2o,
P ;_)= IP(ZSi-). (1) then the resulting expected codelength approaches the entropy at the

optimal rate of (k/2)(logn/n) where k = S(a - 1) is the number of

The per-symbol entropy of blocks of length n emitted by X is denoted parameters. Note that the criterion used in (5) is slightly different from
H, (X; F). a sequential MDL criterion in which the model is estimated sequentially

It was shown in [1] and [2] that the average codelength E{L(zn)} by minimizing an expression similar to (3). The difference is only in
of any encoder in compressing the outcome of every FSM source X, the constant of the "penalty term", and not in its functional behavior.
except, possibly, a set of FSM sources whose volume vanishes as n Nevertheless the resulting fully predictive complexity is the optimal
increases, satisfies one, since its expected value is

IEL(xn)) > H.(X; F) + S(a - l)logn( 1 - 0), (2) Hn(X; F) + S(a - ))logn

n I 2n 2n (6)

for every e > 0 and n sufficiently large. up to O(n-1) term. This result can be viewed as proving the existence
The lower bound in (2) can be achieved up to O(n- 1 ) by a simple of universal FSM sources.

batch universal encoder which sends as a header the empirical counts in To prove this main result we use the observation [4] that a sufficient
each state of the FSM, and then assigns to the data a code matched to condition for achieving the optimal coding rate is that the estimator of
these counts. If F is unknown, it is estimated from the data and then F satisfies
sent in the header as well at a cost O(n-1). The model is estimated by 0P(t)log0t < o (7)

minimizing

I ogP+S( - 1)log(n + 1) where P,(t) is the probability of error in estimating the model at time t.
- log P(X2;n + ) (3) We show that the estimator (5) is strongly consistent and furthermore

satisfies (7). The detailed proof is given in [5].
over f and F. Note that The fully sequential compression algorithm presented here is not

efficient. In a related work [6] we have considered the effective contezt
mf [-log P(4;•, F)] - nH(x"; F) (4) algorithm and have shown that for the restricted class of tree sources

its average codelength also approaches the entropy at the optimal rate.

i.e., at the optimal choice of parameters, the string probability becomes

the empirical entropy with respect to F. The model selection rule of
(3) minimizes the codelength of this batch universal procedure since References
the first term represents the cost of encoding the data given the model
and its parameters, the second term represents the cost of encoding the [1] J. Rissanen. "Universal Coding, Information, Prediction and Esti-
S(a - 1) empirical counts, and the cost of encoding the description of mation", IEEE Tmns. Information Theory, IT-30:629-636, 1984.
F is independent of n. The minimum description length of a sequence
with respect to a class of models, using a possibly batch procedure, [2] J. Rissanen. "Complexity of Strings in the Class of Markov

has been termed [3] the non-predictive stochastic complexity of that Sources", IEEE Trans. Information Theory, IT-32:526-532, 1986.

sequence with respect to the class.

It was also shown [2] that a similar codelength is obtained if instead (3] J. Rissanen. "Stochastic Complexity and Modelling" The Annals
of sending the empirical counts explicitly, they are estimated sequen-

tially and used at each time instance to encode the next symbol. F is [4] M. J. Weinberger, A. Lempel, and J. Ziv. "A Sequential Algorithm

still estimated from the entire data in a batch procedure by minimizing for the Universal Coding of Finite-Memory Sources", IEEE Trans.

(3), and is sent as a header. The minimal codelength attained by this Information Theory, IT-38, May 1992.
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Rate and Distortion Redundancies
for Universal Source Coding

with Respect to a Fidelity Criterion
Philip A. Chout and Michelle Effrost

t Xerox Palo Alto Research Center, 3333 Coyote Road, Palo Alto, CA 94304
Information Systems Laboratory, Stanford University. Stanford, CA 94305-4055

Let {Xi} -, Pa. 0 E A C RK. Rissanen has shown that there the Ml reproduction codewords {!3"(c)} are themselves encoded
exist universal noiseless codes for {Xj} with per-letter rate using a fixed "universal" vector quantizer optimized for the dis-
redundancy as low as , ! , where N is the blocklength tribution of the ,3k(c)s (averaged over all c, XN, and 0). In the
and K is the number of source parameters. We derive an second part of the encoding, X,. . are encoded using the
analogous result for universal source coding with respect to quantized code ,i' = ýk o ek.

the squared error fidelity criterion: there exist codes with
per-letter rate redundancy as low as K- 1 and per-letter Let R = log Af/k be the rate in bits per letter of qk, and
distortion (averaged over XN and 0) at most D(R)[1 + 4], let Dk(R) = EDke(R) be the average kth order operational
where D(R) is an average distortion-rate function and K is distortion-rate function Dk.e(R). We use the high resolution
now the number of parameters in the code. approximation Dke(R) = Ck,.e- 2R and a Lagrangian formula-

tion to determine the optimal bit allocation between qk and the
"universal" quantizer. For this optimal allocation, we show that

Let {X,} be a random process over alphabet X with process (with RN.8 = R in (1) and DNe = DNO(R) in (2)) the per-letter
measure P9 , B e A. and let qN - B o aN be a length-N blockc we ncoder P9, 0 XE A.C and decoder=,31V 0 aN be C -.- N , block rate and distortion redundancies for the overall code q` arecode with encoder a N : XN --. + C and decoder )3N : C7 -- + yN, 1 k o1i , KlogN /log N
where C = {c1 ,....cM} j {0,1}* is some binary prefix code -pa(q)= - +0 (4)
and Y is the reproduction alphabet, typically equal to X. N 2 N N )

A universal source code with respect to a fidelity criterion and
d(XN, yN) = Ed(X,,Yj) is a sequence of block codes {qN} -Ebe(q Dk(R) 1 + - DN(R), (5)
such that for each 0 E A there exists a corresponding sequence N I N
of points {(RN.o, DNe)} on the graph of the Nth order oper- where K = Mk is the total number of parameters in the code

ational distortion-rate function for Pe for which the per-letter q,,k. The same results hold in the case where the codewords
".rate" redundancy 3(c) are scalar quantized. The recent work of Zeger, Bist, and

Linder [4] supports these results.
-!pe(qN) = 1EjN(xN)j - RN,* (1) While our rate redundancy result (4) for universal source cod-

ing with respect to a fidelity criterion is consistent with Rissa-

and the per-letter "distortion" redundancy nen's result (3) for universal noiseless coding, our distortion
redundancy result (5) is consistent with Akaike's result on the

16e(qN) LEed(XN, qN(N)) DN, (2) expected decrease in log likelihood for empirical maximum like-
A N lihood on N samples, with Davisson's result on the expected

each go to zero uniformly in 0 (in which case the code is strongly increase in squared error for empirical linear prediction on N

minimax universal), pointwise in 0 (in which case the code is Gaussian samples. and with Pollard's result that the codewords

weakly minimax universal), or in expectation with respect to a in a quantizer follow a central limit theorem (which implies that
probability measure on 0 (in which case the code is weighted the expected increase in squared error is inversely proportional

universal). In the noiseless case, where DNd = 0 and RN,a - to the number of samples N).

He(XN). Rissanen [1] has shown that when A C RK is compact
with a non-empty interior, and {Pe} satisfies certain regularity
conditions, there exists a universal code {qN} with per-letter References
rate redundancy

[1] J. Rissanen. Universal coding. information, prediction, and
-pV(q" ) A lo+N o (3) estimation. IEEE Trans. Information Theory, 30(4):629--

. 7, Pe (o N 636, July 1984.

for each 0 E A. (Hence the code is weakly minimax universal.) [2] S. Panchanathan and M. Goldberg. Algorithms and archi-
Rissanen goes on to show that this is also the minimum redun- tecture for image adaptive vector quantization. In Proc.
dancy achievable by any universal code {qN}, for almost all 0 Visual Communications and Image Processing, Cambridge,
(with respect to Lebesgue measure). MA, November 1988. SPIE.

We derive a result analogous to (3) for weighted univer- [3] K. Zeger and A. Bist. Universal adaptive vector quanti-
sal source coding with respect to the squared error criterion zation using codebook quantization. In Proc. Int'l Conf.
by analyzing a two-part fixed-rate coding scheme [2], first an- Acoustics, Speech. and Signal Processing, pages 111.381-384,
alyzed by Zeger and Bist [3]. In that scheme, each block San Francisco, March 1992. IEEE.
,1N' = Xnk = (XI ... Xk) is encoded in two parts. In the firstar yt, a (Xk.-d Iis ncoded incto parts. In t first [4] K. Zeger, A. Bist, and T. Linder. Universal source coding
part, a k-dimensional, M-codeword vector quantizer qMay 1992.
is optimized for th' ample distribution of Xk,.... X', and then
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INFORMATION BOUNDS FOR THE RISK OF BAYESIAN PREDICTIONS
AND THE REDUNDANCY OF UNIVERSAL CODES

Andrew Barron, Bertrand Clarke, and David Haussler
Yale Univ., Univ. British Columbia, and Univ. California at Santa Cruz

ABSTRACT: Several diverse problems have solutions in terms of an induced by the partition. This bound may be used to show that for certain
information-theoretic quantity for which we examine the asymptotics. Let "nonparametric" cases IN is of order NO with 0 < p < 1. We also give finite
Y1, Y2,..., YN be a sample of random variables with distribution depending and infinite dimensional cases where IN is of order log N. So the price for lack
on a (possibly infinite-dimensional) parameter #. The maximum of the mutual of knowledge of the r- .remeter is small compared to the total entropy.
information IN = 1(8; Y1, 1Y2 .. , YN) over choices of the prior distribution of 0 In these bounds, we are permitted to have a sequence of exogenous
provides a bound on the cummulative Bayes risk of prediction of the sequence of input variables X 1 , X2..... X. on which the distributions are conditioned.
random variables for several choices of loss function. This same quantity is the For example the Y]k may equal a function f,(X&) corrupted by noise. Of
minimax redundancy of universal data compression and the capacity of certain particular interest is the case that the 1'k variables are binary-valued and equal
channels. General bounds for this mutual information are given. A special case f,(Xk) plus independent Bernoulli (A) noise (modulo 2), where fo(z) is a given
concerns the estimation of binary-valued functions with Vapnik-Chervonenkis family of binary-valued functions of Vapnik-Chervonenkis dimension d_, and
dimension duc, for which the information is bounded by d_, log N. For smooth the noise rate satisfies 0 < A < 1/2. Then for any prior distribution on 0,
families of probability densities with a Euclidean parameter of dimension d,
the information bound is (d/2) log N plus a constant. The prior density IN <!d,, log(eN/d.,).
proportional to the square root of the Fisher information determinant is the
unique continuous density that achieves a mutual information within o(1) of the It follows that for the on-line Bayesian prediction of Y1', Y2,...., YN the relative
capacity for large N. The Bayesian procedure with this prior is asymptotically frequency of errors has average that exceeds the noise level A by not more than
minimax for the cumulative relative entropy risk. a multiple of (d.,,N) log(NW/de). Likewise for universal data compression, the

SUMMARY: A parameterized family of distributions Py, 1 # is used length of the Shannon code based on the Bayesian model for Y1 , Y2 ,--- YN,
to model a sequence of random variables yN = (y1, Y2,..., YN). For prob- divided by the sample size N, has average that exceeds the noise entropy h(A)
lems of data compression and on-line prediction we compare the performance by not more than (d.,/N) log(eN/d,,).
that can be achieved when 0 is unknown to the performance that would be Refined results are possible in the case of smooth parametric families
achieved if it were known. Entropy and probability of error, repectively, can of densities p(y10) indexed by a finite-dimensional parameter vector 0. Here
used to measure the performance. The relative entropy is used to bound the Y1 , Y2..., YN are assumed to be independent and identically distributed when
additional risk due to lack of knowledge of the parameter. If 0 were known, the conditioned on the parameter. An asymptotic expression for the mutual infor-
best on-line prediction and compression of the sequence of variables Yi, would mation IN of the form (d/2) log N + c(p) + o(1) has been determined by Ibragi-
be available from the conditional distribution Pyy.-i,o. If 0 is unknown, mov and Hasminskii (1973), in which the constant c(p) is precisely determined
these actions may be based on an estimate of the conditional distribution us- as a function of the prior density p(O). (Somewhat stringent conditions are
ing the observed past. When a prior distribution is assigned to the parameter, required for their result; see Efroimovich 1980, Clarke 1989 for other formula-
Bayesian proceedures use the distribution Pylyk- obtained by averaging out tions of conditions). Here d is the Euclidean dimension. A related asymptotic
the parameter. We examine the cumulative relative entropy distance between expression for DN,. is given in Clarke and Barron (1990). This leads us to
these predictive distibutions. By the chain rule this quantity reduces to the examine the asymptotics of the capacity CN and the choices of prior distri-
relative entropy DN,, = D(PymI.IIPyN) between the joint distributions of yN, butions for 0 that asymptotically achieve this capacity. For each finite N the
with and without conditioning on 0. In statistical terminology, DN,. is the cu- optimizing prior distribution is generally discrete (Berger and Bernardo 1989,
mulative risk, when relative entropy is used as the loss function. Averaging Zhang and Hartigan 1992). Nevertheless, we show under general smoothness
with respect to the prior distribution of 9 yields the mutual information IN conditions that a unique continuous density p(O) achieves a value IN within
as the (cumulative) Bayesian risk. Maximizing the Bayes risk IN with respect o(1) of the capacity CN. As conjectured by Bernardo (1979), it is Jeffrey's
to the choice of the prior for 0, yields the information capacity CN and de- prior, i.e., the prior proportional to the square root of the determinant of the
termines the sequence of Bayes estimators of the conditional distribution that Fisher information matrix. No other prior (continuous or discrete) achieves
are minimax, i.e., that minimizes the maximum value of DN,*. In situations asymptotically larger value of the mutual information.
where determination of the exact asymptotics of IN is not possible, bounds on We give a further asymptotic decision-theoretic property of the optimal
IN may be used to provide bounds on the minimax cumulative risk. prior. Jeffrey's prior is shown to be asymptotically least favorable, that is,

In universal noiseless coding of discrete random variables, the redun- the minimax statistical risk inf, maxe DN,, (which also equals the capacity
dancy RN., of a code is the increase in the expected total codelength due to CN) is achieved asymptotically by the Bayesian procedure with Jeffrey's prior,
the lack of knowledge of the parameter value. For the code based on PyN, uniquely among continuous priors. Moreover, with this choice of prior, DN,,
the relative entropy DNGe is the redundancy; the information IN is the average is asymptotically independent of the parameter 0, so that, in this case, the
redundancy; the information capacity CN is the minimax redundancy; and relative entropy DN, the mutual information IN, and the capacity C/v are
the choice of the prior that achieves the capacity provides the minimax code asymptotically the same.
(Davisson 1973, Davisson and Leon-Garcia 1980). REFERENCES

In the online prediction problem, we let the regret rNp, be defined as J. 0. Berger and J. M. Bernardo, "Ordered group reference priors with applica-
the increase in the expected frequency of mistakes in predicting the values of tions to multinomial and variance component problems." Purdue University,
the sequence, due to the lack of knowledge of the parameter value. The regret Department of Statistics Technical Report, 1989.
ofthe sequence, to Bayesian ofictio g isbounhed b r u e J. M. Bernardo, "Reference posterior distributions for Bayesian inference."Journal Royal Statistics Sociefl, Ser. B vol. 41, pp. 113-147, 1979.

rN,# ! (2DN,o/N)112 B. S. Clarke and A. R. Barron, "Information theoretic asymptotics of Bayes
- methods." IEEE 7Tansaections on Information Theory vol. 36, no. 3, pp.

Thus the regret converges to zero if the relative entropy is of smaller order than 453-471, 1990.
B. S. Clarke, "Asympto'ic cumulative risk and Bayes risk under entropy loss,N. A tighter bound between rNv,# and DN.s is possible if the sequence of condi- with applications. Ph. D. Thesis, Department of Statistics, University of

tional distributions satisfy an a-separation property, that is, for some a > 0, Illinois, 1989.
the difference between the first and second largest values of P(Y& = y lYk-', 0) L. D. Davisson, "Universal noiseless coding." IEEE Transactions on Informs-
is never less than a. In this case, the regret of the Bayesian predictions is tion Theory vol 19, pp. 783-795, 1973.
shown to be bounded by rN,* 5 (2/a)DN,#/N. Averaging with respect to the L. D. Davisson and A. Leon-Garcia, "A source matching approach to finding

y s e mimmax codes." IEEE Transactions on Information Theory vol. 26, pp.
prior yields Bayes average regret 166-174, 1980.

S. Yu. Efroimovich, "Information contained in a sequence of observations."
rN 5 (2/1a)IN/N. Problems in Information Transmission vol.15, pp. 178-189, 1980.

D. Haussler and A. R. Barron, "How well do Bayes Methods work for on-line
A basic role in the analysis of the asymptotics of the mutual information prediction of * I values?" To appear in Proc. Third NEC Sympossxm on

Computation and Cognition, 1992.is played by the relative entropy D(Py9l' It Pslho) between the distributions at 1. A. lbragimov and R. Z. Hasminskii. "On the information in a sample about
neighboring parameter points 0 and 6'. It is shown that the mutual information a parameter." Second Internalonal Symposium on Information T eor pp.
is bounded by 295-309, Akademiai, Kiado, Budapest, 1972.

IN < infJDN(r) + H(Zi)) Z. Zhang and J. Hartigan, Department of Statistics, Yale University, personal
n correspondence, January, 1992.

where the infimum is over partitions 11 of the parameter space. Here DN(f) is
the average diameter of the cells of the partition as measured by the relative
entropy distance and H(fl) is the entropy of the discrete random variable

54



There is no Universal Source Code for Infinite
Alphabet

Laszl6 Gy6rfi*, Istvin Pali*, and Edward C. van der Meulent

The vast majority of results in information of this equivalence is as follows:
theory is on situations where the actual proba-
bility law is known. Applying information the- Theorem 1 For any uniquely decodable code
ory in real life problems, there is an obvious f, we can construct a distribution estimate P

question whether the probability law can be such that

learned from data as far as information theory R. > E {I(,u,z)}.
is concerned. In noiseless source coding, for ex-
ample, if the source alphabet is finite, then the Theorem 2 If {(,,} is an arbitrary sequence
answer to this question is yes, since there are of estimates of it then there is a A with t1(X) <
good universal source coding procedures (see oo such that we have
e.g. [2]). This paper is on coding for a discrete
infinite source alphabet showing that there is I(u, fi) = oo for all n > 1 a.s.

no universal source code over the class of dis- As in Davisson [1], a sequence of uniquely
crete memoryless sources with infinite source decodable codes flJ2,... is called weakly uni-
alphabet and finite entropy. versal for a class of sources if

Let X be a random variable taking values
in X = {1,2,3,...} with distribution tt and lim R, = 0
entropy H(X) < 0o. A discrete memoryless ,-oo

source {Xi} with the marginal distribution p for all sources in this class.
is considered. The following theorem implies that there is

For a discrete memoryless source let fn be no universal code for the class of discrete mem-
a variable length uniquely decodable code with oryless sources with finite entropy.
source block length n. Let the average code-
word length of fn be denoted by in. The re- Theorem 3 For any sequence of source codes
dundancy per letter of f, is defined by R, - {f,} there is a memoryless source with finite

n - 1(X,.. .,Xn)).entropy 
such that

There is a well-kPown duality between uni- Rn = In = 0o for all n.
versal coding and distribution estimation con-
sistent in information divergence, namely, there
is a universal source code over a subset of the References
set of all discrete memoryless sources with fi- [11 L. D. Davisson, "Universal noiseless cod-
nite entropy if and only if there is a distribution [1] L. Trans . Iniv er y, vo l .IT-
estimate consistent in information divergence ing," IEEE Trans. Inform. Theory, vol. IT-
for all sources within this subset. Concerning 19, no. 6, pp. 783-795, Nov. 1973.
the aim of this paper the important direction [2] J. Ziv and A. Lempel, "Compression of

"DOepartment of Mathematics, Technical University individual sequences via variable-rate cod-
of Budapest, Budapest, Hungary. ing," IEEE Trans. Inform. Theory, vol. IT-

tDepartment of Mathematics, Katholieke Univer- 24, no. 5, pp. 530-536, Sept. 1978.
siteit Leuven, Leuven, Belgium.
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NOISELESS UNIVERSAL ENCODING OF NON-UNIFILAR SOURCES

Yuri M.Shtarkov
Institute for Problems of Information Transmission
101447,Moscow, GSP-4, Ermolovoy str.,19, Russia

SUMMARY arithmetic computations and memory sells of fixed size,
Let s be a discrete m-ary source over alphabet A, fn be a where y(S is not less than a(S) and not more than general

block- to-variable encoding method for blocks of length n, in S.
r.(f.,s) and p.(f., s) be an "average" redundancy and REFERENCES
"maximal" (over all blocks of length n) "individual" re-

dundancy of encoding of source s with code f,, correspond- [1] Yu.M.Shtarkov, "Sequential Universal Encoding of
ingly. For given set S of sources s the efficiency of encoding Single Messages", Problemy Peredachi Informatsii,
fn is estimated with rn(f ,S) = sup{rn(fn, s),s E S} or vol.23, no 3, 1987, pp.3- 17 .
pn(fn, S) = suP{Pn(fn' 8), S E S}. [2] T.Berger, Rate-Distortion Theory. A mathematical

Ior all the considered sets of unifilar sources the maxi- Basis for Data Compression. New Jersey, Prentice-
mal probabilities codes or MP-codes fn* = fn*(S) [1] satisfy Hall, 1971.2
inequality

1r,.,(fn,, S) <5 Jon(f*,,S) <_ T- [oa(S) logn + P(S)] (1)

where a(S) is a number of indepondent parameters of dis-
tributions in S except apriori distributions (for sources
with memory) and 6(S) is independent on n. For most
cases this results are asymptotically optimal.

For many reasons we need to widen the considering sets
of sources. The finite-state m-ary source s is described
with conditional probabilities 0(a, ulu'), where a and u
corresponds Lo arbitrary itioitient and u' is a preceding
state. But the set S(m, w) of all finite state sources with
Tiven alphabet A and set U of w states is very large: it

escribes with ct(S(m, w)) = (mw - 1)w independent pa-
rameters of conditional probabilities. So we need to define
and to consider the reasonable subsets of S(m, w).

Switching source s = (so, si,. ., sM) (see also [2]) con-
sists of M subsources si, ... , SM which generate letters of
alphabet A independently one from another one, and of
control source so, which realises sequential commutation
of subsource's outputs with output of source s. After sub-
source si is switched off it continue to generate "blind"
letters during 1i > 0 steps and then stops (if during this
1i steps it is not switched on again). The blind letters in-
fluent the probabilities of the next letters at the output
of si but not the output of s. And the statistical proper-
ties of subsources for "switched on" and "switched off"
modes can be different. Let so, si,..., SM are chosen inde-
pendently from sets So,S1,..., SM correspondingly. The
different sets S = So x S x ... x SM were considered. And
the main results are those.

Theorem 1. If So,S 1 ,...,SM are sets of finite-state
sources then inequality (1) is true for corresponding set S
of switching sources,where

M

U(S) = Ea(S) (2)
i=O

is a number of independent parameters.
S(m, w) is just the particular case with M = w2 mem-

oryless (and stable) components, and I.Csiszar proved in-
equality (2) for it. But in general case Si,...,SM can
contain both stable and unstable components.

Theorem 2. The sequential universal encoding for set
S of switching sources with finite-state subsources and
finite-state control source let us satisfy (1) and (2) and
needs not more than

K = O(n1(S)+'), n -- oo (3)
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FAST CODING OF SOURCES WITH UNKNOWN STATISTICS

B. Ya. Ryabko

Department of Appl. Math. and Cybernetics, Novosibirsk Telecommunication

Institute, Kirov Street 86, Novosibirsk-125, Russia

Abstract The problem of encoding of the word u consists of r- log P(U)1+ 1 of

sources with unimow statistics is binary letters of the word R(U). This is the

considered. The efficiency of the codes is known Gilbert - Moore alphabetical code

estimated by three characteristics: i) the It being deciphered and it's redundancy is

redundancy, defined as the difference equal 2/m. FAST method is based on this

between the average codeword length and the code. The main problem is to compute P(U)

Shannon entropy; ii) memory size (in bits) and R(U) rather rapidly.Let m = P. Let's

of the coder and decoder program when it is define

realized on a computer (S) and iii) the 1I = P(u 1 ), "'Ifl= P(U), s= ' m

average time of encoding and decoding a 1 1. . i

single letter (T). The time is measured by Q(um), "= 2k-1 -2 k ' * = k 2k-i+ ll2k-I 2k

the number of operation with single-bit i =2,...,+1 ; k ... ,m/2

words. All of the known methods may be It's easy to see that

divided in two classes. The Ziv-Lempel's R(U) = X6I+ flý+12 ; P(U)

codes and their variants [1] fall under the Let's consider the example.Let A = (a 21 ,
first class and the arithmetic code [2] with p(a 1 ) = .11, p(a 2 ) = .01, t=2, m=4,

the Tvynch-Devisson's code [31 fall under the U= al22aa . Then II =. 01, I2=.11, 1=.11,
second one. The codpe6 from the firot class l4=*O1. 2=ijj01j= ~jj
need exponential memory size S = 1 --2

0(exp(I/r)) for the achievement of the I11 .00111.OOOIOO1, 41  - =11,

redundancy r, when r turns to 0. The methods X 1 = A3=.00, X2 =. 11, 10 =.010, X=.11011011,
from the second class have small memory size R(u)=X3 + R13/2 =.11°11-1,r g 3  + 1 = 6

as well as low rate of encoding: 1 1 1 A

S =O(/r~'o-t T=O(1/r (log(1/r)coflst). Consequently, code( u ) =110111. As is
I 0(i/r)ceont we Ten the code, otha obvious from this example, the main part of
In this report we present the code, that calculation is carried on the short words.

combines the merits of both methods: the So the general time of calculation is rather

memory size is small and the rate is high: small. The decoding also based on using of
S = O(I/cOnst), T = 0(( log 1/r) 3 ). We {.iad {,S}.

- ) tA~)nQ ~z.j.The complexity of decoding and

called this method FAST code. We consider coding ism . The unfiver al A

the encoding of the Bernoulli sourses only, code is based on this algorithm and on the

but it is obvious how to carry the results author's method of fast estimation of

over to the Markov sourses. probabilities p(aI ),...,p(an) [4].It should be
The PAST code. We consider the main tThe ASTcode Weconsderthe ainnoted that the complexity of the code for

idea of the FAST code for the case of
source with known statistic is less:

encoding of source with known T(r)=O((log(I/r))21og log(S/r)).

probabilities. Let A=(a 4,aS,...as} is an References

alphabet of a source, Am is a set of words (1] Bell T.C.,Cleary J.G.,Witten I.H. Text
with the length m, m21. Let's assign Compression. Prentice Hall,New Jersey,1990.

lexicographic order on Am. Let p(a) is the [2] Rissanen J., Langdon G.G. "Universal

probability of the letter aEA. We suppose modeling and coding." IEEE Trans. Inform.
that all p(a), aEA have the form of binary Theory, v.-; 7 , N 1, 1981.

fraction with t digits.(tŽ[log n1). For [3] Krichevsky R. E., Trofimov V. K. "The
every word U c in we'll determine P(U) = performance universal encoding". IEEE Trans.

p(ul)... P(um); Inform. Theory, v.27, N 2, 1981.

Q(alal...a )=0; Q (U) = P(V)m [41 Ryabko B.Ya. "A fast on-line adaptiv co-

V<U;UeAm de". IEEE Trans.Inform.Theory,v.38,N 4,1992.

R(U) = Q(U) + P(U)/2 The code of the
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Minimax Redundancy for Sources with an Unknown Model

Joe SUZUKI

College of Science and Engineering, Aoyama Gakuin University
Chitosedai 6-16-1 Setagaya-ku Tokyo 157, Japan

Abstract: This paper describes the construction of a where S(g) and a are respectively the number of the
universal code for minimizing L. D. Davisson's mini- states s = 1,2 .. , S(g) and the number of the sym-
max redundancy in a range where the true model and bols, one parameter a > 0 is selected so that the
stochastic parameters are unknown. minimax redundancy maxOEA r,,(1, 9) is minimized, and

the occurrence probability of each symbols are p[q, s, g]
Universal coding can be generally described as a com- q = 0,1 ... , a - 1 in the same state s. This result is an

pression method for sources with an unknown or in- extension of previous results [3] for composite sources
completely specified probability distribution [1]. The with a known model. A general form of the weight
specific problem investigated here is the development function with an unknown model is then presented as
of a universal code that minimizes the redundancy,
i.e., the difference r,(l,O) between the expected per- w(O) = h(g)w![](p19)), (3)
symbol length -Ee[l] of the codeword generated by the where F, h(g) < 1 and the function h is seleted so that
code's length function 1 12], and the per-symbol en- the minimax redundancy maxOE. r.(1,O) is minimized,
tropy H(O) of the source 0, for each source in a pre- in order to formulate a universal coding method when
determined range A (not for a specific source 0 [1,3,4]), the model is unknown.
where E#[.], n, and 1, are respectively the expectation Finally, it is shown that the minimax redundancy
on the source 0, the length of the data to be com- achieved with the presented coding method (available
pressed x" = XtX2... x,, and the length function de- for sequential, or adaptive coding 16]) is upper-bounded
termining the codeword length. In Davisson [1], cod- by the minimax redundancy achieved of J. Rissanen's
ing scheme universality is strictly defined as the prop- semi-predictive coding method [7].
erty that the redundancy r0 (1, 9) converges to zero uni- Topics for a future study include developing a method
formly over all sources in the range A, by taking n to determine the value a for the weight function with
sufficiently large (strong universality). This property a known model, and further investigation into deter-
requires redundancy minimization for finite sequences mining the function h for models which minimizes the
as well as asymptotical optimality (weak universal- minimax redundancy.
ity), and 1ls assured by minimizing minimax redundancy
SupSA rn(l, O) for each n in the range A [1].

The primary goal of the present paper is to determine References
the length function I which minimizes the minimax re- [11 L.D. Davisson. Universal noiseless coding. IEEE Thins. In-
dundancy sup8,A r.(1, 0) in the range A where both the form. Theory, IT-19(6):783-795, Nov. 1973.
model and stochastic parameters of each Source 0 in therange A are unknown. Furthermore, it is assumed that [21 J. Rissanien. A universal prior integer and estimation by mini-
thnge modrel isnincludeditherm , s t of M ar umodes wthat mum description length. The Annals of Statistics, 11(2):416-
the model is included in the set of Markov models, with 431, 1983.
the stochastic parameters being the probabilities that
each symbol occurs based on each state in each model. [3) L.D. Davisson, R.J. Mceliece. M.B. Pursley, and M.S. Wal-

First, it is shown that universal coding is reduced to lace. Efficient universal noiseless source codes. IEEE Trans.

determining the weight function w(O) which generates Inform Theory, IT-27(3):269-279, May 1981.

the length function I(xn) [1] as [4) L.D. Davisson. Minimax noiseless universal coding for
Markov sources. IEEE Thans. Inform. Theory, IT-29(2):211-

l(X") = - log[•-• '()P(xI0)], (I) 215, March 1983.
OEA [51 J. Suzuki. Generalization of the learning method for classi-

where P(x711[) is the probability that the data to be fying rules with consistency irrespective of the representation
form and the number of the classified patterns. In ISITA 90.compressed is x", based on the source 0. Waikiki, Hawaii. Nov. 1990.

Secondly, the weight function for the framework of
state decomposition 15] with a known model is presented [61 J.G. Cleary and I.H. Witten. A comparison of enumera-
asi tive and adaptiv "odes. IEEE Trans. Inform. Theory. IT.

30(2):306-315, March 1984.S)sI ( na -Iw(9) = `,[g](pk(9) - • (t ) I P s,g]a'-}, (2) [71 J. Rissanen. Stochastic complexity and modeling. The An-
,=, [l7(af- . q0 nala of Statistics. 14(3):1080-1100, 1986.

r'(z) is the gamma function of z.
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Context Tree Weighting: A Sequential Prfx',X, = ljzx*}. Division yields the distribution for z,. The
number of operations needed is proportional to the maximal depth d.Universal Source Coding Procedure for FSMX

Sources

F.M.J. Willems, Y.M. Shtarkov and Tj.J. Tjalkens 3 Upper Bound on the Redundancy

EE Dept., Eindhoven Univ. and I.P.P.I., Moscow Suppose we know the model S of the FSMX source but not the values
of its free parameters. Then we can use P(A):= 1l-,c P(ne(s),n,(s))
as block estimator. This gives us an optimal (see [2]) parameter-
redundancy which can be upperbounded by ISI( log(-)+I log(ile)).
Inspection of the procedure in the previous section shows that the
weighted block probability Q(\) -_ 22tl - P(X). Therefore the

I Introduction model-redundancy of our procedure is at most (21SI - 1)1og2.

A binary FSMX source (see [3]) generates a sequence of tNote that the above holds for individual redundancy relative to
the actual source, but also for individual redundancies correspondingdigits from {0, 1), whose statistical behaviour can be described using to any other FSMX source. Therefore for each source sequence, the

a postfix set S. This postfix set is a collection of binary strings which is context-tree weighting algorithm produces at most 21SI - 1 codebits
proper and complete. We can now define the state function f(.) whichmassmiifniesuresqune zj ... ,z.,-. no hi more than an estimator matched to model 5, for any S.maps semi-infinite source sequences xt--. = " -', X,-2,zt-l onto their
unique postfix in S. This a, = f(z7-o) is the state of the source, hence The Ehndhovens Hogeschoolfonds supported the second author when
PrX= zlz ) = P(zjfxz_)), for x E (0,11. ARl P(*I) for 8 ES he visited Eindhoven's Information Theory Group. Thanks.
are probability distributions on {0,1}. FSMX sources with the same
postfix set are said to have the same model. In the binary case we need
ISI free parameters to specify all its distributions P(-Is),s aE S. The
number of free parameters of the actual FSMX source determines the
asymptotic redundancy for an optimal code. Sequential source coding
procedures for FSMX sources often use a context tree (see fig.1). The 0 (
standard approach (see [4], [2], [3], and [5]) is that one uses this context (1,0
tree to estimate the current context, i.e. the actual state of the source. (1,0)
This context is used to estimate the distribution of the next source 1,0)
digit. Arithmetic coding procedures can then be used to encode this 5/64
next symbol with negligible coding-redundancy. \

However, instead of estimating the actual state we should try
to find a good encoding distribution. This first principle immedi- 3)
ately suggests model weighting. Model weighting increases the (block-
)model-redundancy by at most - log(W(o)) where o" is the actual " - ,)
model, and W(o) its weighting probability. To weight an infinite (0,1 (2,1) 5/16384
number of models we introduce a second principle which says that 0(1
the model-redundancy has to be proportional to the number of free (1,0)
parameters of the model. It gives us a weighting distribution over all 2 7/64 (2,2
models. The next section describes an efficient method that weights (1,0 /16
the block-probabilities of all models according to this distribution.

2 The Context Tree Weighting Procedure (0 10s

We assume that the maximal depth d of the context tree is finite. A
node in the context tree corresponding to context s contains no(s)
and nl(s), i.e. the numbers of zeros and ones in the source sequence
xlz2-.- x,1 that were preceded by a. We assign a block probability Figure 1: Context tree for z 1 ,Z 2 ,..,Xr 7 = 0110100, d = 4, and

I ",-- (+I)= ... 0010. Non-trivial Q-values are listed.

1.2.....(no+ n1 )

to a (sub-)sequence with no > 0 zeros and nj > 0 ones, etc. This
estimator guarantees uniform convergence of the redundancy (see [1]). References
Using the context tree we can now recursively define the weighted
probability corresponding to a given context as [1] R.E. Krichevsky and V.K. Trofimov, "The Performance of Universal

P(no(s), n1 (s))/2 + Q(Os). Q(ls)/2 if depth(s) < d Encoding," IEEE Trasa. Isform. Theory, pp. 199-207, March 1981.
Q(s) : P(no(s),n 1 (s)) if depth(s) = d. [21 J. Rissanen, "A Universal Data Compression System," IEEE Inform.

(2) Theory, pp.656-664, Sept. 1983.

If we apply this method to the context tree in figure I we obtain [3] J. Rissanen, "Complexity of Strings in the Clam of Markov Sources,"
Q(A) = _.4 Q(-\) corresponding to the sequence zxz2 ... zt-i is our IEEE Tras. Inform. Theory, pp. 526-532, July 1986.16394

weighted block probability Pr{Z, 2 ,. ... ,z., xeo}. To process the [4] J. Rissanen and G.G. Langdon, Jr., "Universal Modeling and Coding,"
next z, we first increment no for contexts Ax 1-. 1 ,-,z,-,.", and IEEE Trans. Infornm. Theory, pp. 12-23, Jan. 1981.
zt-dxt-d+l ,'-Z,-•. Then we update Q(A),Q(z,_.),Q(xz._ 2 z 1.._ 1 ,..., (5] M.J. Weinberger, A. Lempel, and J. Ziv, "A Sequential Algorithm for
and Q(z,-d-zd+i .".'. x-) in reverse order. Q(,\) is now equal to the Universal Coding of Finite Memory Sources," IEEE 71,aa. Inform.
Pr{z,-1,X, = 01zo }. Analogously, by incrementing ni, we can find Theory, pp. 1002-1014, May 1992.
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NEW SPHERICAL 4-DESIGNS

R. H. Hardin
N. J. A. Sloane

Mathematical Sciences Research Center
AT&T Bell Laboratories
600 Mountain Avenue
Murray Hill, NJ 07974

Asphericalcodeisacollectionofpointsonthesurfaceofasphere values of N and d: N even and >2 for d= I; NZ5 for d= 2;
in d-dimensional Eudidean space. A spherical t-design is a spherical N= 12,14,= 16 for d=3; N2!20 for d=4; N>29 for d=5;
code consisting of N points X 1 .... XN such that the integral of any N=27,36,>39 ford= 6; N>53 ford= 7; and N>69 ford= 8.
polynomial of degree at most i over the surface of the sphere is equal to These spherical codes also provide optimal (and rotatable) experimental
its average value at these N points. Given d and t, one wishes to designs for quadratic modelling in the ball.
minimize the value of N. The full text may be found in our paper "New Spherical 4-Designs",

We have made considerable progress recently on the case t = 4 (and Discrete Math., Vol. 106/107, 1992, pp. 255-264. Details of the methods
informally think we have completely solved the problem). We will give used and the application to optimal experimental design are in our paper
very strong numerical evidence that spherical 4-designs containing N "A New Approach to the Construction of Optimal Designs", J. Stat.
points in d-dimensional space with d 5 8 exist precisely for the following Planming and Inference, 1993, in press.
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Reduced Complexity Bounded Distance Decoding of the Leech Lattice
Ofer Amrani and Yair Be'ery , Tel-Aviv University Department of Electrical Engineering.

Alexander Vardy , IBM Research Division Almaden Research Center.

Abstr-ct-A new efficient algorithm for bounded-distance decoding Note that by restricting condition i of the foregoing definition, that is talk-
of the Leech lattice is presented. The algorithm decodes correctly at ing only the type-A arrays, the Leech half-lattice H 24 is obtained. Further
least up to the guaranteed error-correction radius of the Leech lat- restricting condition ii, that is taking only even columns, produces the Leech
tice. The proposed decoder is based on projecting the points of the quarter.lattice Q24, as defined in [9]. The proposed decoding algorithm con-
Leech lattice onto the codewords of the (6,3,4) quarternary code, - sists of four separate Q24 decoders operating concurrently. Basically the four
the hezacode Hs. Projection on the hexacode induces partition of the de-ders are identical. We therefore describe only the decoder for Q24. This
Leech lattice into four cosets of Q24, beyond the conventional parti- decoder operates on type-A arrays consisting of only even columns.
tion into two H2 4 cosets. This enables bounded-distance decoding of Precomputation:Let us assume an AWGN channel model, and let a se-
the Leech lattice with only 1127 real operations in the worst case, as quence of 12 two-dimensional symbols {r(n)}),l1  be observed at the channel
compared to about 3600 operations for the maximum-likelihood de- output. For n = 1,2.... 12 find in each Aii,-subset of D2 a point Aij,(n)
coding of [9]. The proposed algorithm is at least 30% more efficient which is closest to r(n), and set this point as a representative of the entire
than Forney's algorithm [5] in terms of computational complexity, subset.
while the coding gain loss is no more than 0.05 dB (over BER rang- Computation:For each z E GF(4) and for each of the six array locations,
ing from 10-' to 10-' ). the decoder first finds the preferable representation, which is the column with

The Leech lattice A24 is one of the most interesting and well studied lattices the minimum squared Euclidean distance (SED) from the appropriate pair
(3]. Maximum-likelihood decoding of A24 was intensively investigated during of received symbols. This SED is taken to be the metric of z. Using the
the last few years. Conway and Sloane [2], Forney [4], Lang and Longstaff [6], acquired information the decoder finds the codeword of H1 with the minimum
Be'ery, Shahar, and Snyders [1], and Vardy and Be'ery [9] have devised various metric. A type-A array with even columns is then reconstructed from this
decoding algorithms with complexities ranging from 55968 down to 3595 opera- codeword of H6. We show that this array is the closest to the received sequence
tions. While the problem of maximum-likelihood decoding of A24 is interesting of symbols. Next conditions iv and iii are checked, in this order. If either
in its own right, in practice it may be rewarding to use a slightly suboptimal of these conditions is violated, correction is performed for condition iv and
but more efficient bounded-distance decoding algorithm. One such algorithm independently for condition iii using the "Wagner decoding rule" of [7].
was developed by Forney [5]. The computational complexity of the original The output of the Q24 decoder is a Leech quarter-lattice point accompanied
Forney's algorithm is somewhat less than 2000 operations. However, since by a corresponding metric. This point is not necessarily the closest to the
Forney's decoder is based on soft-decision decoding of the Golay code, utiliz- received sequence of symbols due to the independent Wagner decoding. Finally
ing the Golay decoder of [8] in Forney's bounded-distance algorithm yields a we choose among the outputs of the four Q24 decoders the point with the
computational complexity of less than 1500 operations. In this paper we pro- minimal metric, and select this point as the output of our Leech lattice decoder.
pose a more efficient bounded-distance decoding algorithm which requires only Now let do be the minimum distance between points in the checkerboard
1127 operations. The proposed algorithm is shown to decode correctly at least lattice D 2. The corresponding minimum SED between points in A24 is given
up to the guaranteed error-correction radius of the Leech lattice. Simulation by d

2 ,. = l6d•0. We have the following theorem.
results, which compare the coding gain obtained using the new algorithm with
the coding gain of the Forney's algorithm, are also provided. Theorem 1. Given a received vector of 12 two-dimensional symbols r =

Our construction of the Leech-lattice involves the two-dimensional checker- {r(n)}2--1 , if there is a point A E A24 such that Jhr - All
2 

< 4d.2, the proposed

board lattice D 2. Partition D 2 into 16 subsets and arrange the labels of the algorithm decodes r to A.

16 subsets in the following configuration: Theorem I implies that the proposed algorithm decodes correctly at least

A000  B000  All 0  B110  up to the guaranteed error correction radius of the Leech lattice dnmi/2 = 2d4.

B101  A1 01  B0 l0  Al 01  This correction capability is the same as that of the bounded-distance decoder

All, Bll Aoo0 B0oo of Forney [5]. A comprehensive computer simulation has been performed for

B0ol A100  B100  A011  both the proposed algorithm and the algorithm of Forney [5]. The simulation
assumed a 64-QAM square constellation transmitted over an AWGN channel.
Results show no more than 0.05 dB loss in the coding gain for our algorithm

Tiling the entire space with nonoverlapping copies of scaled and rotated version versus that of Forney, over the whole range of BER from 10-' to 10-6. This
of this 16-point configuration establishes a correspondence between the labels gain loss is due to an increase in the effective error coefficient, or the number
of the 16 subsets and the points of D 2. Let us represent the points of A24 by of nearest neighbors, for the proposed algorithm. This issue will be further

2 x 6 arrays of D 2 points, such as : elaborated in the paper.
[ 1J' '3, .. A,,,, References
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AN UPPER BOUND ON THE PROBABILITY OF DECODING ERROR FOR M-ARY PSK
BLOCK CODED MODULATION STRUCTURES

Hoene Hersbl er sd Gregei Poltrev

Department of Electrical Engiering - Systems, Tel-Aviv University,
Ramat-Aviv 69978, Israel.

where f(y) and fgyl) are the chi-square density functions, gsl)
SUMMARY f~and A2) are the normal density functions, r is a real positive

Coded modulation, which is an efficient way of parameter (a radius of an 2n-- dimensional sphere), r. =
comb* error correction coding with modulation, isonsi here for the case of M-ary Phase ShiftKeyi'g
(M-PSK). In this paper we are interested in the probability
decoding error for an additive white Gaussian noise (AWGN) r ]/4
channel, in which the well known union bound is useful only wqT - .
when the desired probability of error is rather small. However,
the coded modulation structure can be implemented as an It is also proven in the paper that the optimal value of
inner code concatenated with a Reed - Solomon outer code [1]. r, denoted by rt, is the root of the following equation.
Therefore, for a low signal to noise ratio, a tighter upper
bound on the probability of decoding error must be derived. 9.

The tanfential union bound, which is tigter than the Aj r(n-I/2) J sin2n-3(u)du = 1 (3)

union bound, is presented by Berlekamp in [2] for binary j: I/2<a IT [(n-I) 0
codes. Since each transmitted codeword of an M-PSK coded
modulation structure has the same energy, a tangential union
bound can be derived for this structure as well. On the other where cos(Oj)=6j2ro and r(-) is the Gamma function.
hand, a sphere upper bound, which is derived in [3] for any
block coded modulation scheme and is also tighter than the Esampls 1: Let the structure be a multilevel code, based
union bound, is applicable also for the M-PSK constellation. on the following component codes: at the first partition level
However, in the derivation of this bound, the important fact the binary Golay(24,12,8) code is employed, at the second
that each transmitted codeword for M-PSK constellation has level of partition we have the single parity check (24,23,2)
the same energy, was not taken into account. In our paper an code, and the remaining bits are uncoded (these codes are also
upper bound, named tangential sphere bound (for the case of employed by the well known Leech half lattice). The resulting
binary codes see [4]), is derived. It is also proven that our tangential sphere bound, tangential bound and union bound
bound is tigter then Berlekamp's tangential bound. In are presented in Fig. 1. From Fig. I we deduce that for the
Example 1 ofthis summary, it is shown that for a particular structure of Example 1 our upper bound is much tighter than
scheme, which is practically important, our bound is much the union and the tangential bounds for high levels of noise.
tighter than the tangential bound for high levels of noise.

Consider a code with fixed length n, M codewords, a set

of Euclidean distances {f6. (j=1,2,. - ,N) and a set of average

coefficients {AjI (j=l,2,...,N), where A. is the average
number of pairs of codewords with the Euclidean distance 6. .0.1,
Let the additive white Gaussian noise at the input to the
decoder be a 2n--dimensional vector of a random variable
denoted by a = (zl, z2... z2n), and let the event of error at

the output of the decoder be denoted by E. The probability of 101 Tangential Sphere Bound

decoding error, Pe' can be written as follows: Tangential Boundel Union Bound

Pe = Pr(E/uECn(O))Pr(sECn(8)) [
+ Pr(E/&qCn(U))Pr(ggCn(O)), (1) 4.5 53 6 63 7 7.

where Cn(O) is a 2n--dimensional cone with half angle 0 and a Ebt/o (dBj

center at the point of 0 energy. Clearly, Pr(E/LfCn(V)) _ 1. Fig. 1. Upper bounds on the probability of decoding error for
Assuming that the energy of each signal in the M-PSK the structure of Example 1.
constellation equals one, from (1) the following tighttangential sphere upper bound is derived RETERENCES
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A BOUNDED-DISTANCE DECODING ALGORITHM FOR LATTICES OBTAINED FROM A GENERALIZED CODE FORMULA
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IEED-EESC-USP, P.O. Box 359, 13560 So Carlos-SP-Brazil
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A multistage decoding algorithm is given for lattices GENERALIZED MULTISTAGE DECODING FOR THE GBC?
obtained from a generalized code formula. The corresponding
multilevel construction is based on a chain of two-way Given a lattice L expressed by the GDCF. the following
lattice partitions and a family of binary linear block algorithm can be employed.
codes, whereas the multistage algorithm involves the use of
a maximum-likelihood (ML) decoding algorithm for each two- ,.
way lattice partitions as well as a soft-decision ML Algorlthnu Given r c :
decoding algorithm for each binary linear block code. The
algorithm is shown to have the same effective error- 0) Set r -r and decode r° to the closest point 0e %
correcting radius as ML decoding. Several known lattices 0 o 0 -
and two new ones were then constructed by the generalized In the lattice Ao -o [r - + 1"1
code formula. The trade-off between complexity reduction
and performance loss achieved by the proposed algorithm Is
presented. 1) Set r, - ro- coo a0 and decode r, to the closest point

INTRODUCTION c 0 at + . in the lattice A, . C r * /r + !o'

The use of multidimensional lattices in block or trel-
lis codes for 'band limited channels has focused the atten-
tion of many researchers on the problem of complexity
reduction in lattice decoding. For lattices expressible in b-1) Set rb, , rb.Z - cb-2 _ and d rb-I to the
terms of code formulas based on the chain of lattice parti-
tions Z/2Z/4Z/.... Forney [1) has proposed a suboptimum closest point c b + in the lattice Ab-I
algorithm with a better trade-off lxtween complexity reduc-
tion and performance loss when the number of levels in the cb [rb./ri b r~b"

code formula is greater than one. However the decoding of
lattices with single-level code formulas like HI6, X24 and
X32 can not benefit directly from this algorithm. The The received point r is decoded as the lattice point

present work extends the previous approach by generalizing 0 - o
Its multistage algorithm to more general code formulas. c o0 .+Cb-lo b-Il+yb of the lattice 0 ICo, [l 0/r I

GENERALIZED BINARY CODE FORMULAS (GBCF) Cb-l° trb-W l / F r".

Then the following statements are proved: 1) Tne
The lattice construction used in the generalizeo generalized multistage decoding algorlzhm is Invariant by

multistage decod!ng algorithm is based on a chain of two-
way n-dimensional lattice partitions r 0/r /...Tb /r with translation; 2) For each I eL, any pol.. r c Rm'a such that

01 b-i b *2 ,2,
selected sets of coset representatives and a family of jr - 11 < dSmu(LW/4, is decodck to I by the generalized
binary linear block codes with length m, dimension kI and multistage decoding algorithm; 3) For nested linear binary

minimum Hamming distance dH(CI), 0 s i s b--. block codes, C CC . .. Cb_1. an exact expression for the
I'b 01b-2Let !/A be an elementary binary partition of order 2 effective error coefficient is given; 4) Given rI c RU ,

Let (a. a ) be a set of vectors forming a binary the codewords c C in step I of the generalized multi-

basis to the partition r/A, i.e., be a system of coset

representatives of A in r/A. stage decoding algorithm is the one which minimizes:

V4Lni•nUo I (GBCF) . Let r0/rL F I F/r b-1/rb be a lattice C(_l)€!,l I) where -A d d

partition chain, and C0,CI - ... ,Cbi be linear binary block J-i "0 o I

codes with blocklength m, then a periodic array L can be
defined as follows: We show that the number of computations necessary to

decode A!, 0 s I a b-I islA-{oS %• Im I ÷.. b-" zb- I V~! 0s:bI} ,rb N D(A^I)-.M . IN D (rI /r 1+÷) +1]÷+ ND(C!)

Let us denote the Generalize Binary Code Formula by and that the overall complexity of the generalized multi-

L - Coo ir0/rti + c.e [rn/r 2+...÷ Cb-1O irb_l/rbi + rI stage decoding algorithm can then be estimated by
b-b

Then the following statements are proved: I) L is a NA(L) E • N (A!) + b.m.n
lattice; 2) exact expressions for the minimum distance and D -0

the error coefficient of L.
We provide some examples of lattices L that can be Finally, we determl: the performance and the complexity

obtained by the GBCF as well as new lattices. of the proposed algorithm for several lattices L.

REFERENCE"This rueearch bo bea e sepported by Coassibo Nacional do
Dessovnivlmsltto Cilnt~fico o Teoo!dgico - CNPq Grant No. Ill G.D. Forney Jr., 'A bounded-distance decoding algorithm
301416/93-0, and Castro do PosquIsa € Deseavolvlmnato do for the Leech lattice, with generai1:: ý-'! %, •StS
Telebrda - CPqD-T¢elbrdi under Grait No. 367/90. Y'ia' . Injanrn. 3'Aew, vol. IT-•S, pp. 906-909, 1989.
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A NEW BLOCK CODED MODULATION SCHEME AND ITS SOFT DECISION DECODING

Kazuhiko YAMAGUCHIf Hideki IMAIt
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Introduction We call So(i) a squared Euclidian separation. Then the squared minimum
Recently various schemes of coding and modulation have been proposed as Euclidian distance of the UEP-BCM is given by
efficient methods to improve the performance of digital communication sys- D 2E = min{(ID(0)), AD (l)), '", (n - 1))} (4)
tems. One of interesting approach was presented by lmai and Hirakawa
in the early stage of researches on the coded modulation. Their scheme and that D•BD is not smaller than the bound given by 3.
(IH-scheme) utilize component codes having different error protection ca-
pabilities are employed with step wise decoding or multistage decoding. It Performanen of UEP-BCM
is noted that the component codes are designed on the basis of Hamming Lots of BCM schemes use Viterbi decoding have been proposed. How-
distance, but nonuniformity is introduced by letting their respective error ever, one of the advantages of block coding is in algebraic decoding. This
protection capabilities different, viewpoint is the same as the original IH-scheme.

We propose a multilevel coded modulation scheme using an unequal error New soft decision decoding algorithm for proposed BCM are studied.
protection code. The basis of the scheme can be considered as an extension The algorithm can performed by ordinary erasures and errors decoding after
of the IH-scheme. Instead of using several error-correcting codes in the IH- the erasure locations are determined by soft output of demodulator and
scheme, we use a block or trellis code which has unequal error protection decoding results of former blocks.
capability. The decoding is repeatedly performed the erasures and errors decoding

To obtain large coding gain from the UEP code, codeword is mapped with changing the erasure locations, We can obtain better performance. The
into channel symbols by using finiue memories in the scheme. Figire I shows repeated case can be said generalised minimum distance decoding algorithm
the encoding and decoding block diagram of 3-level coding (i.e. 8-PSK etc.). for UEP-BCM.
In the figure, each of 'I 'is memory unit, that is shift register of length n/3, Figure 2. demonstrates the performance of proposed coded scheme and
where n is the code length of block code C. BCM coding based on the same decoding algorithm obtained by numerical calculation. We evaluated the
structure for the 2-levels has been proposed by M. C. Lin[l]. he calls it block block error probabilities of (255,170,86) RS coded 8-PSK and (255,171,23)
coded modulation with inter block memory. We studied the structure from BCH coded 8-PSK, where the RS code is defined over GF(256). In the
the view point of application of unequal error protection code. figure, these are indicated by RS and BCH respectively. The evaluation are

We describe the minimum squared Euclidian distances of UEP-BCM obtained ordinary hard decision decoding a- well as proposed soft decision
and UEP-TCM by using the separations, that are the measurements of error decoding. Those are indicated by h" and 'e. For comparison, we show
protection capability of an unequal error protection(UEP) code. Our scheme event error provability of Ungerboeck's trellis coded 8-PSK (t, = 9) and
can be considered as a generalization of his scheme. uncoded bit error rate of QPSK.

Although the error performance of UEP-BCM is described from the view- The performances are compared with different length block size. The RS
point of UEP, ordinary error correction codes having uniform error protec- code shows extremely good performance, even it has large codelength. The
tion capability can be applied to UEP-BCM. UEP-BCM provides attractive erasures and errors decoding of distance 86 RS code may not be so simple,
coded scheme when the scheme is easy implemented by using algebraic de- and number of transmission data more than lKbits/block is not suitable for
coding. This study deals with UEP-BCM based on ES code and BCH code. applications required small delay (i.e. voice). However the result shows a

solution of mass data transmission with ultimate reliability.
UXP-BCM

The unequal error protection capability of an UEP code over Hamming Refereces
space is described by using 'separations '. Let C be a linear (n, k) block
code over a finite field, where n is the code length and k is the number of 1] M.-C. Lin : "A coded modulation scheme with interblock memory,
information symbols. If we define separation' Si of UEP code as I1] JE- T Jan. (1990)(submitted to Trans. IT)

s, = min o(wh(v)) (i ,1-,-l,()S. [2] K. Yamagpchi, R. Kohno and H. Imai: "Coded modulation based on

where v, is the i-th symbol in codeword v, and Ws(z) is Hamming weight of nonuniformity in encoding and mapping," the 1991 Tirrenia lnterna-
x. It is easily proved that the squared minimum Euclidian distance of UEP- tional Workshop on Digital Communications, Sep. (1991).
BCM based on (n, k) block code C is bounded by the following inequality:

DED _> min{(So. A
2
o),(SI- A,),. .. ,(S,.,-_ IA ,)}. (2)

Aj is the subset distance which is given by the set partitioning method.
Define SLID(') as

n-,1 ERROR RATE(block/event/bit)SE11(i)= rain {T ( )A}(.3)

IE-04

- iii .IE-08

IE-lO

0.0 4.0 8.0 12.0 16.0
Es/No(dD})

Figure 1: Block diagram of Proposed " -here Figure 2: Error Performnmce of Coded 8-PSK
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ABSTRACT then that of the lattice code. Thus choosing the inner radius for
D)e Buda's theorem states that, for asymptotically large num- each dimension n as R. = vn-,/ where S, T S as n - 00, the

bers of dimensions, there exist "struct ured" codes which are op- above argument and de Buda's corrected result show that there

timal for the AWGN channel. First, we point out an error in de exists a sequence of n-dimensional lattice codes with error prob-

Buda's proof and then we correct the proof using a slightly dif- ability P,(n) for which P,(n) ! e-n[E(R'S/N)-c(1)l holds, where

ferent approach. The original erroneous proof uses thick shells E(R, SIN) = lim, - log F&(Ob, R, S/N). This means that for rates

of sphere bounded lattices for its optimal codes whereas we use satisfying R, < R < C, de Buda's lattice codes have the same re-

thin annulus lattice codes for the corrected proof. We discuss the liability exponent as that of optimal codes, and for rates below

algorithin.ic structure of these codes as well as the implications the critical rate R. the error probability of these lattice codes has
obtained through a coding-shaping gain argument. essentially the same exponential upper bond as Shannon's code.

The shell that contains the codepoints can no longer be be
SUMMARY called a "thick shell"; the more appropriate description is "thin

We correct, clarify, and interpret a recent paper [1] by R. de shell". It is worth noting, that since the function Fý(Ob, R, S'/N)

Inuda, in which he states that there exist lattice based channel is continuous in S', by choosing the inner radius S' < S close

codes which meet Shannon's bound for optimal codes [2]. Unfor- enough to S, de Buda's result guarantees the existence of an n-

tuniately. there appears to be all error with the clever proof pre- dimensional lattice code whose error probability is upper bounded
sented by de Buda. Here, we carefully examine de Buda's proof by a quantity arbitrarily close to the tipper bound for Shannon's

and discuss the problems. We show that de Buda's proof can be code. However, the better this approximation is the less the thin

mended, but the resulting optimal lattice code is degenerate il shell bounded lattice code resembles a lattice code in the usual
the sense that its "structuire appears to be lost. More precisely, sense, and the more it looks like a "random" spherical code, for

the result ill [(] is valid only for lattice codes whose code points which Shannon originally proved the error bounds.
lie witlin a thin spherical shell. Such a code resembles more a Were de Buda's original proof to be correct, one might ar-

raido ii sdiecal code than it laiat t ice code. gue that the class of sphere bounded lattice codes or even lattice

S"hantion in 12] (developed tight tipper and lower hounds oni bounded lattice codes are asymptotically optimal as the dimension
the error probability of optimnal codes for the AWUN channel, of the signal constellation grows. However, this conclusion initially

lis randoin codinig argument used ii-dintemsional codes whose V, appears not to follow from our corrected version of the proof since

codcwords are drawn from a uniform distribution oil the surface the codepoints derived from thle lattice are those which lie in a

of a sphere of radius V7_' centered at tI Ie origin. Such codes have thin spherical shell, and specifically exclude the lattice points in-

transmnission rate R? = - log A,,. terior to the inner sphere. Adding these points to the code would

lii [I] de Buda aimed at showing that there exist structured invalidate our presented proof.
(neimely lattice based) codes for the AW(N channel that have In effect, the radius of the thin spherical shell is made to be

the saine near-optimal error probability properties as Shannoni's large enough that enough lattice points fall within the sphere as
"*'raiidomn" codes. To this end. de Buda considers an n-dimensional needed. The main advantages of structured codes such as those

lattice V\. which is translated b*y a vector i. The bounding region of derived from lattices are generally that: (i) its points can be easily
ite (ode is a "thick" shell (or annuiiis, i.e., the region 7' between eilimerated thus avoiding an exhaustive storage of the points, and

aii outer .sphere aial aminner sphere both centered at tihe origin. (ii) signal decoding caii be computed efficiently, using algorithms

I)e Blida's main result claimis t hat for each dimension n. there that exploit the lattice's structure. These advantages appear to
exists a lattice cod(e of hl' above type wit Ih at least 2"'R codepoints be lost for thle codes we used to correct lie lBuda's result.

such tlhat its error probability P.(n) satisfies Hlowever, an argument sustaining the asymptolic oplimality

Sof structured codes can he given iusing a coding/shaping gain ap-
proach. We give a disciussion of this implication.

where flie right side is dehined ill [I]. This implies that essemitially ACKNOWLEDGEMENTS The research was supported in

the salin upper bounds are valid oh tI lic decrease of t lie error prob- part by llewlett-Packard ('o.. and thlie National Science Founda-

ability for rates below tlihe chaliel's capactily as t lit' ones Shallion l ion under (Granits No. N( 'l-90-0(t97t;6 and NC(R-91-57770.

derived for rando(1 codes.
Tlhere seemns to be a technical error iin [I] ii tihe proof of (I),

with illiporlint cOiiSc('tivi('es anid (hialigie'i ill ith scope oif the re- References
",iht . 10' (Oris'el Ihi,. ci ior wE' i•' a l ii, ndilig, region "I whfich is
iior,. appro r(uially hiles, riljor a.- a hidi h r T (I] It. de IHlda. "Sorne optimal codes have striicture." IEEE

I ~flrlinately ther(. is a wtay to mlodifv de Bhida's pro(of so that Jo u ral on Schech'd ..Irt1a i (i'nCormuntaiions , vol. 7. no.

,.vi'ntially all his steps remilain valid. 'I'lie c(mclusion. however witl ti, pp. 493-85)!9 , August 19t .9

bc soilmewhat ,lifferent. 'The idea is to coiisider lilth code that re- [2] ( E. Shannoni. "Probability of error for optimal codes in a

slilt s from the radi.d projectiomi of the lattice code oilt t ile 11i11r ( aimssiai (hiannel." B 1l Syl. Tich. J.. vol. 3.8, pp. 611-656,

spheire. lin this way we get a code who%,e error probhability is lryjv m r %Iay 1959.
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Abstract-Several new algorithms for decoding lattice parti- In this work, we present several new algorithms for decoding
tions are presented. They apply to Viterbi decoding of multidi- the lattice partitions. Most of the algorithms can achieve about
mensional trellis codes based on these partitions. In [1, 2], trellis- 50% reduction of the complexity of decoding the branches. They
based algorithms were presented for decoding the lattice parti- result in modest improvement of the overall decoding complexity.
tions. The new algorithms can achieve about 50% reduction of Most previous known efficient algorithms for soft-decision de-
the complexity of decoding the lattice partitions in terms of real coding block codes and lattices rely on decoding each coset of a
additions/comparisons compared with the algorithms of [1, 2]. subcode of certain type in combination with Wagner decoding
The complexity of the resulting overall Viterbi decoding algo- rule. The Wagner decoding rule applies to binary codes whose
rithms still shows a modest improvement. An algorithm for soft check matrix consists of a single all-one row. It states that an
decision decoding the first-order Reed-Muller code (8,4,4) or entry-by-entry hard detection of the received word is to be fol-
the Gosset lattice is also presented. It involves at most 17 real lowed, unless the number of 1 bits is already even, by inversion of
operations, thus, improving the best known algorithm. the least reliable bit. Our algorithms also fall into this category.
Summary The complexity of the decoding is measured by the total num-

ber of real additions and comparisons. Certainly the actually
A typical multidimensional trellis coded modulation (MTCM) running time always depend to some extent on implementation

scheme can be simply described by two basic ingredients: one is technology in use. We did try, however, to evaluate all the al-
the cosets of a lattice partition A/A', where A is a lattice and A' gorithms in a uniform way. In compliance with the convention
is a sublattice such that the order of the partition is finite; the estabilished in the literature, we ignore such operations as mem-
other is a conventional binary convolutional code. The output of ory addressing, negation, taking the absolute value, and multi-
the binary encoder chooses the coset, and some other information plication by 2, as well as the checking of logical conditions and
bits specify an element in the coset [1, Fig.1]. modulo 2 additions.

The trellis diagram of the resulting multidimensional trellis
code is essentially the same as that of the convolutional code.
The difference is that the labels on the branches of the trel- References
lis disgram of the convolutional code now correspond to cosets.
Thus, a trellis-searched decoding algorithm such as the Viterbi [1] G.D.Forney Jr.,"Coset codes-Part 1: Introduction and geo-
algorithm can be used to decode a multidimensional trellis code. metrical classification,"IEEE Trans. on Inform. Theory vol.

In a soft-decision Viterbi-decoding algorithm, the first step IT-34,pp. 1123-1151, Sept. 1988.
of the decoding requires computing the branch metrics. This
step is called decoding the branches. For an MTCM based on a [2] G.D.Forney Jr.. "Coset codes-Part ll:Binary lattices and
lattice partition, decoding the branches turns out to be equiva- related codes," IEEE Trans. on Inform. Theory vol.
lent to decoding the lattice partition in use. This means that the 3 4,pp. 1 152 -118 7, Sept. 1988.
closest points in each of the cosets to the received point has todetermined and the associated metrics need to be calculated. [3] D.J. Muder, Minimal Trellises for Block Codes," IEEEdetemind an th asociaed etrcs ned o b calulaed.Trans. on Inform. Theory vol.34, NO.5, ppI049-1083 Sept.In [1, 2], Forney gave trellis-based algorithms for decoding Tra8.
lattice partitions. His algorithms are optimal trellis decoding 1988.
for given coordinate order and alphabet among all the trellis [41 A.J.Viterbi, J.K. Wolf,E. Aehavi, R. Padovani, ' A Prag-
decoding in the sense that it uses smallest number of trellis matic Approach to Trellis-Coded Modulation," IEEE Com.
states [3). Therefore, the expression trellis-based algorithm will Mag. pp. 11-19, July 1989.
simply stand for the kind of trellis decoding algorithms described
in [2].

Certainly decoding the branches is only part of the overall de-
coding procedure. However, for a code whose number of states
is small relative to its dimension, a considerable portion of the
overall decoding work is due to decoding the branches. Further-
more, in most practical implementations, the number of trellis
code states used has been very low(typically 4 or 8, occasion-
ally 16 but rarely more than 16) [4]. Therefore, by reducing the
complexity of decoding the branches, it is possible to achieve a
considerable amount of reduction of the overall deciding com-
pkexity.
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Code optimisation for finite error rate p

A. G. Bugrr* and T. J. Lunn O

Abstract where Pi. d, are the number of neighbours and the di'ance,
We present a new construction based on Blokh and Zyablov's respectively, for the igh shell. The distances and number of
generalised concatenated codes for codes and coded modulation neighbours in each of the shells may then be chosen to minimise their
schemes with coding gain optimised for a given decoded word error contribution at a particular error rate, while allowing it to increase
rate, rather than for asymptotic coding gain. It is shown that this may elsewhere, where it will exceed that error rate.
be achieved by a geometric structure for the codes in which not all
neighbouring codewords are at equal distances, which implies also Bitenerg.to noise density qtio, dB
that the minimum distance of the code is no longer maximised. The 6 7technique may be applied to coded modulation schemes where the
"inner code" is a multilevel signalling constellation, or to
concatenated binary codes or codes over GF(q). The outer code may -2 "wa d
be a block or a trellis code. The technique is illustrated with reference d
to a block coded modulation scheme, block coded 8-PSK. -4

Introduction
Error correcting codes and coded modulation schemes are
conventionally designed for maximum asymptotic coding gain -6
(ACG), i.e. for maximum coding gain as signal/noise ratio a cc and
error rate :* 0. However, in a practical communication system the -4 Log BER
asymptotic coding gain is often not the prime consideration, since Fig. 1. BER curves (upper bound), showing contributions from shells
there is a finite error rate that may be tolerated: 10-8 or 10-9 in a at different distances, and comparison with a conventional scheme
telecommunications system, or 10-3 or poorer in a speech system.
Codes designed for good ACG, and especially block or lattice codes, Design of codes using BCM construction
may well perform poorly at such error rates [I]. The Blokh and Zyablov/Cusack construction for GCC/BCM (3,41
It is well-known [21 that ACG may be optimised by maximising the provides a means of constructing codes and coded modulation
minimum distance between any pair of codewords. In the case of schemes with these characteristics. The code is defined by a maa•x of
binary block codes the distance metric is generally the minimum codes defining the choice of inner code or constellation points from a
Hamming distance, while for coded modulation schemes it is the series of partitions. The top row of the matrix chooses between
minimum Euclidean distance. However, it is also clear that this partitions having the smallest minimum Euclidean distance, and
technique may not necessarily yield the best coding gain at finite error therefore requires the code with the largest Hamming distance. The
rates. This paper presents a technique based on Blokh & Zyblov's next row corresponds to a partition with a larger Euclidean distance,
generalised concatenated codes (3,41 to design codes with optimum and therefore the code has smaller Hamming distance.
coding gain at finite error rates. Conventionally the set of Hamming distances are chosen so that the
A (block) code with maximised minimum distance corresponds to an effective minimum squared distance, given by the product of the
optimally dense sphere packing in n- dimensional space [2]. Here Hamming and the squared Euclidean distance, is equal for each row.
each codeword may be represented as the centre of a sphere in the However, if they are chosen to give different effective distances, then
signal space surrounded by and in contact with a number n,, of other the required code structure for finite error rate is created.
identical spheres. Hence the minimum Euclidean distance di,, The diagram (Fig. 1.) shows the BER curves, using the union upper
between codewords is twice the radius of the spheres, and all n. bound, for an example with three shells, optimised for coding gain at
neighbouring codewords lie at this distance. The word error rate may approximately 10-3. showing the curves for the separate shells and the
be approximated using the union bound as: overall result. This example uses coded 8-PSK length 31. with

(31,1.31) (repetition code), (31,20,6) (expurgated BCH), and (31,31,1)
P, n (uncoded) codes on the top, middle and bottom rows respectively. It

wher iscan be seen that the top row contribution dominates at lower
where or is the standard deviation due to noisec signal/noise ratio. the bottom row at higheb signaldnoisem while at the

design error rate the three contributions are quite similar, resulting in a
Geometric structure for finite error rates "bite" in the curve at this point which optimises the coding gain.
For equal minimum distance codes the asymptotic coding gain is The BER curve for a conventionally designed BCM scheme, using the
determined by the minimum distance, and it is known that it is codes (32,7,14) (extended Goppa), (32,26.4) (extended Hamming) and
maximised for given rate and dimensionality. However, at finite error (32,31,2) (even parity). is also shown in Fig. 1. for comparison. It cut
rates their performance is s'gnificantly affected by the number of be seen that while this gives a significantly higher asymptotic coding
neighbours n,,, which can be extremely large in block coded gain. at BER of 10-3 the coding gain is poorer by more than 1 dB.
modulation schemes. Hence block coded modulation schemes with
good asymptotic coding gain frequently achieve a much poorer result References
at practical error rates. A geometric structure that maximises coding I. Burr, A. G, Sheppard, J. A. and Lunn. T. J. "Comparison of
gain at finite error rate is not known. block and trellis coded modulation schemes" Int.Symp. on
We therefore propose a geometric structure for optimum performance Communication Theory and Applications, Crieff, Scotland, 9-
at finite error rate in which all neighbours no longer lie at the same 13th September 1991
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Abstract Arrange {Ias(v) - s(vo)II : v E C - {vo}) into the increasing sequence
This paper is concerned with the evaluation of the block error probabil- of real numbers without repetition, denoted d") < d(2) < .-- < d("-. For

ity P. of a block modulation code by optimum or suboptimum soft-decision 1 < i < m, let C(0 be defined as
decoding for an AWGN channel. In the range DL of low signal-to-noise ra-
tios, it is feasible to evaluate P, by simulation. In the range Da of very
high signal-to-noise ratios, tight upper bounds on P, are available. However, =V E C:I1s(v) - s(v 0 )[l = d( t

), (9)
in most cases, there remains a gap between DL and DH, and the value P. and let A0 denote the number of codewords in CO. Let 04r) be the
for signal-to-noise ratios in this gap may be of practical interest. In general,
very small values of the block error probability are required. It is infeasible number of codewords in the following subset C0)(r) of C

t
):

to evaluate a very small P, simply by simulation.
In this paper, the maximum-likelihood soft-decision decoding of a block C- 1 (r) = C - {v: there exists a codeword u of C such that

modulation code for an AWGN channel is considered, and a new method of (1) Is(v) - s(vo)l12 
> 118(u) - S(Vo)II2 + I18(u) - s(v)II

evaluating the block error probability P. for a wide range of signal-to-noise ra-
tios is presented. The evaluation of P, is reduced to numerical computations and (2) the radius of the circumscribed circle of

and simulations on statistics with not very small mean value. Computation triangles(v0 )s(v)s(u) is not smaller than r}.
results for the block error probabilities of some block modulation codes are
given. Then, the following theorem [3] holds for f(r).

Summary Theorem 1: Suppose that

Let C be a block code of length n over a finite set L of symbols. Let
be a positive integer. For u E L, let s(u) denote the signal point in hd a

represented by u, where jVh denotes the set of all h-tuples of real numbers, u~v
and for an n-tuple u = (ul,u 2 ,. . - ,u,) over L, let s(u) denote the hn-tuple Then (i) for 0< r < d

11 1
/2 1(r) -0,

(s-l) s(U2),... s(Un)). For z and z' in Rh., let l1i - z'll denote the Eu- (ii) for d(0
1/2 r< , f(r) increases monotonously as r increases,

clidean distance between z and z'.
Assume that the channel is an AWGN channel and that the maximum (iii) for d(')/2 < r < a4')/vf,

likelihood decoding is used and every codeword is equally likely to be trans-
mitted. For simplicity, we consider the case where s(vo) is transmitted for a
fixed codeword vO. Let P. denote the probability of incorrect decoding when f(r) A' p(rId'

s(vo) is transmitted. For a codeword v of C - {vo}, let De be defined as

where j is the largest index such that dQ}) < (2dO•)/vf3.
D._ U {z E Rh': Iil - s(v)II < ila - s(vo)Il). (1) and (iv) for d(')/ / < r

vec-fVo) I.

For a nonnegative real number r, let S(r) be the surface of the hn-dimensional f(r) <r.min{l, F A(1 (r)p(r/d1 1 )} <! in{1, E At 'p(r/d t')}, (12)
sphere of radius r. Let D.(r) be defined by s=1 ,=1

where I is the largest index such that dVt ) < 2r. AA
In the range of r > d t ) /v'i such that f(r) is very small, the upper bound

For a surface S, area[S] denotes the area of S. Let f(r) denote the proba- given by (12) may be used, and in the range of r such that f(r) is not very
bility of incorrect decoding under the condition that the Euclidean distance small, f(r) may be evaluated by simulation. Several examples show that
between transmitted s(v 0 ) and received hn-tuple z is r, and let g(r) de- Theorem 1 is useful. Let 1(r) denote the right-hand side of (12). Then upper
note the density function of probability that the Euclidean distance between bound fow 7(r)g(r)dr on P. is better than the conventional union bound at
transmitted s(v 0 ) and received z is r. It follows from the definitions that low signal-to-noise ratios.

Let RMmj be the jth order Reed-Muller code of length 2". The block
f(r) = area[D.(r)]/area[S(r)] < 1, (3) error probability of RM6, 2 as a BPSK code is evaluated. The code has a

P. = f(r)g(r)dr, (4) 4-section trellis diagram with 1024 states and the value of dV is 8. Let P/1)
denote the value given by (4) in which f(r) is evaluated by simulation for
7 < r < 15 and by using the right-hand side of (12) for other values of r.

where Direct simulations on the block error probabilities for -1.36 < Eb/No <_ 3.642 P41
g(r) ,P(.hn-c _e-'- (5) were made. The simulation results are almost the same as the values of P•'2

in the range of signal-to-noise ratios. The values of P.'2 approach to the

and a - ., For a codeword v in C - {vo) and a positive real conventional union bounds for 4.6 < E4 /No.
The block error probability of a basic multilevel 8-PSK code [1] of length

number r, let D.(r,v) be defined as 32is also evaluated. The component codes are RM5,1. RMS,3 and P32 , where
, v) f5 E PC : lzil = r and liz.- s(v)li 5 11s - s(vo)Ill. (8) P32 denotes the all even weight code of length 32. The value of d")1 is 2.828.

D(r,v) rLet P,() denote the valuegiven by (4)inwhich f(r)isevaluated by simulation

for 2.3 < r < 4 and by using the right-hand side of (12) for other values of
Then, the ratio area[D.(r,v)[/area[S(r)] depends only on r. where 6 r. The values of P, are almost the same as the direct simulation results
11s(v) - s(vo)lI. Let p(r/6) denote the ratio. Then, p(r/6) is given as follows: for 2.06 < Eb/No < 6.06 and approach to the conventional union bounds for
I) For r16 < 1/2, 6.06 < E,/No.

p(r/6) = 0 (7) The above method may be extended to suboptimum soft-decision multi-

and 2) for r/6 > 1/2 and hn > 2, stage decoding.
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Abstract Two kinds of common information are defined though the condition (1) is weakened to
for two correlated random variables, and they are represented by Pr{XKYK" # Gxj(VvVyVc)} < 6. (7)
single letter characterizations.

where Gxy is a decoder for X and 1'.
Summary The first common information C1 (X; Y') is defined as follows.

Let X and Y be independent, identically distributed, but mu- C1 (X; Y) i lim inf 1H(Vc). (8)
tually correlated random variables. Assume that we want to 6-0 ,Vx.1..c satisfies (3), (4). (7) K
encode (XV, YK) to three codewords (Vy, Vy, Vc), where V'V In other words, Cm(X; Y) is the rate of the attainable mini-
and Vy represent each private information of XK and yV, re- mum core VC of (XV, YK) by removing each private information,
spectively, while VC represents their common information, which is independent of the other information, from (XK, yK)

In the special case where we can write X = (Sr, Sc) and Y = as much as possible.
(Sy, Sc) where Sx, Sy, Sc are mutually independent, we can In the second definition, we consider (V'., Vi-) as noncommon
easily show by encoding S', S', S', to Vxy, Vy, V'., respectively, in
that there exists a code satisfying the following inequalities for 1
any given 6 > 0. C2(X: Y) = lim sup -H(Vc), (9)

P~fX 'ý A~ x(V V(,)): 6.--°(vc,t.•-) satisfies (10)-(12)K
Pr{XK $ Gy(VyVc)} _< 6. Pr{Y1 " # Gy(ViVc)} <_ 6f (1) Vi)sasfe(1-()K

K(H(Vy) + H(V.)) !H(X) + 6, (H(Vy) + H(Vc)) P_ HX(Y)+Yb #I(H() GX (VVC) ) < <6 (10)

(2)VC K H(V~r)):5 H(XY) + b, (11)(2)K

-(H(Vv) + H(Vy) + H(I/c)) !5 H(XY) + 6. (3) jH(XNIV?r~) ŽjH(VC) -6., ~H(YaV~r) HVC) - . (12)

1 - 6 K In other words, C2(X; Y') is the rate of the attainable maximum
K_> H(X) - -H(Y 5 Vx) Ž 1(Y) - 6. (4) core V-C such that if we loose 1c., then each uncertainty of X1

1 61 -- and YK becomes H(,c).
-H(Xj [Vi) _> H(Vc) - H(Y"IVxVi.) _ H(Vc) -6 ( The following theorem holds for these Cl (X; Y) and C2(X; Y).

where Gx and Gy are decoders for X and Y, respectively. These Theorem
conditions correspond to the following intuitive feeling. C1(X; Y) = I(XMY) (13)

1. (1): X" and Y" should be recover.. from the correspond- C2(X;Y) = min(H(X),H(Y)) (14)

ing private information and the common information. CGK(X;Y) 5 Cm(X:Y) _ Gw(X;Y) < C 2(X;Y) (15)

2. (2)(3): Each private information and the common informa- Proof: Omitted.
The result of (13) coincides with our intuitive feeling that

tion should not include any redundancy. I(X: Y) represents a kind of common information between X

3. (4): Each private information should be independent of the and Y'.
other information. On the other hand, the result of (14) does not coincide with our

intuitive feeling though the definition (9) seems to be reasonable.
4. (5): The common information should convey the same This is caused from the fact that in addition to the conunon

amount of information about X' and Y'. part, each private part can share the uncertainty each other by

However, for general correlated random variables X and Y, it is devising the encoding. As an example. consider the special case,
X = (Sy, Sc) and•Y = (Sy, Sc), such that Sx E {0, I,......x -

impossible to construct a code satisfying all (1)-5). 1}, Sy e {E oI,..... y-}, H(Sx) = log M.x, H(Sy) = log My,
Gics-K6rner [1] and Wyner [2] defined two kinds of common

information, say CQ;K(X:Y) and Cw(X;Y), respectively, which Mx < Mr. Even for this case, C2(X:Y) = inin(H(X),H(Y))
satisfy that[31  can be achieved by letting V' = Sx @) S1 and Ic = (S-, Sx)

where ED represents modulo My summation.
CGhK(X; Y) 5 I(X;Y) !5 Cw(X;Y) < miniH(X). H(Y)). (6) References

C(;K(X: Y) can be defined as the minimum rate of 1,. that sat- [1] P. Gics and J. K6rner. "Conmnon Information is far less than
isfies (1) and (2). On the other hand, Cw(X; Y) can be defined mutual information" Problems of control and lnformatwn The-
as the maximum rate of 1k-- that satisfies (1) and (3). Hence, ory, vol.2, pp.149-162. 1973
(3) is ignored in Gics-Kiirner's definition while (2) is ignored in [2] A. D. Wyner. -The Common Information of Two Dependent
Wyner's definition. Furthermore, the conditions (4) and (5) are Random Variables., IEEE Trans. on Inform. Theory. vol.IT
not cared. In other words, the first intuitive feeling described 21, no.2. pp.163 179, March 1975
above is emphasized in their definitions of common information. [3] I. Csiszmir and J. K6rner. "Information Theory: Coding Theorems

In this paper, we define two new kinds of common informa- for Discrete Memoryles Systenms'. Academic Press. Inc., 1981
tion by putting emphasis on the third and forth intuitive feeling
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ABSTRACT 2) (n- I ) i2
2) .7-) (2)

The entropy of a source with alphabet size n is between 0 and log n. kk2(n+1)

Frequently, it would be useful to have a more precise idea of what value
should be expected. For that purpose, we compute the mean A. and the As an immediate consequence of the first part of the theorem, we have

variance v2. of the entropy with the average being taken over all prob-

ability distributions for a given alphabet size n. The largest difference Corollary 2 Define A. := log n - h. then for any n > 2

between logn, i.e., the value for equidistribution, and the mean h. is +
obtained in the limit n - oo and is equal to 1 - y nats/symbol, with 1) log( -) < h. < logn (3)

- the Euler-Ma.Lheroni constant. This has implications for the comn- 2

pression of data from memoryless sources. The variance ov2 of many

statistical systems scales such that o!/h. goes to a constant in the limit 3) lim A. = I - v. (5)

n - oo. Surprisingly, in the present case, we have the much faster decay

exp(h,.) a - (x2/3 - 3) as n - no. The actual values of the variance where -y = 0.5772156649015329... denotes the Euler-Mascherons con-
are usually so small that the average value h. can be substituted for the stant, i.e., the constant that appears in Euler's infinite product repre-

entropy in most applications. sentation of the Gamma function.

1. INTRODUCTION Corollary 2 tells that the discrepancy of the average entropy with respect

The Shannon entropy H.(p) appears as a central quantity in many corn- to the value obtained for equidistribution increases monotonically to the

munication problems. It is defined by value I - -y nats/symbol. The relative loss (logn - h.)/h,. goes to 0.
For a source with entropy h., this implies that coding can not reduce
the average code word length of a memoryless source by more than 0.61

H.(p) : - logp,. bits/symbol ((1 -y)/Iog2 < 0.61), whatever the size of n is. The relative

gain of source coding goes to 0 with an increasing size of the alphabet
Consider n independent random variables fl, (. that are identi-

Note that for convenience, we use natural logarithms. cally distributed. If that distribution has a mean and a variance, say i

The entropy A.1 (p) is easily evaluated for any given distribution, Often and u
2 

then has the mean p. = np and the variance 4
2 

- n,2

one faces, however, the problem of a typical value, i.e., a value that is Thus, the variance increases proportionally to n, i.e., proportionally to

typical for a given alphabet size n. Let us assume that we can compute p.. This is what we are typically used to. In the present case, we have a
the mean and variance of H.(p) with respect to p = (Pl,... p.), where rather different behaviour:

p runs over all probability distributions. Then the mean value could be

seen as being a typical value, whenever the variance is small. Corollary 3
The average which we consider is an unweighted average over all prob-

ability distributions, i.e., we assume that all probability distributions p 1) a, is monotonically decreasing for n > 3.

from 2) lim- no2 = -2-3

,.:= (p1. p.): p.t_, Vi, t Pi1 Corollary 3 means that the system literally freezes in an average be-

.i=2 haviour. The variance goes exponentially fast to 0, in the sense that
lim...- exp(h.)a! = constant. From a practical point of view this im-

are equally likely. The mean h. and the variance a! of the entropy H.(p) plies that the entropies of distributions with a large value of n need not
then become be computed: they are close to the average value with a high probability

h. " L Ii6, +This is made more precise in the following table
h,. := div.. . di. 

6(pi + ... + P. - 1 ()
n h. 0.

2 2 0.5 0 187

U., := .j.J dpl ... dp. 
6
(pl + ... + p. - 1)(H.(p) - h.)', 4 1083 0.191

IS1 8 1.7083 0.191

where 6 is the Dirac distribution and where 8 1.718 0.161

16 2.381 0.124
2 1 32 3.058 0091

: dpl ... dp, 6(p + + p. 64 3 744 0.066
128 4.433 0.047

denotes the volume of S.. 3. CONCLUSION

2. RESULTS We h~ave found a typical value ha for the entropy of any source with

The computations are summarized as follows an alphabet of n letters This value deserves its name in the sense that
22 _ (,3 /3 - 3)exp(-h. ) in the limit n - ou The difference between

Theorem 1 For amy n > 2, the mean h. and variance a. of thle en. the entropy for equidistribution 1ogn and the mean h. increases mono.
tropy, when averaged over S. are given by tonically with n - oo but is bounded by I - -y < 0 61 log 2 nats/symbol

Thus, 0.61 bits/symbol is the maximal coding gain that can typically

1) h (1) be expected for memoryless sources This shows that data compression

k=2 kstrongly relies on memory.
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One of the most useful results in the Shannon theory is the lower Note that
bound on mutual information due to Fano

PeX=Y] - E P(o)Py(is) (4)

Theorem 1. Suppose that X and Y are random variables that satisfy:

i.e., the inner product between the marginals of X and Y which, in many

a) X and Y take values on the same finite set with cardinality M cases is easy to obtain from the description of X and Y.

b) either X or Y is equiprobable. Condition (3) implies that the marginals are either nonoverlapping

Then, or both equiprobable.

I(X;Y) k P[X = Y] log M - h(P[X=Y]) (1) We will now loosen (2) by applying the following lower bound on
binary divergence

where h is the binary entropy function. d(xIly) >x log 1-_h(x) (10)

y

The purpose of this paper is to give a more general version of the
lower bound in Theorem 1 by dropping its assumptions. to Theorem 2, resulting in the following generalization of Theorem 1:

The restriction that X and Y take values on the same set is made
throughout for convenience in expressing the results. It is easy to see Theorem 3. If X and Y take values on the same set then
from the mutual information data processing theorem that it can be lifted
by replacing P[X=Y] by P[X=#(Y)] where + is an arbitrary function
mapping the space of Y to the space of X. The assumption that at least I(X:Y) k P[X = Y] log h(P[X-Y]) 011)
one of the random variables is equiprobable is a nontrivial restriction, TIYYT
which we want to eliminate. 1 = Y log 1 - h(P(X=YI) (12)

max PX (()
The power of Theorem 1 stems from its ability to lower bound the Q*a

mutual information between two random variables in terms uf a single
parameter computable from their joint distribution: the probability that where by symmetry we can replace max Px((o) by max Pr((o).
the random variables take the same value. Since it is possible to con- 03E0 CoeQ

struct independent (nonequiprobable) random variables (X,Y) for any It is tempting to strengthen the lower bound in Theorem 3 with
arbitrarily specified P[X=Y], it is apparent that dropping assumption b)
of Theorem I will require a lower bound that depends on the distribution
of X and Y not only through P[X=Y], but through some other, hope- I(X;Y) > P[X=Y] H(X) - h(P[X-Y]). (!?)
fully simple, quantity.

Consider the following result. However, counterexamples to (!?) can be found. It is possible to modify
the incorrect bound (!?) in terms of entropy and obtain the following
result.

Theorem 2. Define the binary divergence function d(xliy) as the diver-
gence between the two-mass distributions (x, I - x) and (y. - y). If Theorem 4. Assume that X and V take values on the same set and
X and Y take values on the same set, then denote

I(X;Y) > d(PIX=Y]HIP[X=]), (2) P - inf P[X=YIX-'o] - inif PrIx(telw) (13)

where V is independent of X and has the same distribution as Y. Furth- Then,

ermore. equality holds in (2) if and only if

I(X;Y) > p H(X) - h(P[X=Y]) (14)

JaPx(X)Py(y) X = y
Pxy(x.y) = (3)

1 Px(x)Py(y) If, in addition, p > 1 - then

Th7U work wa Wpoed in part by the Ofce of NEVW Resetrch under I(X;Y) k p H(X) - h(p). (15)
Grant NWOO14-9O-J-1734.
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The relation above between entropy and error probability leads to a
Relations Between Entropy and Error statement of the channel coding theorem in terms of the equivocation.

Probability* As one immediately observe, the fact that zero equivocation is achieved
iff zero error probability is achieved and the classical channel coding

Meir Feder t Neri Merhav theorem imply that the equivocation of the codebook can be made
arbitrarily small (exponentially fast with the block length) provided

Abstract that R < C. It turns out that this observation can be proved directly,

The relation between the entropy of a discrete random vari- at least for DMC's. This proof provides an insight on the behavior of
able and the minimum attainable probability of error made in the equivocation at R > C.
guessing its value is examined. While Fano's inequality provides a Specifically, by applying a random coding upper bound directly to
tight lower bound on the error probability in terms of the entropy, the equivocation, using techniques similar to Gallager's derivation of
we derive a converse result - a tight upper bound on the minimal the coding theorem [3], it is shown that
error probability in terms of the entropy. As a consequence of
this relation, a channel coding theorem for the equivocation is / 1\
presented. At a rate R < C, where C is the channel capacity, it H(XiY) _< 1 + ) 2-n[F(p'q)-p/ (4)
follows straightforwardly from the classical channel coding the-
orem and the bounds above that the equivocation can be made where H(ILL) is the equivocation of the codebook,
arbitrarily small (exponentially fast with the block length). This
result is proved directly for DMC's, and from this proof it is-r 1 ]+p
further concluded that for R > C the equivocation achieves its Eo (p, q) = -log . q(.)p(ylz)I(1+P)
minimal value of R- C at the rate of n-112, where n is the block V
length.

and where we identify maxo<_,< 1 [EO(p, q) - pR] as the random coding
exponent which is strictly positive as long as R < C.

In this work we explore the relationship between the entropy of a The inequality (4) holds for any value of R. This bound on the
random variable and the minimal error probability in guessing its value, equivocation is always useful, unlike the random coding bound on the
The well known Fano inequality [1] provides a tight lower bound on the error probability which becomes useless at it exceeds 1. When R = C
error probability in terms of the entropy. We derive a converse result we find that the optimal p approaches zero, and by Taylor expansion
- a tight upper bound on the minimal error probability in terms of the of Eo(p, q) about p = 0 we get
entropy.

Specifically, denote by w(X) = 1 - maxzp(x) the minimal error H(XIY) < ck/'¶, (5)
probability associated with the random variable X and by r(XIY) =
f dP(y)[1 - p(ijy)], where I = i(y) = arg max, p(zxy), the MAP er- where a > 0 is some constant.
ror probability given an observation Y. Similarly, denote by H(X) Using (5) it is further easy to see that when R > C there exists a
and H(XIY) the entropy and the conditional entropy (equivocation) codebook whose equivocation satisfies
respectively. Fano's inequality states that 1 _ R-C + 0 n-1/3 (6)

H < 0(r) = h(2r) + irlog(M- 1), (1) n
Since always H(XIY) _> H(X) - n • maxl(X;Y) = Y R - na, we

where M is the size of the alphabet of X. We have shown a converse conclude that the equivocation, per input symbol, can be made exactly
result R - C, at a rate 0(n-1/2).

H >_ •(r) (2) We finally note that other techniques for bounding the error prob-

where ability can be used for bounding the equivocation. For example, it can
be shown directly that the expurgated error exponent, which at low
rates provides better exponent than the random coding exponent, is

(7r) = ai (- -- _ _ .-- , i= 1 .... I M-1, (3) applied to the equivocation.

[1] R. Fano. Class notes for the course 6.574, transmission of informa-
and ai = i(i + 1)log . The region in the 7 - H plane determined tion, Massachusetts Institute of Technology, 1952.
by inequalities (2) and (3) is depicted in Figure 1 for the case M = 8.
The bounds above hold for 7r(X) and H(X), as well as for wr(XIY) and [2] M. E. Hellman and J. Raviv. "Probability of error, equivocation,
H(XIY), and it can be shown that both bounds are sharp, i.e. each and the Chernoff bound," IEEE Trans. Information Theory, IT-
point on the bounds can be achieved with equality. We note that a 16:368-372, July, 1970.
weaker bound H > 2r, which coincides with (3) only at 0 _< 7r < 1/2
has been observed in, e.g., (2] and [31 pp.5 2 0 -5 2 1. [3] R. G. Gallager. Information Theory and Reliable Communication1

To get the bound (3) we first calculated a function 0i(r) which is Wiley, New York, N.Y., 1968.

the minimal entropy for each given value of error probability of a single
random variable; the bound 0*(7r) is the largest convex function that 1
is smaller or equal to 0(7).

It is interesting to note that the bounds above affirm the intuition 25
that a random variable is totally random (i.e. H = logM) iff it is
totally unpredictable (i.e. its minimal error probability is (M - I)/M) A 1

and conversely, a random variable it totally redundant (i.e. its entropy .7
is zero) iff it is fully predictable (its minimal probability of error iszero). ,/°

*This research was supported in part by the Wolfson Research Awards adminis 05f

trated by the Israel Academy of Science and Humanities, at Tel-Aviv University.t
Meir Feder is with the Department of Electrical Engineering Systems, Tel-Aviv 0 0,01 020 0 5 o

University. Tel-Aviv, 69978, ISRAEL 0 a 02 03 01
'Neri Merhav is with the Department of Electrical Engineering, Techniom - Israel Figure 1: The Functions *(a), O•o) and 0*(o) and the allowable region

lastitute of Technology, Haifa, 32000, ISRAEL in the r - H plane
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Generalized Cutoff Rates and R~nyi's Information Measures

Abstract I. Csiszir (Budapest)

Rinyi's entropy and divergence of order a are given oper- Definition. The /-cutoff rate is

ational characterizations in terms of block coding and hypoth- (i) for source coding: the smallest resp. largest s such

esis testing, as so-called #6-cutoff rates, with a = 1/1 + /6 for that for every r > 0, the best codes of block-length n

entropy and a = 1/1 -/3 for divergence. Out of several pos- and rate <r have probability of error

sible definitions of mutual information of order a (for channel
W and input distribution P) we adopt P, < exp{n)6(s - r) + o(n)} resp.

pc > 1 - exp{n)6(s - r) + o(n)}, (4)
Ia(P,W) = minyEZP(z)Dc,(W(.Ix)IIQ).

according as 6 > 0 or /3 < 0.
(ii) for hypothesis testing: the largest resp. smallest s

This admits interpretation as a /3-cutoff rate),with a = 1/1 -6 such that for every r > 0, the best tests of sample
(at least for a Ž_ 1/2), and so does maxp ha(P, W), the "R~inyi size n and probability of type 1 error < exp(-nr)
capacity." have type 2 error p. satisfying (4), according as /6 < 0

Geometrically, the /3-cutoff rate for a discrete memoryless or /3 > 0.
source or channel is the r-axis intercept of the tangent of slope (iii) for channel coding: the largest resp. smallest s such
/3 to the curve e(r), where e(r) is the exponent of the prob- that for every r > 0, the best codes of sample size n
ability of error resp. of correct decoding for the best codes of and rate r have average probability of error p. satis-
rate r, according as r is an achievable rate or not. The ordi- fying (4), according as /6 < 0 or /3 > 0.
nary cutoff rate of a DMC is the /6-cutoff rate with /6 = -1. (iv) for channel coding with a fixed input distribution P:
The /6-cutoff rate for hypothesis testing has a similar geometric same as in (iii), but the codes are required to have
representation, e(r) being the exponent of convergence of the codewords of the same type, approaching P as n-
probability of type 2 error to 0 or 1, for the best tests of sample 00.
size n -+ oo with probability exp(-nr) of type 1 error. Theorem

SummaryRenyi [1] introduced a one-parameter family of informa- (i) For a DMS with distribution P, the /3-cutoff ratetion measures. His entropy oneorder a is equals the RWnyi entropy (1), with a = 1/1 + P3, forall / > -1,/6 # 0.
1 log-pa(X) (o : 1) (1) (ii) For testing a simple hypothesis P against a simple

H0 a(P) 1- a alternative Q, the /3-cutoff rate equals the Rhnyi di-
vergence (2), with a = 1/I - fl, for all 6 < 1,/3 # 0.

and the divergence of order a is (iii) For a DMC {W}, the /3-cutoff rate with fixed input
distribution P equals the RW yi mutual information

Da(PIIQ) -- 1 logEP(-)Ql-'() (a 1). (2) (3), and the 6-cutoff rateequals maxpl 0 (P, W), with
a- =1/1-/6, for all -1 _<6:5 1,6:h 3 0.

Remark. The "Rgmyi capacity" maxp I(P, W) can be alter-In the limit a --+ 1, the standard Shannon entropy and Kullback- natively represented as

Leibler divergence are recovered. Shannon's mutual informa-

tion has several equivalent definitions whose "order a" exten-
ing definition of mutual information of order a, for a channel p a-1 E Y

W with input distribution P: I

or as "information radius of order a"Ie(p, W) = inf •' P(x)DG( W(. Ix)] IQ). (3)

minmax D,,(W(.Ix)IIQ).

RWnyi's information measures enter useful error probabil- Q

ity bounds, as observed by several authors. Still, few results This Theorem is a straightforward consequence of well
are available that actually identify operationally defined quan- known results on error exponents available, e.g., in Csiszix and
tities with information measures of order a. One such result, K6rner [3]. The reason the author still considers this Theorem
due to Campbell [2], characterizes entropy of order a in terms remarkable is that it appears to be the first natural and unified
of exponential mean length of variable length codes. operational characterization of Rlnyi's information measures.

In this paper, we give operational characterizations of References
R~nyi's information measures (1), (2), (3) in terms of block [1] R6nyi, A., On measures of entropy and information, in
codes and hypothesis tests, analogous to the familiar charac- Proc. 4th Berkeley Symp. Math. Statist. Probability, Vol. 1,
terizations of the standard information measures. To this end, University of California Press, Berkeley, 1961, pp. 547-561.
we introduce the concept of /3-cutoff rates, generalizing the [2] Campbell, L.L., A coding theorem and R~nyi's entropy,
well-known concept of cutoff rate of a DMC that corresponds Information and Control, Vol. 8, pp. 423-427, 1985.
to = -1. [3] Csiszir, I. and K6rner, J., Information Theory: Coding

Theorems for Discrete Memorylesj Systems, New York:
I. Csiszir is with the Mathematical Institute of the Hungarian Academic, 1981.
Academy of Sciences, H-1364 Budapest, POB 127, Hungary.

This research was supported by the Hungarian National Foun-
dation for Scientific Research, Grant 1906.
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A Generalization of the Entropy Power Inequality with
Applications to Linear Transformation of a White-Noise

Ram Zamir and Meir Feder

Dept. of Electrical Engineering - Systems, Tel-Aviv University
Tel-Aviv, 69978, ISRAEL

Abstract
where m, = Rank A, V(Inf) = ff logp is the KWdlack-Leibler-We prove a generalization of the Entropy-Power Inequality, et

and of the Fisher-Information Inequality, to multi-dimensional Distance (KLD) (or "information divergence') between z and f, and
linear transformation of a vector with independent components, 1!" denotes a Gaussian vector with the same first and second moments
and use this generalization in several spplications. as

The mutual-information between any pair of orthogonal projec-
Consider the (joint-) differential-entropy h(Aa), of a linear trans- tions of a white Gaussian vector is zero (since they are independent).

formation V = AS, dim A = m x n, where I = x1... x, is a continuous For the non-Gaussian case, we use Theorem 2 to prove:

random vector and h(y) A E{- log f(y)). In some cases, this entropy
is easily calculated or bounded. If A is an invertible matrix, the lin-
ear transformation just scales and shuffles a, thus the entropy is only Theorem 3 Let & = z1 ... x, be a vector with i.i.d. samples and let
shifted, i.e., h(Az ) = h(l)+log JAI, where 1. denotes absolute value of Ala and Ahl be two orthogonal projections of z such that Rank Al = r
determinant. If A does not have a full row-rank, then h(AX) = -0o , and Rank Al = n - r, then
since there is a deterministic relation between the components of 11
If & = a is a Gaussian vector, the linear transformation A preserves -I(Ala; Aha) 2! D(z;z *) - -D(A.la; Ajz7) (5)
the normality and so h(A*) = •log(2reJAR,=A'I.), where R1 is the r
covariance matrix of Z. where -II(AIZ;Ahl) is the mutual-information (per sample of All)

In the above three cases Z was an arbitrary random vector. In between the two projections.
what follows we restrict Z to have independent components. Suppose
in addition that y is scalar, i.e., y = aizi + ... + a,,z., then the Note that if !D(AIX;AXa) f 0 (for large enough n), ie., ALI
entropy-power-inequality (EPI) can be used to lower bound its entropy. approaches normality in a KLD sense, this mutual-information is lower
Specifically, by one of the equivalent forms of the EPI (see e.g. [1]), bounded by the (positive) KLD of z. A simple example, for r =

1, is All = ; h zE (the D.C. component of X), where, by the
strong form of the Central-Limit-Theorem of [2], D(Agz; AX*) -- 0 as

where , is a Gaussian vector with independent components, such that n -- co (actually, for "nice" distributions the KLD decreases rapidly
h(=i) = h(xi), i = 1... n and A! = (a, .... a,,). Note that an explicit with n). Observe that the mutual information between the orthogonal

projections of the non-Gaussian white noise, is bounded away from
calculation of the entropy in the RHS of (1) yields zero, in this example.

g 2Motivated by the duality between EPI-type inequalities for vari-
h(g!!) = log 2ire(I PI) = log 2-e(- aipi) (2) ous information theoretic measures (see [1]), an inequality analogous to22 if (3) is derived for Fisher-Information matrix. Let K(-) = f JVf . Vfr

where P is the covariance matrix of .1, i.e., it is a diagonal matrix denotes the Fisher-Information matrix, with respect to a translation
whose diagonal values are the entropy powers pi = , )22(.)* The parameter of a random vector with a density f, where Vf is the gra-

inequality in (1) becomes equality iff ,is Gaussian (or if n = 1). dient vector off. Then,

In this paper, we generalize the lower bound (1) above, to the case
where I may be a vector, and show: Theorem 4

Theorem I For ang matrix A and a vectorl with independent comn- K(A) <_ K(Ai) = (AK-()A'I (6)
poncnt8' ,L where t = .l ... i. is a Gaussian vector with independent components,

h(Aa) Ž_ h(AA) = 21og(2reIAPA'[*) . (3) such that K(.i) = K(zi), i = 1... n.

Equality in (3) holds if & is Gaussian or if, after omitting the all- The matrix inequality (6) is in the sense that the difference matrix
zero columns, A becomes invertible. When I has i.i.d. components is positive semi-definite. Equality holds under the same conditions as
and A is orthonormal (i.e., IAA'l = 1), (3) becomes -kh(AX) >_ h(z). in theorem 1.
One implication of this result can be interpreted as an increase of
the entropy per degree of freedom after band-pass filtering of a white
process. As the entropy becomes higher, the random vector becomes
more Gaussian. A specific statement of this phenomena is given by
the following application of Itheorem 1: References

[1] A. Dembo, T.M.Cover, and J.A.Thomas. Information theoretic
Theorem 2 For any matrix A and a vector , with independent comn- inequalities. IEEE Trans. Information Theory, IT-37:1501-1518,
ponents, Nov. 1991.

-- D(A&; A&) <m .max V(:,; z•) (4) [2] A.R. Barron. Entropy and the central limit theorem. The Annals
mI of Probability, 14, No. 1:336-342, 1986.
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RATE-DISTORTION COMPUTATION AND
STATISTICAL PHYSICS

Kenneth Rose
Department of Electrical and Computer Engineering

University of California
Santa Barbara, CA 93106

A new approach to rate-distortion computation and R = 0, and consists of a sequence of phase transitions which
analysis is suggested in this work. We shall restrict our atten- increase the number of symbols (or singularities) by splitting
tion here to continuous amplitude memoryless sources. Much them. It is shown that the last phase transition occurs when
of the existing theory is formulated in terms of optimization the rate-distortion curve hits the Shannon lower bound, and
over the output density, particularly the results leading to the where the singularities split, or rather, explode into a con-
Blahut algorithm. In the new approach we consider a map- tinuous distribution.
ping from the unit interval with the Lebesgue measure, to the Finally, we discuss the applicability of the mapping ap-
output space. Instead of optimizing the output density di- proach to practical computation of rate-distortion functions.
rectly, we optimize this mapping. The theoretical equivalence Discretization for numerical computation results in an al-
of the mapping approach (MA) to the traditional approach gorithm whose performance differs from that of the Blahut
is intuitively obvious but can be formally shown by isomor- algorithm (BA). BA optimizes over a grid of points in the out-
phism theorems for topological measure spaces. Although put space to obtain an approximate solution (whose quality
equivalent in principle, the MA formulation is different, and depends on the resolution of the grid). MA uses the mapping
by deriving the results from this angle, some new insights which adapts its effective grid to the source distribution and
are gained, as well as a more efficient numerical approach to so is more efficient. Moreover, as long as the Shannon lower
compute the rate-distortion function, bound is not attained, the optimal density is discrete (and

First, the mapping approach is presented and its equiv- usually finite) so that few variables allow MA to find the ex-
alence to the usual approach is discussed. The optimality act solution, which BA approximates using the entire grid.
conditions are derived and are shown to be random-coding Note also that once the Shannon lower bound is attained we
relatives of the Lloyd optimality conditions for optimal quan- can explicitly derive the solution, so numerical evaluation is
tizer design. no longer necessary. The MA ba.ed algorithm is closely re-

Next, the MA formulation is used to prove that, for lated to our VQ design method [2]. Another relative is [3]
the squared error distortion, the optimizing output density where the derivation is constrained to a given alphabet size.
is purely discrete as long as the rate-distortion function has The MA method allows the number of symbols to grow as
not merged with the Shannon lower bound. In other words, necessary to obtain the unconstrained rate-distortion result.
except for the case that the bound i, attained (e.g., Gaus-
sian source for all positive rates), the output density consists Acknowledgements:
of singularities. This could explain why explicit expression- I am grateful to Robert M. Gray for prompting me
s for the rate-distortion function are so hard to obtain. In to find deeper relations between the deterministic annealing
a paper that recently came to my attention [1], it is shown approach to VQ and rate-distortion theory.
(using a different approach) that the optimizing output is This work is supported by the Engineering Foundation
discrete if the source density's support is not the entire s- with the cooperation of IEEE, grant RI-A-92-12.
pace. This result is a special case of our result here, as for
such sources the Shannon lower bound is strictly lower than REFERENCES
the rate-distortion function at all nonzero distortions.

We then address the analysis of the evolution of the op- [1] S. L. Fix, "Rate distortion functions for squared error dis-
timizing output densities as we decrease the distortion (that tortion measures," in Proc. 16'th Annual Allerton Conf.
is, as we "crawl up" the rate-distortion curve). Here we s- on Commun., Contr. and Comput., Oct. 1978.
tart by showing that the functional that is minimized to find [2] K. Rose, E. Gurewitz, and G. C. Fox, "Vector quantiza-
the optimizing density is the free energy of an appropriately tion by deterministic annealing," IEEE Transactions on
defined statistical mechanics system. The slope parameter Information Theory, vol. 38, pp. 1249-1257, July 1992.
is simply related to the temperature in the physical analogy,
and the optimizing output density is given by the isother- [3] W. A. Finamore and W. A. Pearlman, "Optimal en-
mal equilibrium distribution at the given temperature. Thus, coding of discrete-time continuous-amplitude memoryless
"crawling up" the rate-distortion curve is simply an anneal- sources with finite output alphabets," IEEE Transaction-
ing process in statistical mechanics. The analysis shows that s on Information Theory, vol. IT-26, pp. 144-155, Mar.
the annealing process starts with a single output symbol at 1980.
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Ziprs Law and Information Complexity in an Evolutionary System

L.B.Levitin (Boston University, Boston, USA) and
B.Schapiro (NMI Reutlingen, Germany)

Zipfs law is a famous empirical law that is observed in the behavior of
many complex systems of surprisingly different nature. Zipf [1] found E(A(N)) f -N'- (9)
a remarkable rank-frequency relationship in linguistics. If we consider a 1- q
long text and assign ranks to all words that occur in the text in the order For large ranks i the frequencies are
of decreasing frequencies, then the frequency f, of a word satisfies the I _r -_5 ]
empirical law: f, = cr- , where c and 0 are constants and 0 - 1. Zipfs fi(N) b b I b (10)
law has been discovered independently in such diverse situations as "[-~ rq(Iqi ~
distribution of biological species, distribution ot income, distribution of L
city populations, etc.[2] This is also Zipfs law, since the exponential factor is almost constant for

bI 1. q 1. For example, if b=O.1, q=0.1, the factor changes from 0.45 toMost theoretical explanations of Zipfs law are based on the principle of I when i changes from I to o. In contrast with case I (q=0), now the
the "least effort", "minimum cost" (3]. "minimum energy" [4], or on exponent in Zipfs law is larger than 1, and there exists a counterpart of
other very specific assumptions which, in our opinion, call for further
explanations. the thermodynamic limit (N for the average frequencies:

This paper presents a model of the development of an evolutionary fi = lim f(N)= Iex (II)
system in a form of a nonstationary branching Markov random process. N- L(1-q)iJ q (1-q)i)
We will formulate the model in the language of evolutionary dynamics,
though it can be reformulated in terms of demography, linguistics, etc. Let us address now the question of the complexity of the system

described by our model. We expect intuitively that a "good measure" of
Consider an ecosystem consisting of populations Ni(N) (i=I,2...,A(N)) complexity should reflect both "unpredictability" and "organization"
of species si, where A(N) is the number of different species at the N-th (which implies memory) in the behavior of a complex system. Weospnf s pe cess .w herecA yse is th sumer o diffe e sccis t the suggest as a measure of complexity at time N the mutual informationstpo the process. The ecosystem is assumed to evolve according to th betwe w ucsiesae ftesse NadS.

following rules: between two successive sates of the system SN and SN_1.
1) At the (N+l)th step of the process an individual of species s, is born CN = I(SN;,SNi) = H(SN)-H(SNINI) (12)

withprobability Pr(Ni(N+l)=ni+lINi(N)=n}= l-Nni- (1) This measure agrees with our intuition since it is nonnegative and
N vanishes for both extreme cases of chaotic (i.e. memoryless) systems

Here Ni(N) is the random variable which is the population of species and, on the other hand, strictly deterministic systems.
star time N,ifl,2,...,A(N).
2) The probability that an individual of a new species SA(N)+i will be In our model the state SN is a random vector with a random number
bom at the (N+l)th step of the process (probability of a successful A(N) of components: SN = (Nj(N),N 2(N) ... NA(N(N)) (13)
mutation) is

Pr(NA(NWW (N + 1) = 1 I NA(N,'l (N) --0} = c(N) (2) For large N we can approximately consider random variables Ni(N) as
independent. Then in case 1. approximately,

Set the initial conditions: NI(l) = l; A(I)=l (3) 2

A(N) C' -- cN-(1--c)InN (14)
Then for any N, XN 1 (N) = N. Formulae (1)-(3) define a branching 6

n i =Thus, the limit complexity per one component of the system (one
Markov process. species) is

We will analyze the behavior of the expected values E(N 1) and the CI.. = ir C --nats, (15)

average frequencies fi(N) = E(N,(N))N-i. Consider two special cases ?-- E(A(N)) 6
corresponding to two different assumptions about the mutation rate. or 2.37 bits per species.
1. c(N)-c-const, c4cl (4) Similar analysis in case 2 gives the same limit complexity per species
Then, the expected number of species at step N is (specific complexity) for qol. Apparently. this complexity is

E(A(N))=I+(N-I)c (5) characteristic for all systems which obey Zipfs law with the exponent
Calculation of the explicit expression of E(N,(N)) is complicated by close to 1.

the fact that the step N() when the species si appears is a random
variable. After quite an intricate derivation we obtain: References

[(N) =-l-c' (-l)'-'c nCY; + 1. Zipf, O.K., The Psychobiology of Language. Houghton-Mifflin,
E(N( -) I I-cj (6) Boston, 1935.

2. Studies on Zlpfs Law. Ed. H. Guiter and M.V.Arapov. Studienverlag
( cN \-" cýN- Brockmeyer. Bochum, 1982.

H e c e f r c l a n i l : E ( t ( ) ) L i _ I ) , f i ( N ) - , ( 7 )
3. Mandelbrot, B., An Information Theory of the Statistical Structure of

which is Zipfs law (with the exponent slightly smaller than 1). Languoe. In: Communication Theory. Ed. WJackson. London.1953,

2. Now assume that the probability of mutation leading to the emer-
gence of a new species decreases with time: 4. Shreider, Yu. A., Theoretical Derivation of Text Statistical Features (A

Possible Proof of Zipfs Law). Problems of information Transmission,
c(N) = bN-q, where q4,l. (8) v.3, No.l, 1967, 57-63.

Then the expected number of species grows slower than N:
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On Noiseless Diagnosis
Raymond W. Yeung

Department of Information Engineering
The Chinese University of Hong Kong, N.T., Hong Kong

Noiseless diagnosis has wide applications in source coding, deci- Theorem 1 (Lower Bound) For any testing tree, C Ž p(H).
sion table programming, medical diagnosis, database ouary pro-
cessing, quality assurance in manufacturing, and pattern reog- The following emma, which is of fundamental inters, is
nition. In this paper, we consider the following formulation of instrumental in the proof of Theorem 1. Basically, it is a gener-
such a problem. Let F be the fault of a system which takes alization of Shannon's entropy bound to non-D-ary trees.
value in A- = {fi,i = 0,. .. ,n - 1}, and pi be the probability of Lemma 1 For a testing tree, define the descendancy matriz
occurrence of fi. Let T = {ti} be the set of tests available for [ak], where
diagnosing the system, and ci and sa be the cost and the number
of possible responses of ti, respectively. The set T is sufficient 1 if f, is a descendar"' of non-terminal node k
in the sense that it can distinguish all the possible faults of the = 0 otherwise
system, and the tests in T are noiseless in the sense that for a
given fault, when a particular test is applied, the response of the Let ri, be the number of branches of non-terminal node k. Then
test is deterministic. We are interested in a testing tree which
minimizes the expected cost to identify F, whose cost is denoted pE •j log r• > H.
by Cmi.. Special cases of our model can be found in [1]-[3]. i k

In our formulation, it is assumed that only one fault can Toward obtaining upper bounds on C,,,, we introduce the
occur. We note that this assumption is by no means restrictive, notion of irreducibility of a sufficient test set.
because if multiple faults can occur, we can always regard each
possible combination of faults as a single fault, and reformulate Definition 1 A test set T is irreducible if T is sufficient and
the problem as a single-fault problem. no proper subset of T is sufficient.

Define the efficiency of a test ti by L[emma 2 If an irreducible test set contains a test with d pos-
log sj sible responses, the size of the test set is at most n - d + 1.

ei-
Ci Theorem 2 Let the tests in a sufficient test set T be indezed

Since the number of possible responses of tj is sj, the maximum such that a, _< s2 _< • • .. Then the size of an irreducible subset
amount of entropy reduced when t, is applied is log sj. This is of T is at most j*, where j" is the largest integer j satisfying
achieved when all the responses are equally likely immediately
before ti is applied. Thus ei gives the maximum amount of n - sj ,1Ž_. (1)
entropy reduced per unit cost when t, is applied. Theorem 3 (Universal Upper Bound) Let the tests in a suf-

Assume without loss of generality that the tests in T are ficient test set T be indeted such that si <5 32 <_ .... Then Ci.
indexed such that is upper bounded by the total cost of the most ezpensie j" tests

el_ e2 _".inT.

Now define a mapping p: R+ -- R+ as follows. First define
p(z) for the values The universal upper bound on Ci, does not depend on {Pi}-

r This bound is particularly useful when {pj} is unknown. We alsoE, = cj, obtain a refined upper bound on C,,, which depends on {p,}.
j=1

r = 0,1,2,..- by

p(X,) = E ci. References
jfi [1] D. A. Huffman, "A method for the construction of mini-

For a value between x, and x,+,, the value of p(x) is defined as mum redundancy codes," Proc. IRE, 40, 1090-1101, 1962.
the interpolation of p(a,) and p(z,+,). Thus

[2] E. N. Gilbert and E. F. Moore,'Variable-length binary en-
7Y(N) codings," Bell Syst. Tech. J., vol. 38, no. 4, pp. 933-968,

p() =E c, + (Z - z 7 ( ))/e 7 ( 3 )+i 1959.
j=1

where -y(a) is the largest integer r such that [3] K. R. Pattipati and M. G. Alexandridis, "Applications of
heuristic search and information theory to sequential fault
diagnosis," IEEE Trans. Syst. Man Cyberm., vol. 20, no. 4,

X .e c. pp. 872-887, Jul/Aug 1990.
j.1

77



Upper Bound for Uniquely Decodable Codes in a

Binary Input N-User Adder Channel

by

Shraga Bross and Ian F. Blake
Department of Electrical and Computer Engineering

University of Waterloo, Waterloo, Ontario

Abstract

The binary input A -user adder channel models a communi- In the present work we use a technique which resembles Van
cation media acoessed simultaneously by N users. In this model Tilborg's method to derive an upper bound on the size of any UD
each user transmits binary sequences and the channel's output block code for the N-user adder channel. We prove the following
on each bit slot equals the sum of the corresponding N inputs, result
A uniquely decodable code for this channel is a set of N codes
- a code for each of the N users - such that the receiver can Theore let n fo, t ,C) e a uniely dec
deteAmine all possible combinations of transmitted codewords
from their sum. Van-Tilborg presented a method for deterinin- ICII-IC 21 IN: , king an upper bound on the size of a uniquely decodable code hi A kJ
for the two-user binary adder channel. He showed that for suffi- " 4'N-,<"

ciently large block length this combinatorial bound converges to (cpitreonondy( - kxk) "man {... ( 2' 22(`N- ' )_

the corresponding capacity region bound;.;.y. kN-1~ I I

In the present work we use a similar method to derive an (2)

upper bound on the size of a uniquely decodable code for the bi- The upper bound (2) is iterative - i.e., the (N - 1)-user bound
nary input N-user adder channel. The new combinatorial bound can be obtained by projecting the r.h.s. of (2) on a subspace of
is iterative - i.e., the bound for the (N - l)-user case can be oh- (N - 1) combinatorial variables (e.g. by setting kN_1 = 0).
tained by projecting the N-user bound on (N- i) combinatorial F- V = 3 the bound admits the form
variables and in particular it subsumes the two-user result. For (n (n
sufficiently large block length the N-user bou.Ad converges to 1C,1. 1C21 .1C-1 • k n
the capacity region boundary of the binary input N-user adder
channel.

min { max (2 k,2J), 2n-(5k4) } (3)

Summary which yields Van Tilborg's result (1) upon projection on the

N = 2 plane.
The binary input N-user adder channel is a discrete mem-

oryless channel accessed by N users. It is assumed that each The asymptotic behavior of the rate-sum corresponding to
user transmits binary sequences, bit and block synchronism is the r.h.s. of (2) is investigated. We show that for sufficiently
maintained, and the channel's output on each bit slot equals the large n the rate-sum is lower bounded by
sum of the corresponding N inputs. A uniquely decodable (UD) N
code for this channel is a collection of N block-length n codes - 1 P -Ž 1 + - log 2 N. (4)
(C 1,C3,. . . ,CN) - such that the sums c, + c2 + -.- + CN for any 2

(c',c2,---, cN) E C1 x C2 x ... x CN are different This enables The lower bound (4) is identical to the capacity region boundary
the receiver to uniquely determine all possible combinations of for N = 2 and is shown to be fairly close to the capacity region
transmitted codewords from their sum. The coding problei i is to boundary for N > 3.
find a UD code which maximizes the product IC1 I. IC2 1 ... ICNd
- i.e., a UD code having the maximum rate-sum. References

Van Tilborg considered the binary (N = 2) adder chi.nnel 1. H. Van Tilborg, "An Upper Bound for Codes in the Two-
[1,2]. He showed that the size of any uniquely decodable block Access Binary Erasure Channel," IEEE Trans. Inform.
code pair (C1, C2) of length n is upper bounded by Theory, 'o1. IT-24, no. 1, pp. 112-116, Jan. 1978.

"ICd I-C 21 (n)min-n 2' "-) (1) 2. H. Van Tilborg, "Upper Bounds on IC21 for a Uniquely
b-0 Decodable Code Pair (C1 ,C2 ) for a Two-Access Binary

Furthermore, for sufficiently large n the rate-sum of the com- Adder Channel," IEEE Trans. Inform. Theory, vol. IT-
binatorial upper bound on (1) converges to the capacity region 29, no. 3, pp. 386-389, May 1983.
boundary of the binary adder channel.
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Coding for the Synchronized Multiple-Access Binary Adder Channel with Idle Sources

Y. W. Wu S. C. Chang
Center for Signal Warfare Department of ECE
Vint Hill Farms Station George Mason University

Warrenton, VA 22186 Fairfax, VA 22030

Coding techniques for the synchronized mation bits "0" and "1" are encoded by usingmultiple-access binary adder channel with idle these two nonzero complementary vectors, andsources are studied. Based on Lindstrom's the idle state of source is represented by thecombinatory detection algorithm, a class of zero vector. This approach is quite similaruniquely decodable multiple-user codes is to the direct-sequence spread-spectrum
constructed. The rate sums of these codes are multiple-access method. This coding mechanismasymptotically equal to the maximum achievable will provide an exploratory methodology to fill
values. Each constituent code has a zero the gaps among random access collision reso-vector, and two nonzero vectors which are l's lution, multiple-user information theory andcomplement of each other. The source infor- spread spectrum.
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ON CYCLIC CODES FOR THE T-USER Q-ARY ADDER CHANNEL
Valdemar C. da Rocha Jr.

Communications Research Group - CODEC
Department of Electronics and Systems

Federal University of Pernambuco
50741 Recife PE BRASIL

Abstract: This paper addresses the construction of q-ary m(2  h(2 x)g2 (x)+..+m t(x)h t(x) t(x) over GF(q), and Ist•!T, is

cyclic codes for the synchronous noiseless T-user q-ary uniquely determined by ml(x),m2 (x),..,mT(x) when d..glmi(x)l<
adder channel (T-QAC). This construction is adaptive in the degjgi(x)], laist and deglr(x)]<n. Therefore it follows that
sense that the decoder will correctly identify any t active
users, OstsT, and correctly recover their respective rix), considered as a real sum of polynomials, is also
messages, i.e., any subset of t active users (unknown in uniquely determined by m1(x),m 2 (x),..,mT(x). Since each code
advance to the decoder) will be uniquely decoded. A very low C. has deg[gi(x)] information symbols and maxE deglgi(x)1=n,
complexity decoding procedure is given and it is shown that 1 i
the maximum achievable sum rate is 1. it follows that the maximum sum rate rate is I.

INTRODUCTION 0
The situation when m.(xl=O may be confused by the de-

In a recent paper [I] Mathys introduced a class of codes T

for the synchronous noiseless T active out of N multiple- coder with the situation when user i is not active. Such am-
access channel which is a discrete-time real adder channel biguities can be avoided, for example, by forbidding the
without feedback with N real or binary inputs. These codes messages m.(x)=O.
are uniquely decodable and have a sum rate that approaches I To decode the information sent by user i, i.e., to
if the decoder is informed of which T or less users are extract m.(x) from r(x), we simply apply the Chinese
active. That sum rate is reduced to a value of at most 1/2 1
if the decoder has to identify the subset of active users remainder theorem in reverse order, i.e., we compute over
which in this case is limited to at most T/2. GF(q) the remainder of the division of r(x) by gi(x), ls:ist.

We remark that two desirable properties of codes Since gi(x) is a factor of m.(x)h.(x)l1 (xW, lsj:st, j*i,
designed for a code division multiple-access (CDMA) communi- i i J
cation system are the possibility of identification by the it follows that r(x) a mi(xlhiWx).i(x) mod gi(x). However,
decoder of the active users without sacrificing code rate from (1) and the assumption that deg[mi(x)l<deg[gi(x)l it
and the availability of a low complexity decoding procedure.

In what follows we prove a theorem which allows the use follows that r(x)=m.(x) modgi(x).
of q-ary cyclic codes in a synchronous noiseless T-user real A CLASS OF EQUAL RATE BINARY CYCLIC CODES
adder channel in such a manner that they are uniquely m
decodable. The maximum sum rate achieved is 1. This rela- Let n=2m- I be a Mersenne prime. It is well known that,
tively low maximum sum rate is compensated for by the fact except for x-1, all the remaining (n-I)/m irreducible
that the resulting decoder satisfies the two desirable prop- factors of x - I have degree m. We can therefore construct a
erties mentioned above, class of equal rate binary cyclic codes for the T-user

We consider the factorization of x n-I over GF(q), binary adder channel (T-BAC) as follows. Let T be a divisor
assuming that n and q are relatively prime, which we denote of (n-h/m, i.e., Ts = (n-fl/m. Let gi(x), l-i:5T, be
as (n,q)=I. The condition (n,q)=l implies that x - I has no chosen as the Rroduct of s distinct degree m irreducible
repeated irreducible factors over GF(q). Let gI(x),g 2 (xW,... factors of of x - I and such that (gi(x),gl(x))=l, i*j. The

.. ,gT(x) denote a set of T polynomials which are factors of generator polynomial for user i, denoted by hixW, is as

na and are pairwise relatively prime over GF(q). We note previously defined. The binary codes constructed when T=2,that max .Edeg[gi(x)]=n. Since gi(x) and (xn-l)/gi(x)=hi(x), iFe., cdsfrte2BC ngnrld o aif h

iLe. codes for the 2-BAC, in general do not satisfy thei sufficient condition for unique decodability given in [31.
l-isT, are relatively prime polynomials and g(x) has degree ACKNOWLEDGEMENT
at least I, it follows by the greatest common divisor

Partial support by the Brazilian National Council for
theorem for polynomials that there exists /.lx) such that Scientific and Technological Development (CNPq) under the

0i(x)h(x)El omod gW(x), lsisT. (I) grant No. 304214/77 is gratefully acknowledged.I I iREFERENCES
Let us assume a noiseless synchronous T-QAC. Let mi(x) RFRNEhL [I] P.Mathys,"A class of codes for T active users out of N

denote the message polynomial for user i. Let hi(x) be the multiple-access communication system", IEEE IT Trans.

generator polynomial of the cyclic code allocated to user i. vol. 36, No.6, pp.1206-1219, November 1990.
The codewords of user i are generated in the usual manner by 121 R.E.Blahut, Theory and Practice of Error Control Codes,
computing m.(x)h.(x) but, before being transmitted, each Addison-Wesley, 1983.

codeword is multiplied by 1iWx) and reduced modulo xn-l. (31 V.C. da Rocha Jr. and J.L.Massey,"A new approach to the
design of codes for the binary adder channel", presented

Obviously the operations of encoding and multiplying by at the Third IMA Conference on Cryptography and Coding,
3i W)can be done simultaneously. Cirencester, England, December 15-18, 1991.

THEOREM: Let CIC2... C. T be blocklength n q-ary cyclic
codes with message polynomials m lx) m 2(x),..,m T(x and

generator polynomials h l(x),h(x W_... h (X), respectively.

Then the t-tuple (CI,C 2 ,... Ct), IstaT, is uniquely

decodable on the synchronous noiseless t-user q-ary adder
channel and has a maximum sum rate of I achieved when t=T.
PROOF: We note that max degim.ix)]) deg[gi(x)]-l, laisT. By

the Chinese remainder theorem for polynomials 12,pp.287-2RR)
it follows that the polynomial sum r(x) = ml X)h1(x)/031lx)+
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Coding for the Gaussian Multiple-Access Channel: An Algebraic Approach

Bixio Rimoldi*
Washington University

Department of Electrical Engineering
Electronics Systems and Signals Research Laboratory

St. Louis, MO 63130, USA

Abstract Given any group G, the G-adder channel is the chan- procedure can be repeated with the residual channel, provided that
nel with T inputs taking values in G and output equal to the sum the F-adder channel is used to transmit codewords of a multiple-
(over G) of the inputs. An F-adder channel is a G-adder channel access code over F. If no power constraint is given, this procedure
where G is the additive group of a finite field F. Similarly, the R- can be repeated indefinitely. However, If a power constraint is given,
adder channel is the one corresponding to the usual field R of real one has to stop after a finite number of steps 1, namely when the only
numbers. The Gaussian multiple-access channel is the cascade of the element of SL that satisfies the power constraint is the zero element.
R-adder channel with the (single-user) additive white Gaussian noise Our approach addresses the criticism raised by Gallager [5, page
channel. Multiple-access multiple-rate codes for F-adder channels 1241 when he observes that: "[There are] three bodies of research on
are defined and two constructions for such codes are given. In order multiaccess channels, each proceeding in virtual isolation from the
to use such codes on the Gaussian multiple-access channel, the latter others and each using totally different models." Gallager refers to
is decomposed into a number, say 1, of F-adder channels. This is the fact that the research on multiple-access channels has concen-
done via a construction involving a lattice with sufficient coding gain trated either on the bursty arrival of messages (collision resolution
to reduce the error-probability to a negligible value and sublattices research) or on the noise and interference aspects of the multiple-
of it by means of which we form i suitable chain of finite quotient access channel (information theoretic approach) but not on both.
groups. The multiple-access codes described are well suited for use The information theoretic approach does not take into account the
with random-access protocols with multiple reception. source model since one generally assumes sources producing informa-

tion at some average rate. Unfortunately, in order to see this average
SUMMARY rate one has to smooth out the source by averaging over a long time.

This introduces unacceptable delays. Our approach addresses both
In this paper we present a new approach to construct multiple- aspects. In particular, the problem of bursty arrival of messages is

access codes for F-adder channels, for the R-adder channel, and for addressed by having multi-rate codes. If it the source model is such
the Gaussian multiple-access channel (see the Abstract for the defi- that one cannot guarantee that the sum-rate constraint is fulfilled at
1ition of these channels), all times, like when the arrival statistic is Poisson, then one can use

The first part of our paper focuses on F-adder channels. We our multiple-access multi-rate codes with a random-access protocol
begin by introducing a set of definitions that we deem convenient with multiple-reception as described in [21 - [4].
for an algebraic approach to coding for F-adder channels. Then two
constructions leading to multiple-access multi-rate codes with sum-
rate constraint are given. References

Let R' = K/N be the largest rate needed at node i, i = 1,2,--., T,
where N is the blocklength common to all codes. A multi-rate code G J, H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and
D' for node i is a set of K' + I linear block codes, one for each rate r Groups. Springer-Verlag, New York, 1988.
in the set V? := {k/N : k E (0, 1,..., K'}}. The need for multi-rate [2] M. Kavehard, "An accessing technique for information packet
codes derives from the source model which is assumed to be bursty networks," in Proc. IEEE Electron. Aerospace syst. Cony., Nov.
(see. Gallager's comments below). 1981, pp. 42-45.

A multiple-access multi-rate code is a set of T (one for each channel
input node) multi-rate codes. The multiple-access multi-rate codes [3] B. S. Tsybakov, V. A. Mikhailov, and N. B. Likhanov, "Bounds
obtained via our constructions have sum-rate constraint in the sense for packet transmission rate in a random multiple access sys-
that decoding upon observation of the received sum-word is success- tem," Prob. Paredachi Inforynatsit, vol. 19, no. 1, pp. 61-81,
fitl, provided that the sum-rate satisfies E7=' r' < 11, where r' is 1983.
the rate of the linear block code used at node i and R is a design [4] N. Mabravari, "Random-access communication with multiple re-
parameter not exceeding 1. c4n N. Tran s om-acc ess v o n 36, ppl 6 2 -

In the second part of our talk we focus attention on the Gaus- ception," IEEE Trans. Inform. Theory, vol. 36, pp. 614-622, May
sian multiple-access channel. By means of T "modulators" and a
"demodulator," we decompose the Gaussian multiple-access channel [5[ R. Gallager, "A perspective on multiaccess channels," invited
into a number, say 1, of independent F-adder channels that are used paper in IEEE 7rans. Inform. Theory, vol. 31, pp. 124-142,
as d•escribed in the first part of our presentation. The decomposition March 1985.
procedure can be summarized as follows. We start with an appro-
priate lattice So as input signal set to to transform the Gaussian
multiple-access channel into a virtually error-free R-adder channel
(See e.g. [II). From So ,Jbd any sublattice S1 one oLAids a quotient
group So/Si. We assume that the choice of So and S, are such that
So/SI is isomorphic to the additive group of a finite field F. This
allows us to decompose the R-adder channel into an F-adder channel
and an independent residual R-adder channel with inputs in S1 . The

"*Supported in part by National Science Foundation grant NCR-9109944.
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OPTIMAL MULTIUSER CODES FOR THE REAL ADDER CHANNEL

A. Brinton Cooper, III Brian Hughes
U.S. Army Research Laboratory Department of Electrical and

Advanced Computing and Information Sciences Computer Engineering
Aberdeen Proving Ground, Maryland 21005 The Johns Hopkins University

Baltimore, Maryland 21218

Abstract We specify a family of T-user codes by recursively
constructing the corresponding generator matrix. The

A new family of uniquely decodable binary codes is first code is the trivial single-user code with B0 = [11
presented for the T-user real adder channel. The and To No = 1. The rule for constructing Bi from
:odes consist of T individual codebooks, each con- Bj-. is
taining only two codewords, one of which is the all-
zero sequence. These codes achieve a sum rate that is Bi-, Bj -I Or.-i1

equal, asymptotically in T, to the sum capacity. An B Bj- 1  Bi-, 1 T l1,2,.3i.
iterative decoding algorithm is also presented. Appli- h -

1 j-i 0I-i 0g,-i I - 1, 2, 3,...
cations are discussed to codes for T active users out 01Nl lN* -1 1/

of M potential users, and to superimposed codes. (2)
where Bj- I is the one's complement of Bj-1, Ii-I

Summary is the identity matrix of dimension N,- 1 , 0,-I is a
square, all-zero matrix with dimension Nj-i, ON is

The T-aw er real adder c=Z+Znel is a multiple access the all-zero N-tuple, and IN is the all-one N-tuple.
channel with output P = :l + 22 +I ... + zr, which

is the real sum of a set of binary input symbols, one
from each of T users. A T-user code for this channel Theorem: For any positive integer j, the matrix
is a set (C1 , C2 , ... , CT) of binary block codes having Bi in (2) defines a uniquely decodable binary Tj-user
a common length N. The sum rate is R.um(T) = code of blocklength N,, where
R, + R 2 + ... + RT, where R, is the rate of the code
Ci. A T-user code is uniquely decodable (UD) if all of T - (i + 1)2' and N,= 22+1 -1. (3)
the sums, formed by taking one codeword from each 0
user, are distinct. Note that as Tj -- +oo

Chang and Weldon [1] showed that the sum ca-
pacity of this channel satisfies R,..(Ti)/C.,,(Ti) -- 1. (4)

C, m(T) : (1/2) log 2 T as T --# +oo. (1) We also present an iterative decoding algorithm
and a brief description of new T-out-of-M user codes

They also presented a family of UD T-user codes for and superimposed codes which can be constructed
which Rum,(T) % Ca,,(T) as T -- +oo. from the T-user codes.

Our investigation of T-user codes for the real adder
channel is motivated by an interest in codes for T References

active users out of M [21, and superimposed codes [1) S. C. Chang and E.J Weldon, Jr, "Coding for
[3], for which the present codes can serve as building T-user multiple-access channels," IEEE Trans-
blocks. In this application, the codes of [1] are inad- actions on Information Theory, IT-25 (6), pp.
equate because the vast majority of users have only 684-691, November 1979.
non-zero codewords, so these users must be active at
all times. [2] P. Mathys, "A class of codes for a T active users

We therefore consider T-user codes (C1,..., CT) out of M multiple access communication sys-
of the following form: each code C, consists of only tem," IEEE TDansactions on Information The-
two codewords, one of which is the all-zero sequence. ory, IT-36 (6), pp. 1206-1219, November 1990.
A T-user code of this form can be described by a TxN
binary generator matriz B, the & row of which is the [3] T. Ericson and L. Gyarfi, "Superimposed codes in
nonzero codeword of C,. Rn," IEEE Transactions on Information The-

ory, IT-34 (4), pp. 877-880, July 1988.
Supported in part by ARO Grant DAAL03-89-K-0130.
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Two-Decodable Coding of the Two-User

Binary Adder Channel

Jian-Jun SHI and Yoichiro WATANABE

Department of Electronics, Doshisha University,
Kyoto, 602 JAPAN.

Abstract A two-decodable coding scheme for the two- M be a subset of {mi , i=0,1, ,2 n-k-l} such that
user binary adder channel is proposed, where the first code of mi, mjEM satisfy one of the following two cases:
the code pair is constrained to a class of linear codes. k

(a) If mil+mItIzI , 1=1, ,k, then E(mi-mjl)r>2.
1-1

1. Introduction (b) If there exists an index p such that mip+mjP=zP,
This paper deliberates on how to construct a two- I

decodable code pair (C,S) for the two-user binary adder then E (mi-rnDýL
l=l,lWp

channel. We use the fact that when the first code C is given The number of non-adjacent Fi's depends on M. The above
a priori, a maximum independent set of the 6-order graph arguments are summarized in the following theorem.
G) associated with C achieves the highest rate of the Theorem : Let C be an (n,k) linear code with the gen-

second code S, which is proposed by Kasami and Lin in erator matrix r, then a lower bound of the independence

1983[1]. number of GV) is given by

For a restricted model of C, it is possible to evaluate a
lower bound of the independence number of GR) and to pro- a(Gp))>max' 21QH(rn) Mil ,

pose a practical construction scheme of the two-decodable M s =1

code pair. The two-order graph GY) associated with C is 0.5 miJ;i=0.5

decomposed into layers, each of which consists of mutually where Ok(mil) = 11 otherwise

isomorphic subgraphs. It is easy to calculate their indepen-

dence numbers[3]. The sum of the independence numbers of 3. Conclusion

non-adjacent subgraphs is the lower bound which we will The construction scheme of the two-decodable code pair

propose. is proposed as follows: Let C be an (n,k) linear code with the

generator matrix r, and choose out a set M that makes an
2. Lower bound independent set larger. This independent set is the code S.

The code C to be considered here is an (n,k) linear code Thus the two-decodable code pair (C,S) is obtained. It is

with a generator matrix r=[IkP 1 ... Pk], where Ik is a kxk confirmed that there exist generator matrices 17's such that

identity matrix, and P, (jf=l,"'- ,k) is a kxzj matrix with the lower bounds are equal to a(Gg)).

all entries of 1 in the j-th row and entries of 0 elsewhere, and The authors are grateful to Dr. H. Harada for his

XI+X2+ • - " +xk=n-k, zxj0121. instruction in this paper.

For the 2-order graph Gg), its verteX set V={O,1}" can References

be divided into the partition V = VoU VIU ... UV2- ,

where Vi, i=-0,1, '', 2 n-kl , is a coset of C. Let [1] T. Kasami, S. Lin, V. K. Wei and S. Yamamura,
Li=O' .. Oa(') a(') ... a(k). .". a(k) be a coset leader of V. "Graph theoretic approaches to the code construction

1 - , 1 bfor the two-user multiple-access binary adder channel,"

Define Qi-{i I a,(,') ... )-O ,-1=1, , ,k}. Let F, be a sub- IEEE Trans. Inform. Theory, IT-29 , pp.114-130 (1983).

graph of GP1 induced by Vi. The subgraph Fi belongs to theQJ['th layer, and its independence number is equal to 2IQ'.I 121 F. Guo and Y. Watanabe, "Graphs Associated with a
Linear code," IEICE Trans. E 74 , pp.49-53 (1991).

Put a set mi - {mil, • • , mik), where the rnmi is the
number of "1" in the block a(.) aV) The number of Fi's [31 J-J. Shi and Y. Watanabe, "Two-Decodable Code Pair

,I ... , .for the Two-User Binary Adder Channel," Presented at

such that mi=mj, j--0,1, ' - - , 2n-1-1 , is caculated as 1991 ISCOM nt. Symp. Com. Tainan, Taiwan.

r Mii In order to select mutually non-adjacent F,'s, let
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LINEAR CODES FOR AN AWGN MULTIPLE ACCESS CHANNEL

WITH PARTIAL ACCESS.

Gregory Poltyrev and Jakov Snyders
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Tel-Aviv University

Tel-Aviv, 69978, ISRAEL

Abstract
the zero error of decoding probability under transmission through

A method of transmitting information through an AWGN the BAC without noise with overall rate R., >1 [2]. This implies
multiple access binary adder channel (BAC) will be addressed. We that the value of the decoding error probability for linear codes
shall consider the following procedure of access to the channel: can be worse than for nonlinear ones. But the simplicity of realiz-
there are N users but only m, in < N, users are active (are ing the coding and decoding can in many cases be an acceptable
transmitting their messages) during a fixed period of communica- price for such deterioration.
tion; the transmission is completely synchronized; the subset of If N >>m then time sharing is a ver-, ineffective method
the active users is known to the receiver. Such situation will be for the BACPA. Indeed, since the subset of active u",rs is unk-
named transmission through BAC with a partial access (BACPA). nown to each of the users, the time must be shared between all N
If N >>m then time sharing is a very ineffective method for the users. Therefore, the overall transmission rate R., is given by
BACPA. Indeed, since the subset of active users is unknown to m
each uf the users, the time must be shared between all N users. Ro, = "-R <<1, where R is the coding rate of each user. We
Consequently, the overall transmission rate Ro, is given by R0 , = shall show that effective transmission through a BACPA can be
m realized by means of linear codes. More specifically, we shall
wR <<I, where R is the coding rate of each user. We shall show show that for any noiseless BACPA it is possible to construct N
that effective transmission through a BACPA can be realized by linear codes such that R., = I and the decoding error probability
means of linear codes. More specifically, we shall show that for is equal to 0.
any noiseless BACPA it is possible to construct N linear codes Bounds on the number of users, N, for a given m will be
such that Ro, = I and the decoding error probability equals 0. presented. In the case of AWGN BAC, any m active users share
For the case of AWGN BAC, we shall show that transmission by the same binary linear (n,k) code C. This means that the code of
means of linear codes can have even better characteristics than any user is either a subcode of C or some coset of the subcode.
time sharing. We construct, by means of the random coset method [31, an upper

bound on the error decoding probability. This bound enables us to
Summary show that, for the case of AWGN BAC, transmission by means of

linear codes outperforms, with respect to the decoding error pro-
The following situation of transmitting information through bability, time sharing schemes. Parameters that play a significant

a multiple access channel is addressed. A binary real adder chan- role in determination of the probability of decoding error will be
nel (BAC) perturbed by additive white Gaussian noise (AWGN) is considered.
considered. The BAC can be described as follows: the inputs cor-
responding to the users are binary, i.e., the input alphabet of each References
user is X = {-1,1); the output of the channel at instance j is

m

equal to d xJ + zi, where m is the number of active [1] R. Alswede, "Multi-way communication channels*, Proc.
2nd Int. Symp. Inform. Theory, Tsahkadsor, Armenian

i=1 S.S.R., (1971), pp. 23-52, Publishing House of the Hungar-
users, x? is the input signal of the ith user at instancej and zi; ian Academy of Science, 1973.
j = 1,2,... are iid Gaussian random variables. We shall consider
the following procedure of access to the channel: there are N [21 T. Kasami, S. Lin, V.K. Wei, S. Yamamura, "Graph theo-
users but only m, m <N, users are active (are transmitting their retic approaches to the code construction for the two-user
messages) during a fixed period of communication; the transmis- multiple-access binary adder channel", IEEE Trans. Infor-
sion is completely synchronized; the subset of the active users is mation Theory, vol.IT-29, no.l, pp. 114-130, Jun. 1983.
known to the receiver. Such situation will be named transmission
through BAC with a partial access (BACPA). (31 G. Poltyrev, "About improving the upper bound on error

We shall call the coding for BAC for the case N = m, i.e., decoding probability for codes with complicated structure",
when all existing users are simultaneously active, coding for Problemy Peredachi Informatii, vol.23, No.4, pp. 5-18,
transmission through BAC with a complete access (BACCA). The 1987.
simplest, and usually used, method of transmission through
BACCA is time sharing. In that case, under the condition that all
users use codes with the same coding rate R, the information

R
transmission rate of each user is equal to - and the overall rate

Ro, of transmission through the BACCA is given by R0 , = R <
Co <1, where C0 is the capacity of the AWGN one-way channel
with binary input. It is known that there are coding methods for
the BAC for which R., >C0 Ill. A remarkable fact is that the
capacity of the AWGN BAC is achieved by uniform distribution
on the inputs of the users (p(x=-l)=p(x=l)=0.5). Conse-
quently, the capacity of the BAC can be attained on the ensemble
of binary linear codes. The possibility of employment of linear
codes simplifies considerably the coding, and frequently also the
decoding. It should he noted here that linear codes can not realize
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Abstract linearly independent. Notice that decoding is unique, provided that
the sum rate is not larger than unity. Multiple-access codes havingGiven any finite field F, the F-adder channel is the ti rprywr eoe pia n[]

channel whose inputs are elements of F and the output this property were denoted optimal in Ill.
is the sum (over F) of the inputs. It is shown how Reed The key to obtaining optimal multiple-access codes of convolutional
Solomon (RS) codes can be used to obtain multiple- type for the F-adder channel lies in the ability to find an n x (n - k)
access multiple-rate codes of convolutional type for the matrix over R = F[D] with the property that all collections of (n - k)
F-adder channel. It is also shown that when the F- rows are linearly independent. The values of n and (n - k) are design
adder channel is noisy, the codewords of a multiple- parameters that depend on the number of users and on how many of
access multi-rate code for the F-adder channel can be them are allowed to be active concurrently.
protected in a simple and flexible manner by means of
RS codes. Let F = CF (p'n) be any finite field. Let E = CF (pI-) be any finite

extension field of F. Let n divide pmn - 1. Let hT be the transposed
I Introduction parity check matrix of a (n, k) RS code over E. Then it is readily
In a companion paper (1] multiple-access multiple-rate codes for the checked that hT generates an optimum convolutional type multiple-
F-adder channel have been defined and two constructions of such access code, if we view its elements as polynomials over F. We note
codes have been given. All codes in [1] are of block type (as opposed that the specific binary example presented above has been derived
to convolutional type). This paper presents two applications of Reed by this procedure with F = CF (2), 1 = 3, n = 23 - I and k = 4. A
Solomon (RS) codes to coding for the F-adder channel. The first ap- similar construction method for such matrices has been proposed in
plication results in multiple-access multi-rate codes of convolutional [2] (there the motivation was to find channel correcting convolutional
type. This is done in section I1. In section III we assume that the codes).
F-adder channel is noisy and show how to combine multiple-access
coding and error protection in a flexible way. III Error Control Coding via RS Codes

Let hT be the transposed parity check matrix of a fn, k) RS code
II Convolutional Codes for the F-Adder Channel over CF (pm). Assume that we want to construct a multiple-access
In [1] we explicitly assumed that the channel is the F-adder channel code to operate over a noisy F-adder channel and hence need an
where F is a finite field. One can easily verify that definitions and error correcting scheme to secure the multiple-access codewords. Let
constructions still apply if we replace F by R = F[D], the ring of (n - k), the length of the multiple-access codewords, divide p m 

- 1,
polynomials over F 1 . In this way, generator matrices over R defin- and assume that we want to be able to correct up to t errors per
ing block type multiple-access codes over R can be seen as generator block.
matrices of convolutional type multiple-access codes 2 over F. Since Partition the n rows of hT into generator matrices and let B' be the
adding elements of R is the same as transforming these elements generator matrix of user i. Let iZ: be the encoded message of user i.
into sequences over F, adding them componentwise, and transform- Before transmission, user i sets the last 2t components of Zi to zero
ing back the resulting sequence to a ring element, one can use the and takes the (inverse) Fourier transform. Clearly the resulting outer
convolutional codes obtained in this way as multiple-access codes for code will be a RS code with error correcting capability t (the last
the F-adder channel (as opposed to the FID]-adder channel). 2t frequency components of c are zero). This scheme works because
Example 1 Consider the following 7 x 3 generator matrix, the transposed parity check matrix iaT of a (n, k + 2t) RS code can

1 1 1 be derived from the transposed parity check matrix h T of a (n, k)

1 D D2 RS code by deleting the last 2t columns. Hence by setting the last 2t

1 D2 D+D 2  components of Z' to zero and taking the Fourier transform we actually

hT 1 1 + D 1 + D2 (1) base the multiple-access codes on a (n, k + 2t) RS code and embed

I D + D 2  D this in an outer (n - k, n - k - 2t) RS code for the error correction.

1 1+D+D2 I+D Needless to say, t may take on any value0 < t < - Thiserrror
I I + D2 I + D + D2 correction scheme does not decrease the number of available rows ofhT, but reduces the maximum possible sum rate by a factor .

The elements of hT are over the polynomial ring R = F[D] with We see that this error correction schemes allows a flexible choice
F = CF (2). Assume that 7 users are sharing a binary-adder chan- between low error probability and high sum rate.
nel. Assign to user i the rate 1/3 convolutional encoder having as References
generator matrix the i-th row3 of hT. The receiver will be able to de-

code the messages upon observation of the channel output, provided [1] B. Rimoldi, "Coding for the Gaussian Multiple Access Channel:

that no more than 3 users are active and provided that the receiver An Algebraic Approach," in International Symposium on Informa-

knows which users are active. This is true since any 3 rows of hT arc tion Theory, (Austin. TX), IEEE, Jan. 1993.
[2] P. Piret, Convolutional Codes - An Algebraic Approach. Cam-

'More generally R could be a commutative ring with a unit element with bridge, Massachusetts: The MIT Press, 1988.
respect to multiplication and no zero divisors.

2We assume that the information sequences have finite length, so that they
can he represented by a polynomial.

'More generally, the number of rows assigned to users may vary in order to 'Supported in part by National Science Foundation grant NCR-9109944.
account for users having dissimilar rate requirements.
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Joint Signal Detection (D) and Estimation (E)
Under Prior Uncertainty: New Results

by
David Middleton

127 E. 91 Street, New York, NY 10128, U.S.A.!"

Abstract 2. Optimum UML Estimators (p{Hi) < 1)
When estimation of signal waveform or signal parameters takes place under Other new results recently obtained by the author concern the UMLE, which are

prior uncertainty as to whether or not the signal is actually present [p(HI) < 1, with derived from an appropriate "simple" cost function. We use a "strict" form, which
.. q(Ho) > 0] estimation based on the assumption that p(H 1) = I can result in now yields a Bayes riskt

estimates that can be seriously in error. Moreover, such estimators and estimates
are themselves biased, with unknown bias if the "noise only" (q(HO)> 1) state is RE(a,8*)jc,=C 0 AM- qd
not properly accounted for. (2.1)

The present paper extends the original analyses of Middleton and Esposito +pJ-[ Fj (xjS(0))8('*<(x)- 0O,(0)dl]TJ
[la,lb], and more recent work of the present author [21, to include canonical
estimation in generalized noise for least mean square error (LMSE) estimators and
for (unconditional) maximum likelihood estimators (UMLE's), which last were not Maximizing the integrand of Jr( )dx, minimizes RE (= Ri); e.g.. the extremal
available before in the case of the UMLE. [In addition, the verbal presentation
includes new threshold results, obtained for correlated noise samples (the author's condition determining (x) is 0.
so-called quasi-equivalent (QE) noise models), where only the first order pdf w l(z) < y (
and covariance kz of the noise process are available [21.1 U

Summary: Using the fact that JFFj(xl0)dV = jrFj (xI0)8('Y,=1 (x)-0)dX = qI (IH0)y;
In many practical signal processing situations where estimation in noisy

environments of signal waveform (S) or parameters (0) is required (e.g., where q-(yIH0) isthe M-fold pdfof y= =Y=[yl...Yi] and1ois the
classification and localization of targets, measurements, remote sensing, etc.), it is

often not known a priori whether or not the desired signal is present. Detection and domain of x for which -f(x)p=l = 0 d while r = domain of all x, and the
estimation are then jointly required, so that both a correct estimator, i.e., one that is requirement that y <I must be unbiased, gives, after some manipulation, theunbiased and optimal, can be constructed, and an associated (optimal) detector P.:
employed, which in turn can "validate" (i.e., accept or reject) the estimate. The a desired (new) result for the optimum estimator here:
priori probabilities are denoted by %Ho), p(Hl), with q+p= 1,0 • (qp) 5 I, and
the de ired (optimum) estimators, y , are denoted by y-,< h're, with

p< p0, where H = H0 + H1 , for these estimators to be unbiased. ______J

As usual, optimality is defined in terms of minimum average "risk" or cosL [New = - rp.l(X)sCF I1+ Aj(x)]qM (OH0 ),* - x E rF0 :y;=1 (x) =
canonical results for jointly optimum threshold D and E in generalized noise, for A___0_
both coherent and incoherent reception, when the noise samples are correlated, are (2.2)
discussed in the presentation.]

Furthermore, we consider weak coupling only, between detector and estimator, Here 'yp=v l is found in the usual way [Ia],
with the added simplification that in detection the cost of declaring the signal
absent when the signal is present, and vice versa, is independent of the signal. --- 0{log o(6)+ tl0)(xI9)SCF, = 0, (2.3)
Then detection and estimation can be carried out independently, in parallel, with
the convention that the (optimum) estimator ,, is rejected if the probability of
correct detection [PD = p0-11)(1-H)] is smaller than some preselected value, where 1l00) = log (FJ(xIS(6,0')).0 - log Fj(xIO).
Failure to account for the fact that p(HI) < I can have serious consequences in
applications of the estimator: The associated Bayes risk is obtained here by inserting (2.2) back into (2.1) and

employing integration procedures like the above. For p = 1, only the first term of
I. Optimum LMSE Estimators. p(H 1) < 1 (2.2) applies.

Here we shall summarize the principal results recently obtained (see also [1],
[2], and refs.) for the quadratic cost function (QCF), which leads to LMSE 3. Concluding Remarks
estimators. We have, generally, the optimum estimator As noted at the beginning, failure to account for the fact that p(Ho) < I can not

only lead to erroneous (and biased) estimates, but also these can be sufficiently
A j )Y.inaccurate as to have serious consequences. For example, a difference in, say, the

Yp<cI[Qc (. . l}., IQcj , cf. (3.7, [1]. (1.1) mean estimate of threshold signal amplitude (power) of -10% vis--vis the correct
_ _ _ _ _ (p < 1) value, corresponding to p = 0.9 (vs. p = I) produces an error of 10% in the

average minimum detectable signal. This can be 2.5 to 3.0 dB for -25 dB or -30
where Aj is the generalized likelihood ratio: dB for the latter: serious amounts, for instance, in "Matched Field Processing",

where one tries to keep signal degradation below I dB for effective matching of the
Aj a g(F((xaS(0))),/Fj(x10)'gs P(HI)' X= V/F- ={xj};J = propagation model to the received data.

"F q(HI)' j=(m,n) References

[lal. D. Middleton and R. Esposito. "Simultammus Optimum Detection and Estimation of
with space (mM)-time (nN), m = I ... M; n = I ... N; j = mzn, sampling; i = Signals in Noise." IEEE Trans. Information Theory. Vol.. IT-14. No. 3. May 1968,
normalized data vector of MN = J elements, and Fj(xtS) = j-fold pdf of x, the pp. 34-1444.
generalized noise given the signal (vector) S = [Sj], etc. The associated Bayes risk [lb]. __ , "New Results in the Theory of Simultaneous Optimum Detection and

C= C0. LSME) is expressed formally as Estimation of Signals in Noise." Problemy Peredachi Inforrnatsii, Vol. 6, No. 2,
April-June. 1970, pp. 3-20; Engl. trails.. pp. 93-106. Consultants Bureau, NY.,

Co H 2H (Plemnum). 1973.
R(cr'y*)Ap '':Qc = C °IW''7 -•-02 =C l ( • l q • P -p <I _I [*2]. D. M iddletonL ."Theshold Detection and Estimation in Correlated Interference, " paper

R(Ol)Ipf H, 2A2] pp. 7-12. Proceedings. 9th Intl. Zurich Symposium on EMC: "EMC '91."

Switzerland. March 12-14. 1991.
(1.2)

Specifically, the general result y;=11QCF for estimating the 0r, ,s = I. M, out

of (ern,0') = 0 parameters is given by:

'f" C = i0(Om )ett2t)(xO)QcFdO= (1.3) tBased on work supported under Grant N00014-91-J-4131, Code 1114 SE (Dr. R.

_______OA____ N. Madian), Office of Naval Research.

where 1(21) = log(Fj(xýS(O0.0")))0, - log(Fj (xS))0, with 0 = (0,0'), 0 = [0] t Equations (3.15), (3.16). [Ia] contain unnecessary integrals over V,

cf. (3.8), [M]. since Fn, w('y), 8('-V) > 0.
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OPTIMUM INCOHERENT DETECTION OF FADING SIGNALS
IN NON-GAUSSIAN NOISE

E. Conte, M. Di Bisceglie, M. Lops
Dipartimento di Ingegneria Elettronica, Universiti di Napoli, Via Claudio 21, 80125 Napoli, Italia

Abstract hypothesis that maximizes the function

The problem of detecting one out-of M fading signals in 1 Ijrjj2+A2, (Air- Ppi I
a Spherically symmetric noise process is addressed. We ( 2  .) e o, A.(
show that the classical detector is canonically optimum

regardless the fading and the noise models. An example is where the bar denotes expectation with respect to A and s,
worked out for the case of Middleton Class-A distributed Io(.) is the modified Bessel function of first kind and order
noise and Nakagami fading. zero and 2Ago is the noise power spectral density. It can be

Noise and fading models shown that this is equivalent to maximizing Ir • pi 1. Thus,
the optimum receiver is the classical minimum-distance de-

A compound-Gaussian process [1] can be thought of as the tector, regardless the first-order distributions of the noise
product of a modulating non-negative, wide-sense station- and of the fading. As to the correlated case, it can be eas-
ary process, s(t) say, and a Gaussian, possibly complex, ily managed by introducing a linear filter which whitens
one, g(t) say, independent of s(t), namely c(t) = s(t) g(t). the received observations [2].
Obviously, not all processes are amenable to such a repre-
sentation; precisely, the admissibility condition the com- Receiver performance in Nakagami fading
mon distribution of the quadrature components of the The performance of the above receiver in non-Gaussian
noise should fulfill is noise can be evaluated by simply averaging s out of P(els),

00 /the error probability under Gaussian noise.
fa(x) = fcQ(z) = fe 27-"2 f (s) ds (1) Consider the Nakagami m-distribution, namely

2m'A 2 m- Ie-,n(A/A,-,)2 (4)
where a2 is the common variance of the quadrature com- f(A) - r(m)A ,
ponents of the Gaussian process and f(s) is the first-order

pdf of the random process s(t). Among the marginal pdf's where Am, is the channel root mean square gain, and m is
complying with (1) we cite the Middleton Class-A distri- a shape parameter ruling the fading depth. For the case of
bution, the Generalized Gaussian, the Generalized Cauchy, M orthogonal signals embedded in noise with Middleton
the Generalized Laplace j2j. In keeping with theoretical Class-A pdf, we obtain
considerations, supported by experimental evidence, we as-
sume that the bandwidth of s(t) is much smaller than that 0 M-1 (M- (_1 ) +i+, r sm(k +_1) 1
of g(t); so, on sufficiently short time intervals, the mod- P(e) = Z I + 1
ulating process is practically a random constant and the E=1 Fl \ k + I1 Rk + sm(k + 1)]
overall noise process degenerates into a Spherically sym- /

metric random one. When such a model is in force, the where E, = e- vi /i. v a shape parameter, s? = (i/u +
spectral properties of the process reproduce, except for a A)/(1 + A) A the ratio of the power of the Gaussian com-
scale factor, those of the Gaussian noise. ponenent to that of the impulsive one and "YR denotes the
As to the channel, we assume the flat-fiat fading model: Signal-to-Noise Ratio (SNR). Results indicate that when
the useful received signals are hence related to the trans- deep fading is present, (e.g. m=1) the shape parameter
nitted waveforms through the complex factor a = AejO of the noise is almost uninfluential, while, for increasing
with A -the random gain of the channel- arbitrarily dis- m, spikier noise results into worse performance: however,
tributed and 0 -the received phase- uniformly distributed the detection loss, as measured with respect to the Gaus-
in [0, 27). sian case, approaches a constant value (depending on m)

Synthesis of the optimum detector as SNR diverges.

The M-ary detection problem can be stated as References

E. Conte, G. Galati, M. Longo, "Exogenous modelling of
H, = r = AeJp, + i = 1, 2,..., M (2) non-gaussian clutter", 3. Inst. Electron & Radio Eng.,

1987, No.57, pp.191-197.
where r, p,, c are complex, N-dimensional vectors repre-

senting the corresponding waveform signals as N diverges. E.Conte, M. Di Bisceglie, M. Longo, M. Lops, "Canonical
For equally likely hypotheses and signals with equal energy Detection in Spherically Invariant Noise", IEEE Trans. on
4p, minimi:ing the error probability requires choosing the Communications, (under re-.:oiun).
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Detection of Time-frequency Concentrated
Transient Signals

Thomas P, Krauss, Student Member, IEEE, Thomas W. Parks, Fellow, IEEE, and Ram G. Shenoy, Member, IEEE

SUMMARY quotient (Lpxx)/(xx) is larger than some positive thresh-
old. Such a class of signals is called a cone-class and our

We consider the problem of detection of time-fre- detection problem is to detect signals in such a set.
quency concentrated transient signals in white Guassian
noise. There are many instances in which the detection Our solution to this problem isRan application of the
of time-frequency concentrated transients can be useful: generalized likelihood ratio test (GLRT) assumin: 1he
any case in which the class of transients to be detected is following two hypotheses:
known to have a certain time-frequency signature, but H0: r = w
the exact time samples are not known. Examples of such
classes are speech and animal sounds, sonar and radar Hl:r = wv++s
return pulses, seismic signals, and underwater acoustic
transients, where w is a zero mean Gaussian noise process of known

Recent study of the Weyl correspondence as it relates variance (with covariance matrix '21), and s is an
to time-frequency representations [ 1,21 has been fruitful unknown signal in the cone-class CL, (•) defined by
in that a way to associate a function in the time-fre- (Lpx. X)
quency plane (a.k.a. "Phase Space" or the "Wigner CLXp:l) -_{x >-P
plane") with a linear operator has been suggested and X)
studied. This linear operator has several useful proper-
ties: as shown in [1 ], it is a self-adjoint operator provided The generalized (log) likelihood ratio is
the function in the Wigner plane, or the "symbol" as it is A (r) = (r, r) - (r - , r-
called, to which it corresponds is real. Also a real sym- where I is the closest approximation to r in C ,,.
bol can be reconstructed by taking a weighted sum of the Detector performance is analyzed for a class or randlom
Wigner distributions of the eigenfunctions of its corre- concentrated signals, and for a class of acoustic well-log-
sponding linear operator (with the eigenvalues as the ging signals. As the concentration level p approaches the
weights). largest eigenvalue X•of the operator Lp the problem

One of the properties of the Weyl correspondence approaches subspace detection (4, pp. 14 5-14 71 in the
most important in the application of detection of time- eigenspace of XI.
frequency concentrated signals is the fact that the (dou- The theory is applied here to the discrete-time, dis-
ble) integral of the symbol multiplied by the Wigner dis- crete-frequency case, where signals are parameterized
tribution of a signal, i.e. their inner product, is equal to completely by a finite-number of samples. The Wigner
the inner product of the image of the signal under the distribution and the linear operator corresponding to an
symbol's corresponding operator and the signal itself. arbitrary symbol can be computed without approximation
That is. if P(tf) is the symbol (a function of time and fre- in this case; properties of each are verified.
quency), and W, •(t,f) is the (auto) Wigner distribution of
the signal x, theni the following equality holds:
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QUICKEST DETECTION OF AN ABRUPT CHANGE
IN A RANDOM SEQUENCE WITH FINITE CHANGE-TIME

Yonig Liv arid Steven 1). Blostein

Depart nient of Electrical Engineering. Queen's I niversitY

Kingston. ON. Canada K7L 31N6

Qutickest change detection has a wide variety of applications. in-
cluding search radar. dligital signal processing, image processing. mtont-
itoring comimuniicat ion channels. and fault dletectiott [1. 2]. 111 this *subject to

paper a mtodified Shirvyavev criteriont [9] is uised to sturdy t ie probiletim .\4hf N1  (7)

of quickest detect ion of ati a brup;t chiange in a raindoom sequence withI and
independen t and identical (tist ri bittions before and after thle clhange. 01, 0. 14
The tmodifted Sliirvavev criterioti minitmttizes expected dlelay wccD,.ndD, rof(oeph cn o /f~A rac

1)t IV n + IA I.V > I durf arid any other pP(Moridr'f. r>~jrctircy. Vbf, arid \*f,, dcorott
p, 5  -the corresponding false alarrm 4RLs. arid ob arid o flit fa.W alarnt

suibject !o a given't fal Ise alarn prio ba bili t probabilities.

o J A{ < 11i) < (2) For nrioasymptotic situations. simirlatioti results reported in [4. 5]
reveal that the MAR procedure cotmpares favorably with !he (.CUSUI.

atid a given false alarni average run letigth IiARL i.GRS and moving windiow fixed saniple size procedures. where the
mtodifi ed Slt jrayave c riterioti was, uised.

A) N)AT < nin > t: We have also observed that the MAR procedure is i-cr ' i nsen sitI Ive

to the choice of (design parameter co. It call be shiown [431 that c() =7u
w here A' is ratidotti stop pinrg va riable, ?itis non- randobm untikntowni satisfies Theorem 1.
change-timne. ý an til are two conistantits. It is note Prlha t if Eq.) 3)
is igtiored and Iiii is raiidooi ., t hen thet above Crit erioni is i den t ical to
Sbl ravev 's ( [91. Fr s.( . 1301( 1. 1:11). 11.19S~). The d ilferenice bIret weeri References
the mrodhified Shir~vayvv criterion andl r le criteria riused iii [6. 71 is Itbat 1BasvleNI(19.k Dtrigcnesnsgasadss-mz
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geotriet nicall\ dit ributteul. where thle Sliir 'vayev criterion is rise(]
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DECENTRALIZED ENCODING FOR LINEAR ESTIMATION OF A REMOTE SOURCE

M. Di Bisceglie, M. Longo
Dipartimento di Ingegneria Elettronica, Universiti di Napoli, Via Claudio 21, 80125 Napoli, Italia

Abstract such that: The average distortion D = Ed(X, X) is as

N separated sensors transmit noisy observations of a small as possible.

source to a central processor for final estimation; local en-
coding of each observation is performed prior to transmis- Decoupled solution
sion. The issue is to devise encoding-decoding schemes for A simple suboptimum approach is to isolate the design of
this decentralized context. The present scheme is com- the (q,, gi) pairs, i = 1,..., N, from the selection of v. De-
posed of N scalar quantizers, each with a corresponding sign of the pair (q,, g,) can be accomplished as in unifilar
decoder, and a linear combination of individual estimates, encoding-decoding of a remote source, namely alternat-
This structure ensures that the decoder size increases only ingly improving q, into q+ and gi into g' according to
linearly with N. Through an example involving 2 sen-
sors with a Gaussian model of source and observations, q+(yj) = arg~nin / d(x, = g(z,))p(z, y,)dx (1)
this scheme is compared to a previously considered uncon- JX

strained decoding scheme and to a distortion-rate bound. g+ iz,) = argnin J d(x, ,)p(xiz, = q,(y,))dz (2)

Problem statement Xi fX

Upon reception of the collection Z,, i 1,..., N, a bank
With reference to Figure 1, X is a random variable rep- of N decoders, one for each encoder, produces centrally
resenting the source and Y1, ... YN are noisy, possibly cor- the vector of the individual optimal estimates Xj:, i =
related, observations taken at each of N separated sen- 1,2, ... , N, according to (2). The optimum weighting vec-
sors. Due to communications constraints, 1, is comi- tor can be found as that vector which minimizes the dis-
pressed by a scalar quantizer Q, of rate Rj producing index tortion D = Exzd(X, vT(Z)).
Z,, i - 1 ... N. Quantizers cannot share their data,

Example

X •To assess the proposed scheme, also in comparison with
unconstrained scheme [1], we adopt the quadratic distor-

Observation . .X tion measure d(x, i) = (x - i)2 and we consider the case of
Model N- -- a Gaussian source, X - AV(0, 1), and 2 sensors affected by

S9Nadditive, zero-mean Gaussian noise with common variance

tVN a 2 and correlation coefficient p. The optimum weighting
vector is then v = E[XXT]-1, where E is the covariance

Figure 1: Schematic of the encoding-decoding system. matrix of X.
Results are presented in Table I which shows the perfor-

hence they do not cooperate. The indices are transmitted mance of the present scheme (labelled as I), the perfor-

to a central processor. Reproduction of the remote source mance of the unconstrained scheme [1](labelled as II) and

is accomplished by a distortion bound for decentralized schemes [1]. Notice
that the loss of the present scheme becomes significant only

1. A bank of N decoders g., each producing an estimate for highly adverse correlation and for high variance ratio

X•, of the remote source based on Z,. 'Y 1/=I2 .
Table I

2. Linear combination of individual estimates to yield the Distortion results (R 1 = R2 = 3).

final estimate 2 v='x where X = (-,...XN)T.

-y =_ 0dB -= 20 dB
This structure ensures that the size of the decoding table is
in the order of 2 R, +- 2R'p, hence increases linearly with p I II OPTA I II OPTA

N; in contrast, if no such structure were imposed (as in -0.99 0.039 0.039 0.005 0.029 0.010 0.002
[1]), the size would be 2 R, x ... 2 RN, hence would increase 0 0.349 0.348 0.051 0.036 0.015 0.006
exponentially with N. Therefore, the problem is: 0.99 0.506 0.502 0.091 0.046 0.018 0.010

given: the source density p(x), the observation model References

p(ylx) and a pointwise distortion measure d(z,.ý), [1I M. Di Bisceglie, M. Longo, "Quantization for decentral-

find: N pairs (q,, g,) of encoding-decoding rules, and a ized estimation from correlated data," pres. at IEEE ISIT
weighting vector v, 90, San Diego CA., Jan. 1990 pp.34-35.
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Model Based Motion Field Estimation

Christoph Stiller and Frank Miller

Institute for Communication Engineering, Aachen University of Technology (RWTH)
5100 Aachen, Germany, Phone: +49-241-807677, Fax: +49-241-807669

Introduction The second factor of the numerator in (1) mainly ac-

The estimation of motion and boundaries of objects in an counts for the spatio-temporal statistical bindings within

image sequence is an important issue for efficient video a motion field and is described by a motion model repre-

compression. It allows exploitation of the strong statis- senting prior expectations on V. The principle of mini-

tical bindings of image intensities along the motion tra- mum description length [3] is adopted, which assigns each

jectories (1, 4]. sample v a probability according to its content of decision

The idea of object-oriented motion estimation is to sub- P(V = viA = a) = P(V = v) = 2 -c(v),
divide the scene into regions of continuous motion. Thus wh
discontinuities in the motion field may only occur at ere cv den The conth of a(sstessc-
region boundaries. Ideally, each region uniquely corre- tour/texture code. The contour code describes the seg-sponds to one surface of a moving object in the 3-D real mentation matrix l while the texture code segmentwise
world. describes the motion vectors u assuming strong statisti-cal bindings of neighboring motion vectors belonging to
The motion field is regarded as a pair of random fields the same object (label). It can be shown that V is a
V = (U, L), where U denotes a field of one motion vector Gibbs/Markov random field (cf. [5]).
per pixel, and L denotes a generic segmentation field. the two
The segmentation field groups the motion vectors into Combining the models, according to (1), the MAP-
several continuous regions. criterion can be derived as

- log (P(V = v1A = a, B = b)) =
Image ModelK rc k

This contribution follows a model based Bayesian ap- N 1+log N-+'") N-lo
proach. The model considers MSE of motion compen- k=i VN I k (L

sated prediction, motion discontinuities and uncovered + log(2) -C(v) + const., (2)
regions. The resulting estimation criterion is derived where Nk denotes the number of pixels in the k-tb region
straight forward as MAP-criterion with help of the model Gk and x, denotes a pixel of the dfd. (2) is locally mini-
assumptions. mized employing iterated conditional modes [2] providing

Given the samples a (= previous frame) and b (= next fast convergence.
frame) of the random fields A and B, the objective is
to find the motion field sample v* = (u*,l*) of V of
maximum a posteriori probability References

P(V=v*jA=a,B=b) = max{P(V=vlA=a,B=b)1 [1] J.K. Aggarwal and N. Nandhakumar. On the com-
SP(B = bIV = v',A = a). P(V = vIA = a) putation of motion from sequences of images - a re-= P (B = baA = a) , (1) view. Proceedings of the IEEE, 76(8):917 - 935, Au-P(B b1A= a)gust 1988.

where the reformulation of the objective function follows
from Bayes rule. [2] J. Besag. On the statistical analysis of dirty pictures.

The first factor of the numerator is described by a so Journal Royal Statistical Society, SerB, 48(3):259 -

called observation model. In this contribution it is as- 302, 1986.

sumed to depend on the displaced frame difference (dfd) [3] Y.G. Leclerc. Constructing simle stable descriptions
only. The dfd is modeled segmentwise stationary obey- for image partitioning. International Journal of Corn-
ing a white, zero-mean generalized gaussian distribution puter Vision, 3:73 - 102, 1989.
in each segment.
In each segment not corresponding to decovered back- [4] H.G. Musmann, P. Pirsch, and Po.-e. Grallert. Ad-
ground ML-estimates for a and v are substituted back vances in picture coding. 1EEE Proceedings, 73(4)523
into the objective function. In decovered regions a likeli- - 548, April 1985.
hood that is slightly lower than the one of the least likely [5] C. Stiller and D. Lappe. Gain/cost controlled
region is imposed. This assures that motion is estimated, displacement-estimation for image sequence coding.
whereever a reasonable correspondence between regions In Proc. ICASSP91, Toronto, Canada, volume 4,
of succesive frames can be established. pages 2729 - 2732, May 1991.
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MULTI-GRID METHODS FOR MEAN FIELD THEORY
IN EM PROCEDURES FOR MARKOV RANDOM FIELDS

JUN ZHANG AND BINGLAI CHEN

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

UNIVERSITY OF WISCONSIN-MILWAUKEE

MILWAUKEE, WI 53201

Abstract - In this short paper, we describe how multi-grid methods, fine grid (e.g., fine first, then coarse, then fine). Two important problems
originally developed for numerical solution of differential equations, can in this method are: how to transfer between uh and n' and how to de-
be used in the mean field calculations for Markov random fields in EM fine the coarse-grid energy function UH(UH). The solution to the first
procedures to reduce computation and improve convergence, problem is easy - through an interpolator and a restriction operator. i.e.,
1. Introduction: u' - uh and 1H : u' - uH, respectively. The second problem is, on

Many problems in image processing and computer vision can be for- the other hand, more difficult. We have experimented with two strategies:
mulated as incomplete data problems [1], where part of the data is not ob- the "fractal" method (energy function the same in different grids, similar
servable (hidden) and needs to be estimated along with the data model (in to (51) and Galerkin's method (UHf(uH) = ULJ(Ih u

1 )). Typical results by
particular, model parameters). The Markov random field (MRF) has been Galerkin's method are shown in Fig. I for image segmentation. To achieve
demonstrated as a very general and effective model for the hidden variables the same segmentation quality (MSE of classification), the MG scheme uses
since it captures the underlying physical processes and constraints (e.g., only 2/3 of the time used by a fine-grid only scheme (the saving is much
[2]). large for a larger image, e.g.. 256 x 256).

The EM (expectation-maximization) algorithm [1] is an effective 4. Summary:
maximum-likelihood (ML) procedure for parameter and hidden variable In this paper, we have described the application of MG methods in
estimation in incomplete data problems. However, when the hidden vari- mean field calculations in EM procedures where the hidden variables are
ables are modeled as MRF's, it runs into difficulty due to the exponential modeled as MRF's. This approach achieves computation reduction and
complexity in the calculation of the conditional mean of the MRF required acceleration of convergence through alternating the calculation of the mean
by the E-step. To overcome this difficulty, we have developed an iter- field among different grids (fine-coarse-fine). Both fractal and Galerkin
ative procedure (31 based on the mean field theory (MFT) of statistical coarsening provide good results.
mechanics. This approach provides a mathematically sound (in some sense References
optimal) approximation that can be calculated (without the exponential [1] A. P. Dempster, N. M. Laird and D. B. Ruhin. "Maximum likelihood
complexity). from incomplete data via the EM algorithm," J. Roy. Soc. Statist..

While the efficacy of the MFT approach has been demonstrated in our Series B., No. 1. pp. 1-38, 1977.
previous work in image segmentation and image restoration, it is prone to a [2] J. Marroquin, S. Mitter, and T. Poggio, "Computer vision," J. Amer.

problem common to many iterative procedures - as the data size increases, Stat. Association. Vol. 82, pp. 76-89, March, 1987.
the amount of computation increases drastically and the convergence slows (3] J. Zhang. "The mean field theory in EM procedures for Markov rand'm
down. In fact, this problem has plagued numerical methods for differential fields." IEEE Trans. SP.. Vol. 40, pp. 2570-2583, Oct. 1992.
equations for quite some time until recently when a solution, known as the [4] J. Zhang and B. Chen, in preparation.
multi-grid (MG) method, has been developed. In this paper, we summarize [5] C. Bounman and B. Liu, "Multiple resolution segmentation of textured
our work in applying MG methods to the mean field calculations in EM images." IEEE Trans. PAMI, Vol. 13. pp. 99-113. Feb.. 1991.
prtocedures, while more details can be found in [41.
2. MFT in EM Procedures: Figure 1: An Example in Image Segmentation.

Let S be a 2-D lattice with a neighborhood system and u = fus, i E S) The first row shows the true "region map" (what the segmentation

be an MRF. Then it is well known that u has a Gibbs distribution: should be like) and the observed image. The second row shows the results
of three iterations on the fine-grid, a coarse-grid, and the fine-grid, respec-

1~u = .- fx (la1 tively. The convergence is illustrated by the MSE (between consecutive

p() = - Iexp - U(u) = Z eyp -- Y u (la) segmentations in the iterations). Galerkin's method is used for coarsening.

where 11(u) is the energy function. V,(u)'s are the clique potentials, and Z
is the partition function.

It is not difficult to see that the direct calculation of the mean of u,
< u > is exponentially complex since one needs to sum over all possible
configurations of u. The MFT suggests an approximation [3]: the influence

of ti, j 6 i, in the calculation of < u, > can be approximated by that of
< uj > i.e.,

< u, >: Z,/' y-u,exp[-;3U: "'(u,)], (2a)
u.

where

el-, '= U •(,+ E V"(n,, < u, >). (2h)
,ier,

and Z"'
1 

is a normalization factor. In an EM procedure where the hidden
variables are modeled as MRF, the mean field theory of (2a)-(2b) can be
used in the E-step to evaluate the Q function: 0.25

t!ConvPTrgence(Galerkinil -0-
Q(VIjft)) =< logp(yju,.) + logp(u1)$)y,01P1 >, (3) 0.2 r

where y is the observed data. , is the model parameter vector, p represents
the pth iteration. 0.15
3. Application of MG Methods: '

For the sake of simplicity, we illustrate the MG ideas through a two- 0.
grid method. Let S be the fine grid, now denoted by Sh; one can then
generate a coarse grid SH by merging neighboring sites in Sh (e.g., merging 0.05
every four neighboring sites into one site) The two-grid method achieves -
computation reduction and convergence acceleration by alternating mean C 0_
field calculations between the fine and coarse grids rather than just on the 2 4 6 8 10 12 14

RUN
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Maximum Likelihood Parameter Estimation of the Harmonic,
Evanescent, and Purely Indeterministic Components

of Homogeneous Random Fields *

Joseph M. Francos, Anand Narasimhan! and John W. Woods
Electrical Computer and Systems Engineering Department

Rensselaer Polytechnic Institute, Troy, NY 12180-3590

The paper presents a solution to the general problem of field "spectral density function" has the form of a sum
fitting a parametric model to observations from a sin- of 1-D and 2-D Dirac delta functions. The harmontc
gle realization of a 2-D homogeneous random field with random field, which generates the 2-D delta functions of
mixed spectral distribution. So far, the problem has the "spectral density" is one of the components of the
been largely unsolved. Existing methods either assume half-plane deterministic random field. The 1-D delta
the field has an absolutely continuous spectral distribu- functions which are supported on lines of rational slope
tion and try to fit white noise driven linear models to result from the generalized evanescent random field.
the observed field, or treat the special case of estimat- Hence, in this paper we concentrate on a solution to the
ing the parameters of a sinusoidal signal in white noise, problem of estimating the parameters of the harmonic
The existence of evanescent random fields has not re- and generalized evanescent components of the field in
ceived attention in the estimation literature, although the presence of an unknown colored noise generated by
the evanescent components have major impact on the the purely-indeterministic component, jointly with es-
structure and properties of the random field, as they
result in directional attributes in the observed realiza- timating the purely-indeterministic component param-

tions. We present a maximum-likelihood solution to this eters. We assume that the purely-indeterministic com-

estimation problem. ponent can be modeled by a 2-D AR model.

The suggested algorithm is a two-stage procedure. In
randm theld b isofa Wd-k decomposidintoasum ftwion[,the the first stage we obtain a suboptimal initial estimaterandom field is (decomposed into a sum of two inutu-

for the parameters of the spectral support of the evanes-ally orthogonal components: a purely-indelerminislzc

field and a deterministic one. The 2-D deterministic cent and harmonic components by solving the set of 2-D
overdetermined normal equations for the parameters of

random field is further orthogonally decomposed into a
a high-order linear predictor of the observed data. Inhalf-plane deterministic field and a generalized eranes- the second stage we refine these initial estimates by it-

cent field. The generalized evanescent field is a linear erative maximization of the conditional likelihood of the
combination of a countable number of mutually orthog- observed data, which is expressed as a function of only
onal evanescent fields. A typical example of an evanes- the parameters of the spectral supports of the evanes-
cendt field is a 2-D separable random field which is the cent and harmonic components. This representation is
proguct of a 1-D purely-indeterministic random process possible due to a parameter transformation developed
along one axis and a harmonic l-D process in the or- in this work. The solution for the unknown spectral

thogonal (dimension. The above decomposition implies t of The harmon and evanec n c pents

a similar decomposition of the spectral measure of thecomponents

regular random field into a sum of mutually singular reduces the solution for the other unknown parametersreguar ando fild ito su of utully inglar of the field, to a linear least squares solution. Exper-

spectral measures, each associated with a differ( nt com- iment ield e ne les t to de ton . th e r-

ponent of the spatial decomposition. The spectral dis- imental evidence is presented to demonstrate the high

tribution function of the purely indeterministic field is accuracy of the estimates for each of the random field

the absolutely continuous component of the regular field components: harmonic, evanescent of any orientation,

spectral distribution. The spectral measure of the de- and purely indeterministic.

teriministic field is concentrated on a set of Lebesgue
measure zero in the 2-D frequency plane. For practical References

applications, these results suggest that the deterministic
1. J1. M. Francos, A. Z. Meiri and B. Porat, "A Wold-

9This work was partially supported by NSF grant MIP- Like Decomposition of 2-D Discrete Homogeneous
9120377.

tCuirreiitly with the I.B.M. T. J. Watson Research Center, NY Random Fields", submitted for publication.
10598.
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QUANTIZED RECEIVER Ro BOUNDS AND THE ASYMPTOTIC

RELATIVE EFFICIENCY OF QUANTIZED DETECTORS

Marcos 0. Cimadevilla Jerry D. Gibson
E-Systems Department of Electrical Engineering

Greenville Division Texas A&M University
Greenville, TX 75403-6056 College Station, TX 77843-3128

SUMMARY statistic for the constant-signal case (i.e. si = . = constant for
all t) may be written as [4]

Wozencraft and Kennedy [1] and Massey [2] have argued

that the R. criterion is the logical choice for the design of mod- Q/2
ulation systems for coded digital communications. This paper 21{ lj[f(aj) - f(aj_ )]}2
develops a relationship between the change in the R. parame- Es = j=1 (3)
ter for quantized receivers and the asymptotic relative efficiency Q/2

E l'[F(aj-1) - F(a4)](ARE) of quantized detectors, which sheds light on both receiver • j
design and performance analysis.

Considering only binary input communication systems with Here the a, specify the end points of the Q input ranges and the
Q output symbols and assuming that the transmission of data lj correspond to the output levels of each input range. The vec-
is corrupted by zero mean, additive white Gaussian noise, the tors a and 1 that maximize (3) when f (x) is the normalized Gaus-
quantized receiver has sian density function are given by 1, = f '-' xf(r)dr/ f:'-'

r f(x)dx and aj = (1j+i + I,)/2 [4].
R',= 1- log2 1 + F qv/'ITq-h (1) In order to evaluate the performance of the quantized detec-

I tors, we compare them to the linear detector since this is the op-
timum detector when detecting a dc signal in Gaussian noise 15].

where qih = A2 fh- - and q2h = 11 f::- The test statistic of the linear detector is given by SL = 'I ri
e- (r+'/VTN)2/ 2dx. Here, the xh specify the end points of the quan- and its corresponding efficacy is EsL = 1/0.2 where a2 is the
tization interval Ah, and EN is defined as the signal energy per variance of the noise density.
dimension. The expression for the cutoff rate of a DMC when We obtain the ARE's of the quantized detectors relative to
employing an optimum receiver with no quantization (Q = oo) the linear detector by taking the ratio of their efficacies.
is given by [3] Q/2

Ro = 1 -log 2 (l + e-EN/A"*), (2) 2a2j lj[f(aj) - f(a)1}2

where A',/2 = a 2 is the noise power spectral density of the ESSL = ,sL Q/2 (4)
additive white Gaussian noise (AWGN) channel. j=1[F(a- )- F(a1 )]J=i

In order to determine the amount of degradation due to
receiver quantization, we must first determine the {xh } that Taking the background noise density to be the normalized Gaus-
maximize (1). One finds that the necessary condition for the sian density function, we obtain the desired results.
{Xh } to be optimal is that they satisfy the condition [2] Xh = It is shown that in the vanishing signal/large sample size
(ln[)\(bh)A(bh+0 )])/2vTN, where x. = -o0 and xQ = oc and case, the two efficiency measures give the sanme results for all

A\(bh)--P(bhlv'E-N)/P(bhI- V(EN) = qlh/q2h. Here the bh corre- values of Q.
sponds to the output level associated with the Ah interval. An REFERENCES
iterative numerical technique can be used to solve for the set of
{Zh}. [1] J.M. Wozencraft and R.S. Kennedy, "Modulation and de-

Having obtained the threshold levels {xh } that maximize modulation for probabilistic coding", IEEE Transactions on In-
R', we may now determine the amount of degradation intro- formation Theory, vol. IT-12, pp. 291-297, July 1966,
duced by certain quantization schemes by comparing the differ- [21 J.L. Massey, "Coding and modulation in digital communica-
ence between R. and R',. tions", in International Zurich Seminar on Digital Communica-

Next we consider the optimum quantization of data where tions, (Zurich. Switzerland), March 1974.
the quantized data are to be used to form a test of hypothesis for 13] J.M. Wozencraft and I.M. Jacobs, Principle.s of Communica-
signal detection. In particular, the optimum quantizer is defined tion Engineering. New York: John Wiley k Sons. 1965.
as the one that maximizes detection efficacy. The problem that
we consider here is the detection of a constant positive signal s [41 S.A. Kassam, "Optimum quantization for signal detection",
in additive noise with a symmetric density function f(x). For IEEE Trans. Commun.. vol. COM-25. pp. 479-484. May 1977.
testing the hypothesis H : f consists of noise only, versus the [5] J.D. Gibson and J.L. Melsa, Introduction to Nonparametric
alternative K : f consists of signal and noise, where f is the re- Detection with Applications. New York: Academic Press, 1975.
ceived vector, the generalized test statistic, based on quantized
data, may be described by 14] S= ",=, r,s, where the {r},=N
are the quantized data and the {sj)},I is the known signal se-
quence representing the dc signal. The efficacy C, for this test
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A NEW PROCEDURE FOR DECODING CYCLIC AND BCH

CODES UP TO ACTUAL MINIMUM DISTANCE

G. L. Feng and K. K. Tzeng
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Louisiana, Lafayette, LA 70504 and the Department of Electrical Engineering
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Abstract More specifically, the syndrome matrix S referred to in this

In this paper, a new procedure for decoding cyclic and BCH paper is of the following form:
codes up to their actual minimum distance is presented. Previous S5  Sb.,, Sh ,, ... Sb+,i, St-1:, Sbi,,
algebraic decoding procedures for cyclic and BCH codes such as IS+' Sb +j, S ... Sb,,i, ,+j, S,,,, ,+.J
the Peterson decoding procedure and our procedure using nonre- Sb j, Sb.,.j. Si+,,h ... Sbu,+,.,

current syndrome dependence relations can be regarded as special | I I I
cases of this new decoding procedure. With the aid of a computer Sh÷j, ,
program, it has been verified that, using this new decoding pro- Sb +j,,

cedure, all binary cyclic and BCH codes of length 63 or less can be
decoded up to their actual minimum distance. The procedure where the triangular portion of S above the minor diagonal consists
incorporates an extension of our Fundamental Iterative Algorithm of known syndromes and the syndromes at the minor diagonal of S
and the complexity of this decoding procedure is O(n'). are some unknowns and their conjugates.

Stummary Under the assumption that v errors actually occurred where v

For some years. algebraic decoding of cyclic and BCH codes <t, then there exist at most v columns of S which are linearly
has been restricted by the minimum distance bounds of the codes. independent. The other ,Ounins are then dependent on these
Previous algebraic decoding algorithms (Berlekamp-Massey. columns. A major step for this decoding procedure is then to deter-
Euclidean, and out generalizations ) have aimed at solving mine the unknown syndromes through the linear dependence rela-
Newton's identities which can be viewed as a set or sets of linear tions among the columns of S. In this paper. we show that this can
recunences. We have recently introduced a procedure that ftees the be accomplished through an extention of the Fundamental Iterative
decoding of cyclic and BCH codes from the confinement of the Algorithm we first introduced in [3].
bounds and can decode many cyclic and BCH codes up to their
actual minimum distance [I]. In outr recent procedure. the decoding Once So, S , S_ -.., S, - are computed, the error vector can be
is accomplished through the determination of nonrecurrent depen- determined through an inverse Fourier transform of the syndrome
dence relations among the syndromes. However, the application of vector (S, S S, ---, S,_ ).
this procedure depends on a condition that has to be satisfied for a We note that the decoding of the (41,2),9) quadratic residue
code to be so decoded. Thus, that decoding procedure is still short code [4] can be much more easily handled by this new procedure.
of the desired final goal on achieving decoding of all cyclic and
BCH codes up to their actual minimum distance. In this paper, we References
present a new decoding procedure that does not depend on the
satisfaction of this condition. We show that, for a code with actual [11 G.L. Feng and K.K. Tzeng. "Decoding cyclic and BCH codes

minimumn distance d to correct uip to = [(,- I ) /2J ero'rs. all tup to actual inininiimu distance using nonrecurrent syndrome

that is required is that a (2t+ 1 )x(2t+ 1) syndrome matrix can be so dependence relations," IEEE Trans.. Inforn. Thcotv. vol.
formed that the syndromes above the minor diagonal are all known IT-37, pp. 1716-1723, Nov. 1991.
and those at the minor diagonal are some unknowns and their con- [2] J. van Lint and R.M. Wilson, "On the minimum distance of
jugates. With reference to the table of codes listed in van Lint and cyclic codes," IEEE Trans.. Inform. Theor)y. vol. IT-32, pp.
Wilson's paper [2] and with the aid of a computer program. the 23-40, Jan. 1986.
existence of at least one such matrix for each code has been [3] G.L. Feng and K.K. Tzeng. "A Generalization of the
verified for all binary codes of length 63 or less. Thus, to say the Berlekamp-Massey Algorithm for Multisequence Shift-
least, the procedure is capable of decoding all binary cyclic and Register Synthesis with Applications to Decoding Cyclic
BCH codes of length _< 63 up to their actual minimum distance. Codes," IEEE Trans.. hlnorm. Theory. vol. IT-37. pp. 1274-
We have also demonstrated the existence of such syndrome 1287, Sept. 1991.
matrices for some codes of length greater than 63. The procedure
is a very general one and includes previously mentioned algebraic [4] I.S. Reed, T.K. Throng, X. Chen. and X. Yin, "The Alge-

braic Decoding of the (41.21.9) Quadratic Residue code,"decoding procedures as special cases. It can be applied to the IEEE Trans.. hnfo•rm. Theory, vol. IT-38. pp. 974-986. May

decoding of codes of any length for which such syndrome patterns 1992.

exist.
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A New Remainder Based Decoding Algorithm for
Reed-Solomon Codes

by

Tomik Yaghoobian and Ian F. Blake
Department of Electrical and Computer Engineering

University of Waterloo, Waterloo, Ontario

Abstract

Conventional decoding techniques for decoding cyclic codes re- The present work derives a new remainder based algorithm. It

quire the computation of power sum syndromes which can often develops a key equation that uses the remainder polynomial,
account for a significant portion of the decoder computations. expressed in terms of the Lagrange interpolation polynomials,

Since the syndromes can be computed from the remainder poly- which allows solution for the error locator and evaluator poly-
nomial, the polynomial obtained by dividing the received polyno- nomials by the conventional Euclidean algorithm technique. In

mial by the code generator polynomial, it follows that this poly- particular it shows that if the remainder polynomial of the Reed-
nomial contains all the information required to decode. Thus Solomon code with parameters (n, k, d = n - k + 1 = 2t + 1),
one might hope for a decoding technique that uses the remain- then
der polynomial directly. Berlekamp and Welch have given such d-2

an algorithm which requires the sequential testing of the par- F(z) = E rkhk(z) , hk(X) = ck II (z - k &)/(cx - a')

ity check locations and updating of four polynomials. Whiting k=0 i=0.i€•

in his doctoral thesis has given a modification of this procedure where ek depends on the code parameters only and hk(Z) is a
that makes more efficient the evaluation and updating of these Lagrange polynomial, then if there exist polynomials
polynomials.

N(z), W(z), deg N(z) < deg W(x) < t

The present work derives a new algorithm using only the remain-
der polynomial. A new key equation is derived which may be which satisfy the key equation

solved by the usual Euclidean algorithm. The advantages of this W(z)F(z) = N(z)mod p(x) = (z - 1)(z - a)... (z - a 2t - 1)

approach are discussed and compared to the original algorithm
and a performance of the algorithm in terms of computational then W(z) is the error locator and N(x) is closely related to
and circuit complexity is considered, the usual error evaluator polynomial. Thus the Reed-Solomon

code can be decoded directly from the remainder polynomial,

Summary bypassing the need for the syndrome polynomial.

Conventional decoding techniques for cyclic codes require the The relationship of this algorithm to the usual form of the Berle-
computation of the power sum syndromes. These are given by kamp-Welch algorithm and the implications of this form of de-

the evaluation of the remainder polynomial, the polynomial ob- coding in terms of implementation are discussed and examples
tained by dividing the received word by the code generator poly- are given.
nomial, at the roots of the generator polynomial. Such computa-
tions can absorb a significant part of the decoding effort. As the

remainder polynomial contains all the information required to References
decode, it might be hoped to derive a technique that uses the re-
mainder polynomial directly. Berlekamp and Welch [1],[2] devise
such an algorithm which requires a sequential test of the parity [1] L.R. Welch and E.R. Berlekamp, A new Reed-Solomon de-
check locations, the evaluation of discrepancies at these locations coding algorithm, International Symposium on Informa-

and the updating of various estimates. The procedure involves
four polynomials and there appears to be no obvious way to split [2] E.R. Berlekamp and L.R. Welch, Error correction for alge-
the algorithm into the more conventional determination of the er- braic block codes, US Patent No. 4,633,470, September,
ror locator and evaluator polynomials via either the Berlekamp- 1983.
Massey or Euclidean algorithm approach, followed by a Chien
search. The Berlekamp-Welch algorithm was further considered [3] D.L. Whiting, Bit-serial Reed-Solomon decoders in VLSI,

in the thesis by Whiting [3], which also contains an excellent Ph.D. Thesis, California Institute of Technology, Califor-
description of the algorithm itself. (As far as the authors are nia. 1985.
aware, the algorithm itself has not appeared in the literature.)
He devised an efficient linear scaling technique for the updating
of the polynomials.

96



Inverterless Cauchy Cells for A Systolic
Reed-Solomon Encoder

M. A. Hasan and V. K. Bhargava
Department of Electrical & Computer Engineering

University of Victoria
Victoria, BC, Canada

Summary 1
uLi = Hl (o'- 1 -i - o'-'-)' 0< <k-1,

Consider an (n, k) Reed-Solomon (RS) code of length n = q - 1
and redundancy r = n - k over the finite field GF(q). The usual 1 _ 1 -
implementation of the RS encoder consists of an r stage feedback I-<
shift register [1]. In some very high speed applications, the presence 1-1 (O-lk - a--), 0 < j < r - 1.
of the accompanying global feedback path restricts the speed of the o</<k-I
encoder.

Recently, Seroussi has proposed an architecture for the RS en- Consider the codeword (do, di, .. , dk-1, PO, P1, "", Pr-0).
coder [2]. Unlike the usual implementation of the RS encoder, where di (i = 0, 1, ..- , k - 1) and pi (i = 0, 1, -.- , r - 1) are the
Seroussi's architecture does not require any global feedback path. data and parity symbols, respectively. For 0 < i < k - 1, 0 _ j
Furthermore, the architecture is of systolic type and has modular a r - 1, let
structure- it consists of one pre-processing cell and r Cauchy cells
[2]. This modularity feature of the encoder makes it suitable for Bi+,,.j = (x, + y,)Bi.j+ (2)
hardware implementation. Ri, 3  = (x, + yj)R,. + d rid, (3)

The circuit complexity of Seroussi's RS encoder depends essen-
tially on the Cauchy cells. Each Cauchy cell computes one parity with B0 .2 = 1 and R0 ., = 0. Then it can be shown that
symbol for the RS code and contains one parallel type divider for
the finite field GF(q). Unfortunately, the realization of a divider is 0' = Rt.1 , j 0, 1, .-- , r - 1. (4)
much more complicated than that of a multiplier [3]. Let Af de- As the computation of Ri+i,, (0 < i < k - 1, 0 < j < - 1)note the circuit complexity of a parallel type multiplier of GF(q), requires only multiplication and addition operations, the Cauchywhere q = p-, p is prime and m is a nonzero positive integer. Then cells, each of which computes one parity symbol, can be designed
the circuit complexity of a modular parallel divider is, in general, without any divider/inverter.
O(mM) and that of Seroussi's RS encoder is O(rmM). The computation of du, in (3) is done in the pre-processing cellIn this paper, we extent Seroussi's work. It is shown here that of the RS encoder, and one Cauchy cell can recursively compute
the Cauchy cell can be implemented without any divider. The one parity symbol with two multiplications and two additions inproposed Cauchy cell also has a shorter logic path and yields an each time step. However, the multiplications can be performed in
RS encoder which has a circuit complexity O(rM). parallel resulting in a logic path consisting of one multiplier and twoLet a, 2- -.. ,a'-' be the roots of the RS code where o is adders. This logic path is shorter than that of [2] which consists of
a primitive elemenat of GF(q). In systematic form, the generator one divider and two adders.
matrix of the RS code can be written as

G = [I[A], References
where I is the k x k identity matrix and A is a k x r matrix where [1] E. R. Berlekamp, Algebraic Coding Theory. New York:
the matrix elements belong to GF(q). A is called a Cauchy matrix McGraw-Hill, 1968.
and its elements are given as follows [2]: [2] G. Seroussi, "A systolic Reed-Solomon encoder." IEEE Trans.

A, - uiv , 0< i<k-i1, 0< j <r- , (-) Inform. Theory, vol. IT-37, pp. 1217-1220, July 1991.' x i + yIi
where [3] M. A. Hasan and V. K. Bhargava. "Bit-serial systolic divider

and multiplier for GF(2-')." IEEE Trans. Comput., pp. 972-

_,n-'-'-, 0<i< k- 1, 980, Aug. 1992.

Y = n-I-k- 05 0 j_<r-l,
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A NEW LOOK AT THE KEY EQUATION

Patrick Fitzpatrick,
IFI Institute of Advanced Microelectronics,

NMRC, Cork, Ireland.
email: fitzpat~bureau.ucc.ie

Abstract

We describe.& new algorithm based on Gr~bner bases of modules This ensures that (xP,O0) > (0,r9) if and only if p > q. Each pair (ab)
for solving for the pair (a, 6) the multivariable polynomial conlgruecel can be expressed 'as a finite sumn Ejt where -)., E k arid t, is a term and
as _= mod I where I is an idesl in M .z~] and i is given. The the leading termn of a pair (a, b) is that ternm in the decomposition which) is
restriction to one variable gives a new approach to decoding BCH1 and
(classical) Goppa codes, greatest relative to <. If the leading term of (a, 6) has the form (r', 0)tI.

say its leading term is on the kcft while if it hias the form, (o, X,~) thenii-is
leading term is on the right. Note that Ihe leading termi of (a, b) is onl I I

1 Introduction left if and only if ba > 61, (where 6 deitotis degree).
A pair (a, hI can be reduced tiy a pair (a'. b') if thle leading terni of

Let A =kx,..., z,,]where k is afield. Interpreting a polynomial s of total (a',f6' is on the left and ba > flat, or if the, le-ading termi of (a' -. k'
degree mn as a truncation of a formal power series we may ask for relatively the right and bb > 6b'.- The reductioni step will be definied withI rcference to
prime polynomials a, b where a(0) A 0) such that the expansion of b/u ais the left hland side-an analogous definition aptplies off the right, Sur~t'o-~
far as terms of degree ini is equal to s. This problem may be regarded as a a = airl + - -+ no, a' = at,,i-" + --- + a. where af t_ 0, a~,, j4 0,1 > pit aud~
special case of solving (for a anid b) the congruence the leading term of (a', bV) is omi the left. Theni we say (a, b) is riduccel by

(a',b') to (a",b") = (a, b) - Va/~ J'"n.1). It is tIar that mn" < t~a
as =b moiod 1, ()We call a basis D of a module .11 a reds eel fat is if ioin' of its I'lemoults

where I is anl ideal in A and s is a givemi polynoniial . Ini general we requiti ca ereue'' ohr

that a and b be relatively prime bitt drop the conitiltion thtat aI(0) t 0t. Theorent 2.1 (1) Let .1Ill be noodds They) a ridsod ta,as. of 'if -i
In the I -variable problem, I is the ideal getierat ed by a si ogle poly ,nonia I sist~s either of a single element car of Itrn dc sic,, I 1((11, bl)m 012 bn .'2)) s, 1,

arid it is well known that fin t his case the solut ion Inlay be' deeni,'tiiite is,- (al,, h) has leading termn 0ni Inc( left ania 102.1,2 ) ha~s leading trim, o)a It,
ing the extended FEucl idieani algorit hiii or t li, llerl,'kaiiip-M'iasses a Igorfi t lo right. Moreove r, i1s lhe ltalry (c4se 661 > An12 a 11"0,1 < `b2 .
neither of these is valid for nf > I1. Sakat a [31 has gi~vein ;i Xt extesion t 1 (ii) Let D be a redsuced basis oif Ml andl lt (a, Ill E .i1 Thi alb, fiadll1/
n variables of the llerlekaniiiI- Massey algorithmi aind fii [21 WI' tgw, a-r term of (a, 6) is a ni nltipte oftlb leading tirn-ni of as clenirnt iofDI
responding generalization of the inethod based on fltt, extenided ErictiIIai (mi) A reduced basis of lt is a Grldbnicr ba~si~s.
algorithimi. The iiatuiral edit ext for such a geineraltizat ion is that (Ifr ctroh-r

bases of polynotnial nodules. We proved iii [21 that Grobner Iiast's of mu1t- Since we are interested iii the nicdiii' G arisiing fii the Ile~coIhinig atplili
"ules caii lie usedI to sol t" - ligruence (I1) for aiiy i1deal 1. cation we miay assume t hat G conitainis (iii I'lenivit (ar, ý whwr-' r ain I

'The l'vari;Itli' t~chniqiiI canl he appiliedl to the idecodiiig probileim for are relatively prime anid &ra < 1. ý < hAr. Iii plart icuilar tli,' leadliiig tIriii
BCll and i - variable) Golpta codes where it proviides a tie" tieoret ica I of (r, w) is on the left. (We uts- filie condlit ion ilt)) = I iii St I'l 2 of If li,
derivation of an algoritlini for solv'inig the key eqluat ion whlichi is p racdice is algorithmi below.)
eqiiivaleiit to that based oii the extended Euclidean algorithiii. 'Thlis ionw
theoretical uniderplintning is in a senise miori' "natiuiral' t lion '-ither of the two Tlieereiii 2.2 (ar, ) is asl deun,, t of Il ,st lIaithiof 1(rm1 ill G; Fri- ry it

classical niethiods, Ini the fol lowinig sect ions we oiitliine a diirec t ileri vatiou dared basis ofG co ntalins a scalfir to alipli of (arr ,)
of this algorithm. For further dcIrails cf. [11. A osqec fti hoenw ~~,tefl~igap~~lo1ý

solving the key cquiationý

2 The solution module Algorithm

The I - variabile formi of congruence ( 1) is I. Reduce tli" basis Ht = {ltt.g). (1 Ls)} to i ,dl i-tIt thasi, It'
{i~i V0, '. 01 2. V'2)} where (tii. 1 1) has leadiiig terlii oii ili,- I-ti

a.s- b iltool !j. (2) 2. Set ((7.~- ui(tIP'ln,. 1,)

where, s (the syndrome polvitoitiual) has d.'gdl'I aIt iii~ll 2t -I andl 1 1,s

pol)iyiohinm of deIgree 21 ti'
2
' or flthe (ophpo polynonnial, 3. lii. set of all Ilaile References

(a, b), without rest rictioni. satisfying (2) formus ani A-utoluile (; An suc
mioduile has a finite basis and1 it is eaisy to prove that 11 = 1(tt y). 31 -)} (1 P. Fitzpatrick. A new iderivatioin of anl algoriliiii for soo hg fltl klý

is a basis of G'. Our ann is to Idl't'rI'ine. from BItinot her basis 11' %indhti equation, (suubuiiited for putlicat ion),

coiitains (a scalar miiltiple of) thle stlecitic relliirI-I soluiiiohl (a. I in t11 [21 P. Fitzpatrick, J . F-lynin. A Grohiuc'r hasis tecluiqwlli forPat Iol atllrIIxl-
uisua~l inota tion - when'. 47(0) = I - mat ion, J. 5ywhoblic Computia tionn. 1:1 (I 9t2)3, 1331- 1:38.

We' impilose a teita I order < onl thIe set of le1' n-o ( j Io). (0. j-` 3) ill A' to
intprleriving t hen, as follows: [3] S. Sakata. Exte'nsion of thle 11trlekanipl-\Iassey algoritloin to to dliuis'ii

1.0 0 )<(,0 0 )<(2,()<(, .2) . siomis, Inforiniatoni and ('oinfliationu X-I ( 1990)1 207-239
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ON THE MINIMUM CODE LENGTH OF S-STEP (T, U)
PERMUTATION DECODABLE CYCLIC CODES

Anader Benyamin-Seeyar, Tho Le-Ngoc, and Ming Jia
Department of Electrical and Computer Engineering, Concordia University,

1455 de Maisonneuve West, Montreal, Quebec, Canada H3G 1M8

Summary sider the case of to = 7 as an example (the case of t0 =3 and 5 are simi-

One variation of error-trapping decoding which is known as "permu- lar), for s-step permutation,

tation decoding" was introduced by Prangell]. A serial decoder based on k, = to(2s -1)-2 (7)
this treatment was given by MacWilliams, who made use of code preserv- * * *
ing (T, U) permutation sets to obtain k error-free positions from which the Ak, = kAZ5  - k, = ks + to (8)
rest of the codeword could be reconstructed [2]. Recently, the exact lower
bounds on the code length n for two and three steps (T, U) permutation Therefore, when each more permutation is applied, k* increases k + t0 .
decodable (PD) (n, k, 2t+1) cyclic codes have been found [3-5]. In this On the other hand, when k < k , the code length n does not keep
paper, we extend those results on the code length for any s-step (T, U) decreaseing at the rate of An = (Ak)t, so the increasing in the code rate
permutation decodable cyclic codes with odd valued error-correcting R. is very slow. That is to say, ARC increases as permutation steps s
capability i. In addition, an optimum permutation step which makes the increases, until to this extent that k large enough and A -AZ being
most efficient improvement in the code rate of PD cyclic code is also satisased. Theistepcorrespondingttotth large enu is t o u pern

given. Since the derivation of these results involves only the error posi- satisfied. The step corresponding to the largest ARcs is the optimum per-

tion, the results are applicable to cyclic codes over GF(2m ). mutation step which makes the most efficient improvement in the code rate
of PD codes. When the error correcting capability of a code is goven as

Main Results t0 , k* corresponding to every permutation steps s is known; therefore, the

The exact lower bounds on the code length n for two and three step optimum permutation step can be estimated. From the implementation
(T, U) permutation decodable (n, k, 2t + 1) cyclic codes are given in [3, point of view, this optimum step determines the number of U- perumtation
4]. Here we extend the results on the code length for s -step (T, U) permu- steps used for achieving higher code rate Rc.
tation decodable cyclic codes with odd-valued t only. The results are From the results above, the relation between R., k and s as shown in
presented in the form of theorems. Note that the subscrips "e" and "o" are
used in the manuscript to indicate the even and odd valued variables Figure 1 can be obtained, where R = 1/(to + 2 + 2Jto) and R = 1/(to -2)
respectively. for to = 5 and to ' 7 respectively. For the region of k <k*, the code rate of
Thew em 1: The (n, k, 2to + 1) codes with PDcodesisaroundR

n =t o(A3,-2 +1)+ 2 -, k - t0(23 -2- 1) + l for to= 5 and

k, >t 0(2-_ -l)-2 +3 for t. >7, are s-stepPD. s-step

Theorem 2: The (n, ko, 2to + 1) codes with R
tk s-I 2s-I ,-

n = o0 (AZ-2 +2)+ f Iko Žto(2-21) for to =5 and Ilit

ko Žzto(2'-'- 1)-23 -2 + 2 for t0 -!7. are s-stepPD.

Theorem 3: The (n, ko, 2to + 1) codes with kA k
n =t 1s-2-2- 2)+-2 ko =2to(2 -2 ) -2 for t>7, are Figure 1: TherelationbetweenR,. k and s

not s-step PD. As conclusions, the following comments can be made:

Corollary: The (n, k,, 2t0 + 1) codes with 1. When k-.)-, the code rate of s-step PD codes decreases and
I +)2 =t 0 (2 -l)-2 for Ž7approaches the code rate of the codes which can be decoded by error-

= to(k -2-+1)+21-1, = ( 2- 2 for to_7, are trapping decoding.
not s -step PD. 2. When k--4-Zk, Rc approaches to 1l(to - 2 + 2/to) and l(t. - 2) for
Now we present the bounds on the code rate R. for binary (n, k, 2t + 1) to = 5 and to 2! 7 respectively.
permutation decodable cyclic codes.

3. For each additional step, k increases more than double. In the
Theorem 4: The code rate of s-step PD codes with k > k* and t. = 5 is region of k < k*,the code length n does rot keep decreasing at the rate of
less than 1/(t,, -2 + 21/t), where kA = to(2 2-1) -2 and k = k*-1. An = (Ak)to, so the increasing in the code rate R is very slow and R. is

Theorem 5: The code rate Rc of s-step PD codes with k > k* and around the value R.
where k t(-2_ -2 4. AR = R - R increases as the permutation steps sŽý7 is less then 110t0 - 2), whee k = t0,(2' 1 )-2' and cs *C(S + 1) cs

k:= k + 1. increases until k is large enough and k < k being satisfied. Therefore,
there existes an optimal step which makes the most improvement in the

The above results present the bounds on the code length and the code rate of PD codes. Given a t-error correcting (n, k, 2t + 1) cyclic
code rate of s -step PD codes. Clearly, when permutation steps s increases, code, then the optimum step s can be determined. In this way the steps
R, increases. Next, we show how R. increases with respect to s. needed to decode a certain code can be estimated.

Suppose that the code rate of a s-step PD is R.., then References
AREs = R, I(S,) -R, is not the same for different s. This can shown as [I] E. Prange, "The use of Information Sets in Decoding Cyclic Codes,"
follows: IEEE Trans. Inform. Theory, vol. 8, pp. 85-89, Sept. 1962.

k s - 2 .

aR k.02 (t -I)ln2 121 F. J. MacWilliams, "Permutation Decoding of Systematic Codes,"
- > 0 (5) Bell Syst. Tech. J., vol. 43. part I, pp. 485-505, Jan. 1964.

is n2 [31 A. Benyamin-Seeyar, S. S. Shiva. and V. K. Bhargava "Capability of
2 -the Error-trapping Technique in Decoding Cyclic Codes," IEEE

a2R A ko (kZ + 2)to (t. - 1)2' -
21n22 Trans. Inform. Theory, vol. 32, No. 2, pp. 166-180, Mar. 1986.

2 - (6) 14] M. Jia, A. Benyamin-Seeyar, and T. Le-Ngoc, "Exact Lower Bounds
on the Codelength of Three-Step Permutation-Decodable Cyclic
Codes," IEEE Trans. Inform. Theory, vol. 38, No. 6, pp. 1812-1817.

So when k > k, ARCS increases as the permutation steps increases. Con- Nov. 1992.
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EFFICIENT CODING/DECODING STRATEGIES
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Cuong Hon Lai and Samir Kallel
Department of Electrical Engineering
The University of British Columbia
Vancouver, B. C., Canada, V6T IZ4

Abstract
different memories. In this scheme, a code with a relatively

Many digital communication channels are affected by short memory is used with Viterbi decoding for random er-
errors that tend to occur in bursts. This paper proposes ror correction and for burst detection. The other code which
two new schemes for burst error correction. Both schemes has a much longer memory is used with backward sequen-
employ a combination of two codes. In the first scheme, tial decoding to recover burst errors. Normally, the decoder
one of the codes is used for random error correction and operates in the random mode and it uses the received se-
for burst detection while the other one is used only for burst quence corresponding to the code with the shorter memory.
recovery. In the second scheme, one of the codes is used An abrupt increase in the cumulative path metrics indicates
for burst detection and for channel state estimation. With that the channel is most likely in a burst. The decoder then
the second scheme, both codes are used for error correction, switches from the random mode to the burst mode, and starts
Unlike existing burst-error-correcting schemes, it is shown burst error recovery. In the burst mode, starting from a chosen
that the proposed schemes are adaptive to channel conditions state, the decoder employs a backward sequential decoding
and less sensitive to errors in the guard space. For the same algorithm to recover the corrupted data. When the channel
delay, the proposed schemes offer better performance than the becomes quiet, the path metrics are relatively constant, and
interleaving schemes. When dhe channel is heavily corrupted the decoder returns to the random mode.
by bursts, the improvement is even more pronounced. Scheme 2 uses two punctured codes that are derived

Summary from the same original convolutional code with Lomplemen-
tary perforation patterns. One code sequence is transmitted

Many digital communication channels are affected by after a delay from the transmission of the other code sequence.
errors that tend to occur in clusters or bursts [1]. Several The first code sequence is used with a Viterbi decoder to de-
schemes for burst error correction on these channels have tect bursts using the same burst detection procedure as in
been reported [2-51. One approach is to use special codes Scheme 1. The burst detection procedure also serves for es-
designed exclusively for burst error correction [4]. These timating the channel state. Both received sequences are then
so-called burst-error-correcting codes perform relatively well used by a second Viterbi decoder which uses the channel state
over channels with short bursts, but perform poorly when information provided by the first decoder.
the channels are corrupted with long bursts. Another con- The proposed schemes are adaptive to channel condi-
ventional approach is to interleave channel symbols prior to tions. The parameters of the decoders can be chosen to op-
transmission. With interleaving, burst errors are spread over timize the perfoi mance of the schemes. For the same de-
many symbols, and can thus be viewed as random errors. lay, these schemes outperform the conventional interleaving
However, for channels with long bursts, interleaving schemes schemes when the channel is heavily corrupted by bursts.
need extremely long delay to be effective, which might not While Gallager's burst-finding scheme and Schlegel and
be tolerated in some applications. Another approach is Gal- Herro's scheme are sensitive to errors in the guard space, the
lager's burst-finding scheme [2]. In this scheme, a rate 1/2 proposed schemes can tolerate high error rates in the guard
systematic convolutional code is used with a modified ma-
jority logic decoding. Gallager's scheme sacrifices random-
error-correcting capability in exchange for better burst cor- References
rection. A modified version of this scheme was recently
suggested by Schlegel and Herro [5]. This scheme is es- [11 L. N. Kanal and A. R. K. Sastry, "Models for channels
sentially the same as Gallager's scheme except that majority with memory and their applications to error control."
logic decoding is replaced by a modified Viterbi decoding al- Proc. of IEEE, vol. 66, pp. 724-744, July 1978.
gorithm. Both Gallager's burst-finding scheme and Schlegel (2] R. G. Gallager, Information Theory and Reliable Corn-
and Herro's scheme are extremely sensitive to errors in the munications. New York: Wiley, 1968.
guard space. (3] G. D. Forney, "Burst-correcting codes for the classic

TWo efficient coding and decoding strategies are pro- bursty channel," IEEE Trans. Comm.. vol. 19. pp. 772-
posed in this paper. Both schemes employ a combination 781, Oct. 1971.
of two punctured convolutional codes and a burst detection [4] S. Lin and D. J. Costello. Error Control Coding. NJ:
procedure. Burst detection is accomplished by observing the Prentice-Hall, 1983.
increment in the cumulative path metrics from Viterbi decod-
ing. Scheme I uses two punctured convolutional codes with [5] C. B. Schlegel and M. A. Herro, "A bs.t-error-

___________________correcting Viterbi algorithm," IEEE Trans. Comm..
0 This research was supported by the National Sciences and Engineering vol. 38, pp. 285-291, Mar. 1990.
Res,.arch Council of Canada.
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Comparison of Erasure-and-Error Decoding Schemes
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Erasure-and-error decoding is a general form of decoding for terms of the asymptotic error exponent as the blocklength goes to

reliable communications and, at the same time, the basis of infinity and, at the same time, the exponent of the erasure prob-

important channel coding schemes such as coded (or hybrid) ability goes to zero. Even though this gives the best theoretically

ARQ and concatenated coding. There are several schemes dis- attainable error exponent, it usually has nothing to do with the

cussed in the context of information theory. Those are Forney's observable performance because of the decoder complexity.

scheme, the threshold decoding discussed in Gallager's textbook, We consider the performance bound of a given scheme in the

the likelihood-ratio decision, the use of error-detecting codes, and following form (or its minor variation) such that

their modifications. Most of the schemes may be described, in

terms of a reliability measure Q(y,m), in such a manner that the P,, <r exp{-NE.,.,e(R, R.)}

decoded message is accepted only if Q(m) > T for a specified T for R,, satisfying
and an erasure is declared otherwise. For example, Q(y, m) =

log P(yx-) in Forney's scheme, Q(y, m) = log P(YIX-l>ý_,, P(ylx-,) 9(Y) Pýo !S exp{-NE.,(Ro)},

in the threshold decoding, and Q(y,m) = log P(YIX=)max=,, P(ylxm,)

in the likelihood-ratio decision. An interesting variation of the where R is the coding rate and N is the block length. We call

likelihood-ratio decision is Kudryashov's scheme where Q(y, m) = Eocp.,,,•, the error exponent of the scheme. This form of the bound

log P(yIXI) is used. Between these schemes, For- is really required in many applications since the tradeoff between

ney's scheme is known to be the best one but requires much com- Per, and Pt,., is an important problem.

putation. Thus, suboptimal, but simpler schemes are preferred In the discussion, we carefully distinguish several threshold de-

in real applications. However, when we are to select one between coding schemes. Although the same Q(y,m) is used, there are the

these schemes, we realize that there do not exist enough discussions weak threshold (Th) decision, the strong threshold (STh) decision

on the relationship between the respective performances. where the uniqueness of the decision is required, and the max-

In this paper, we consider the upper bounds of P,., erasure imum likelihood threshold (MITh) decision where the maximum

probability, and P.,e, undetected error probability, of the respec- likelihood m is tested. These show somewhat different character-

tive schemes and compare them in a systematic manner. Known istics and performances.

bounds for the respective schemes are insufficient for our purpose. As a result of analysis, we show that ETh(R, R.) <

For example, most of them are presented in terms of different expo- ESTh(R, Ro), that ESTh(R, RO), EMjTD,(R, R.), and EEd(R, R.)

nent functions, the performance is under-estimated in the case of for the scheme based on error-detecting codes, have almost the

the likelihood-ratio decision, there are some confusions concerning same bound, and that EF,,(R, R&) is strictly superior to the

to the analysis of threshold decoding as seen in Gallager's text- rest. An interesting point is, for a binary symmetric channel, that

book, and the performance bound of the scheme based on error- EL,(R, &) for the likelihood-ratio decision and EKa&voh,(R, &,)

detecting codes has not been considered in the Shannon-theoretic are very close to EF0,,(R, R.). A reason of the last result may be

context. A reason for some of them is that the performance of that Q(y, m) is basically the ratio of likelihood functions in these

an erasure-and-error decoding scheme is frequently considered in schemes.
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Abstract . r-i
Suppose one is given .1f (possibly corrupted) codewords from M (pos- S -JZ) y E C, : dHj(y. z) < or d (yz) YJ • zL.
sibly different) codes, each over Fq; suppose further that the code- 2

words have a single symbol in common. The common-symbol decoding That is, (i) if there exist codewords within [(8, - 1 )/2j of the received
problem is that of estimating the symbol in the common position. In n i-tuple r,, then 1Di maps r, onto the closest of them; (ii) if not, and 8,
f1 ], a solution to this problem was presented for a very restricted case. is even, then it erases the first symbol and tries again; (iii) If both of
This talk presents a general solution that contains the familiar one- the above fail, then the error is uncorrectable (indicated by mapping
step majority-logic decoding as a special case. This algorithm leads to ?). Next, define the following:
naturally to a decoder structure suitable for fault-tolerant decoding W U i : D(ri)A
of cyclic block codes; the resulting architecture undergoes graceful
degradation with increasing component failures. Bounds on decoder (ii) 6i r, - D(ri); fli 1 r, WOO. V i U:
performance under various kinds of partial decoder failures are pre-
sented. (iii) Ea= {i :i V U.TD(ri) =a}. VaE F,:

Summary (iv) ga • 0 a = 0.
One-step majority-logic decoding [21, is one of the simplest al-{ {i : 3; is even, ri = 38/2. ii 5 a}l otherwise.

gorithms for decoding cyclic block codes. However, it is an effective +, [8,+ 1
decoding scheme for very few codes. In [1), the authors presented a (v) N(a)" Z T. + - + + I
generalization based on the following common-symbol decoding ap- iEa iEU'-Ea iEU

proach. +ga-(MOf- l)wt(a), VaEFq.
Given C1 , C2 .. , CM a set of M' linear block codes over F, let Common-Symbol Decoding Algorithm: Assume no more

Ci E Ci,c 2 E C2 .. CM E CM be a set of codewords with the
first symbol in common-i.e., c 1,12 .1c = ..... CA1b The sym- than [3/2J errors have occurred. Then, if there exists a unique a

bols making up the codewords are transmitted over a channel (the a* E Fq, that minimizes N(a), the error in the common position is

common-symbol only once), and errors occur. Let r, = c, + e, V i - given correctly as a*. Moreover, if there does not exist such a unique

1.2 .... , Mbe the received, corrupted codewords. (Of course, r . a* then 8 is even, and exactly 8/2 errors haue occurred.

*2, . r= , I.) For the case of one-step majority-logic decoding, the J orthogo-
nal parity-checks correspond to simple parity-check codes with 8i =

C, C• cr, r2 r 2, V i = , 2, . J, and the algorithm reduces to the familiar one-
C on C on step majority-logic decoding.

•C : The common-symbol decoding problem may be applied to decod-
ing cyclic block codes because of the following observation: For many

CM , r. large, powerful codes, it is possible to break up any codeword from the
large code into .11 codewords (from smaller, weaker codes) that share
a single symbol in common-just as one-step majority-logic decodinge• • e may be viewed as breaking up a codeword into a number of codewords,

ommon each from a simple parity-check code, with a single symbol in common.

This suggests the following distributed approach to decoding
cyclic codes: i) Break the received (possibly corrupted) codeword

eM. "from the powerful code into .Al (possibly corrupted) codewords from
smaller codes; (ii) decode these (smaller) codewords in parallel; (iii)

Fig 1. M codewords sharing a symbol being transmitted over a channel, pool the results of the individual decoders (r,'s, r,'s, and U) to decodE.

It was shown in [3] that the common-symbol can be estimated the symbol in the common position; (iv) repeat with cyclic shifts to
correctly provided no more than [(3 - 1)/2J errors occur in all the M decode all symbols of the code.

codewords. Furthermore, if 3 is even, and S/2 errors occur, then such Fault-'Iolerant Decoding. Suppose, of the Al decoders, the
an event can be detected. Here, ith decoder were to fail (i.e. produces unreliable values for r7, and

M ;i). Then if this fact is known, simply ignoring the result of the ith

S_ - ( - 1), where 8i =__ min dH(x.y). decoder allows us to correct the common symbol provided no more

=1 x,y E C, than [(6 -8 1)/2J errors have occurred. However, if this fact is not
X1 . y, known, then only [05 - .)/2J - 3, errors can be corrected. Further,

That is, 6i is the minimum Hamming distance between codewords in if rl, is reliable, but T, is not (and the decoder is unaware of this) then

C,, that differ in the first (common) position. The common-symbol de- L(S - 8, - 1)/2J errors can be corrected.

coding problem is that of performing this decoding. (In [11, a solution
was provided for the simple case of q = 2, M = 2, and 61 = 62.) Bibliography

Let Di be a bounded-distance decoder for the code Ci defined as: [11 Murad, A., and Fuja, T., "A Generalization of Majority Logic De-
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ABSTRACT

Recently, it was shown how to determine the error locator polynomial of For the correction of one or more errors, we must solve this system of
a primitive, binary t-error correcting BCH code in a single step [3]. For algebraic equations, to determine the error locator polynomiala(x),
this purpose it is necessary to transform the set oft syndrome polynomial whose roots are the required error locations [1].
equations to an equivalent set of polynomial equations, leading to an
analytic expressionfor the error locator polynomial, a(x). These results Following Cooper [31(41 let x = (x,, x2, .-., x) and K =GF(2); then
facilitate decoding beyond the BCH bound, i.e. correcting more than t F C K ix] is the ring of polynomials in t variables. Let I be the ideal
errors. Tifs requires the resolving of additional syndromes coefficients, generated by F. I(F) is spanned by F and is the ideal of all polynomials
which is achieved in a simple and elegant way by means of the expression which vanish at a set I t,, ..., •,) of points in K. By applying a reduction

derived for the syndrome polynomial o(x). -process it is possible to transform the set F into another set G, which is
SUMMARY easier to solve. The resulting set G is a triangularized set of equations,

which contains the required error locator polynomial a(x). [31. It is

Primitive, binary BCH codes are attractive because of their relative noteworthy that the derived expression for the error locator polynomial
simplicity and good performance. An (n, k) BCH code has k information is independent of a particular code or any specific finite field, making the

result particularly useful for practical application.
bits per codeword of length n, is defined over GF(2, with n = 2o - I, When implemented carefully, Buchberger's algorithm 12] has complexity
and can correct t = [(d - I)12] where d is the minimum distance of the 0(t), else 0(t2 ), which is still manageable for values of t < 7. The

BCH code. Decoding of the received codeword requires three steps: (i) results for t = 2 and 3 are as follows [3]:

Computation of a syndrome vector whose 2t components belong to

GF(2=),. (ii) Calculating an error locator polynomial of degree t or less t-2 afx) = x1S, + xS S1 + S3

over GF(2"). (ii) Finding the error locations by solving the roots of the t=3 : (x) = x 3 (S3 + S3) + x 2 (SS 3 + S:) +x(S5 + SS 3)
error locator polynomial. + +

In this paper we are concerned with the third step, which is the time Deriving an analytical expression for the error locator polynomial has
consuming one most and difficult to implement in hardware. several advantages. Apart from the obvious reduction of the
Conventionally, this requires the use of the well-known Berlekamp- computational complexity of the decoding algorithm, the analytical
Massey algorithm, or the Euclidean algorithm [Ii. The aim of this paper solution also allows us to decode beyond the BCH bound, since it is
is to discuss methods for closed solutions to step (ii), which are easily sleto expres ux in d e rms of the unknown synde
implementable in software and hardware. possible to express a(x) in terms of the unknown syndrome

coefficient(s). The expression can then be resolved by applying the
approach suggested in [5].

Consider a primitive, binary BCH code of length n = 2- - I over

GF(2'), with oa be a primitive element of the field. The generator

polynomial, which defines the code, has roots at cr, &, RE,.-.,C',
enabling the code to correct t errors. The decoder evaluates the received REFERENCES
codeword at a/r to determine the j-th syndrome S,: [I] R E Blahut, Theory and practice or error control codes.

"-I Addison-Wesley, 1984.
S- = r(or) = r, a ;j = 1, 2,... 2t S1 . E GF(2^)

ho0

where r, is the k-th bit of the received vector r(x). It is fairly easy to [2] B Buchberger, "An algorithmic method in polynomial ideal

show that only t of the 2t syndrome components are independent 11]. theory', in N K Bose : Multidimensional systems theory
(Mathematics and its applications). Reidel, Boston, pp. 184-

The error polynomial is given as: 232, 1985.
e(c?) = e,,a'+e,;Cq+ ..... e-'--Sj ;=1,2,..., t

For binary BCH codes the error magnitudes are e, = I. For notational [31 A B Cooper III, 'Direct solution of BCH decoding equations', in
E Arikan (ed.): Communication, control and signal processing.

convenience, let x, = crt", which leads to the following system of algebraic Elsevier, Amsterdam, pp. 281-286, 1990.
polynomial equations, which we shall refer to as F : [41 A B Cooper 1Il, "Finding BCH error locator polynomials in one

x, + x2 + .. x, =S step", Electronic Letters, vol.27, no. 22, pp. 2090-2091, 1991.

S+ 151 C R P Hartmann, "Decoding beyond the BCH Bound". IEEE

- x2 - ... - = SX2, trans. Inform. Theory, pp. 441-444, May 1972.
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DIVERSITY SYSTEMS FOR RAYLEIGH FADING CHANNELS:
AN APPLICATION OF MULTIPLE DESCRIPTION SOURCE CODES*
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W'e consider digital transmission of a memorvless Gaussian BPSK modulation is used, and perfect (CSI is as.sumted in I the soft -
source over a slow fading Rayleigh channel, Our objective is to decision demiodulator/decoder. The recovered bits are inappeo to.
lemionst rate a usefulI application oft hie muiltiple description scalar LXM reconstruct ion levels. N ote that the hajidwidthI requliremrenit

quantizer (MDSQ) [I[ and] to render comparisons against a maxi- are identical to the MIR(- and NIDSQ-based systemis. P~erfor-
mumi ratio combiner (MIRC)-based system as well as channel code mnance results are shown Fig. 1.
based systems.

Performance Results
MDSQ-based system First note that the MIDSQ-based svstemi significant lv out per-

The \IDSQ is constructed for the following idealized model for fornis the MIRC'-based systern. Improvements iii output SNR at
a dual diversity svstemi. Assume that two independent channels high channel SNR's of over 5 dB are obtained without any' sacri-
are available for transmitting information fromt a continuous al- fice in the usable channel SNR. Also note that the MNDSQ s,'steni
phabet. discrete-timie souirce. Each channel may' be in a working significantly outperfornis the P1CC system. Fhe FI('C systeml
or noii-workitug state; this is knowvn in the receiver but not in the does better than all other systems. However. the price paid is an
tranismiitter. Whlen working. each channel can support a rate of excessive increase in the interleavitng delay for the FlUC sv'steuu as
I? hits/source sample. [he encoder of an N-level NIDSQ maps a comparedl to the.NIDSQ. XlHC or P1CC sYstemis. For examtplecoti-
source samuple to ait index pair (. j). Both indices are mapped to sider a mobile radio moving at :30 mnph. If we assume a temporal

R-bt cdewrds %%her 2' > . Te cdewrdcorrespondin sehparatiOn of .5ms to obtain in dependent fades [51. the etl-ti,-ettil1
R-hi colewo~ls whee 2 R _N. Te cdewod r~ng delay for the NIRC. .\IDSQ and PI('C svsteniý Is rouigtlk 5 [itt-.

to ind~ex i (j) is t heti sent over the first (second) channel. The
outiatizer is designted [11 so as to minimize the mean squared-ro HioweefrteFNsse h creptdn il~i ogl
(NISE) wvhetn both channels work. stibject to constraints on thle 75) Ins since Interleavitng is p~erformed at lIhe hit leel I lts tIII,
NISE whett eit her only the first channel works or only the second NIDSQ system improves the performance uver ati \IR( -v'teili
channiel works. Infornmatioti theoretic bounds on performance are ithtinraente ttrevIg eav Ihi-liptlu il

derived in [2]. [33 for a memoryless Gaussian source, two-way speech commiunicat ion systems \%-her(- dela , miut be al-

The \II)SQ is applied to the Rayleigh fading channel as follows, locatedf between tile .source codler'. chatinel coder anld itterleaver
The bits corresponding to index ?are temporal)), separated from so as to meet a delay budget.
those of indeX j by an interleaver operating at the R-bit word level References
so as to obtain two independently faded channels. Individual bits
are transmitted over the channel using a I3PSK modulator. Soft [11. V. Vaishiatnpayaii. "Design of Multiple D~escription Scalar
decision demtodulation is used in the receiver and it is assumed Quantizer." acceptedl for puiblicat ion. IEEE Iranis Itiform -
that the receiver has perfect knowledge of the Rayleigh fading pa- Th (ot-y.
ramieter (chantnel state information (CSI)). The faing process is (2] . A. El Ganial and T. M. C'over. "Achievable R~ate, for
assumed to be sufficientls' slow so that the Rayleigh parameter Multiple Descript ions.** IEEE Traons. lutforuuu. flu ott. Vol.
remlains fixed over R bits, An index is declaredJ to-be reliable if IT-28-. pp. S51-857. Nov-. 19,,Q.
the correspotnditng Rayleigh parameter exceeds a certain thresh- [:3]. L. Ozarow. -'On a Sýource Couditng P'robleli \\it hIi wo ( iaitiel-,
old. The threshold is optimized to maximize the output SNRt . lII and Three Receivers.� The )

3
t
1 1  

Itc/,bh.1.Vol.5I, p
Fig. I . we plot the output SNR vs. the channel SNR for a 31-level 1909-1921. Dec. 1980.
MIDSQ with R = 4.0 bits/sample (;31-NIDSQ). [4]. N. lRydbeck and C. F. Stirdherg. "-Atalvsi- of Ieiaial 1:'rior,

in Nonlinear PCNI Systems." IEEE Trott,-. Contumuuri.. Vol.
Reference Systems COM-2-I. pp. 59-65. Jan. 1976.

Tefrtrfrnesystem is a maximum ratio comb~iner [NRC 51. L. Wong. R. Steel. 1B. G;lance atit 1). Hortn. "Ilitte lDiNer-it
Thsed first reference .NR sytm oresml secddb with Adaptive Error D~etect ion to (utital at Haleiiah Fadinit in

l~asd dal ivesit syseni A oure smpleis ncoed y a Digital Mobile Radio." I[1,1. Tnrait. (ornoitou.. \No] CONI-
'loyd-MNax (1)4) quantizer to an J?-bit codewvord. Each R-bit :31 pp. 3718-386 Mar. I93

codeword is duiplicated and theni temporally separated by ait In--________________________
terleaveroperatitig at the R-bit level and transmitted using BPSK
mottdtlat iotn. Asstimitig perfect (CSI about the fading paranmeter is Fig 1 Perf lmance ccmpansons
available at tie receiver, the outpitt of the two chanmiels are fed

to sit NIRC(. flue recovered bits are then mapped to ~lovd-Niax I .....
qulaitt ier reconist ruttion levels. Itt order to make an equal b~and- 12
width comparisont wit I the NII)SQ system, we conisider a 16-level 2
L.NI quisutnizer atid 1? = 4.0 bits/samnple. The performnatce of the 0
NIR( b- ased svsterui is shown in Fig. I ( 161.NI-NIhiC) :8.

TWO clont el code-based systemrs are considered. Itn hot ii. a
soturce sanmp1 le is miappedl by the encodler of a 32-level LN? qilai-
tzer to a i- hit codeword. ITwo conisecutit ve 5-hit cotieworuls are,

(tori caten at eu I a 0 is alppenided and fed to alt ext ended ( 16. 11)
IIaltirnting cutler. ['lie two systenis differ itt the interleaver that 31 LM -YDS

is unsed
1 . it thle part iall v interleaved systemn ( I('( '). a channIte PI.. _3S2LM.. 6 'I

codewi tn is iii erles vi'd at thle S-hit level. II ~thtIe ftull\- iitterleaved - 6LM-P
svstemtt. tinter lea ving is performied at thle hit level. I I itot s"Ii vtetis

I fttt w,,rk %;t, sttwt-rted. I, v NSF Grarn Niit it 90-i~if.i6 h~l

Ihe ,i11pit ýNl I, t guout h\ 101 og. (a`11)). where 1) is the NlS11 and e'~

It, - ar- ataw
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1. General the fading process is Markovian is invoked [2]. Evaluation of the expo-

nential behavior of 75, for finite code lengths is addressed. It is shown

The correlated Rician channel is a useful model for a slowly-fading that under stringent decoding delay constraints. and a very slow fading

chantiel, in which the complex fading process is cotmposed of two process (compared to the user haud rate) reliable transmission of high

qitadrat tre (Gaussian processes Withi a given normalized autocorrela- information rates is hard to achieve. Hlowever, uinder mild technical

tion funct ion p( r). aiid a corresponding symmiet rical powver spectral conditions. when the decoding delay constraint is relaxed and when

deitsit ,v. F~or slow fadiing the correlatioti between adjacent s ,ymbols is p( ni) - 0 for n - x. the classical Shtannoni capacity (that is the

relatively high and( miiglit approach 1. Single-ray model. that is flat ultimate achievable rate) exists atid it is given by the average mutual

fading. is assuimied thIiroughiout. informiation.

We invest igate thle achievable error probabilities over the channel,3.TeCniu sCh nlMo l
employing cotlieretit detection and ideal side information on the real-3.TeCniu sCh nlMol

izatn o u(f thle fadinig processes at thle receiver. Al i underlyintg dlecodli ng

delay const raitnt which precludes the use of (ideal) initerleavitng is as- Tepiws ro rbblt o oe PKdpnso h

slittiet. .,quaredl Euclidean distance between the two faded codewords; its eval-
naiston is puirsuie(] here.

fit(11 al uper oun oi th eror rohbiltY f bock or3.1 Ideal interleaving: The Chiernoff uipper bound on P(r - e)
convlutonalY-codd BlSK vvrthi chnne (Wili imiar ssuip- is determined in ternis of thle Frrdholm dc t(rnzin~anf [3] (associated
tios ol te rreier)waspreent,(] Th falin prces in11]is s- vithu p(7)). 'Tle latter is evaluated based onl the represenitationi of the

stullted to bie piecewise, conistanit (pf.0 . thfat is. considered to be constant faigpoessba riue-ovexnin.Te1htcaya
over a sytmbol's diurationi. W'e attalsre the correlated fading channel faig tOC5 baKriue-oeexnsn.Telhtchya

bot wih ad Wt hul he bov mntined1), aproxmaton.('oed distance is compared to the p.c.-approximated channel; the "inher-

IllP5K pierformtanie. ais wevll as I le exponent ial behavior of tilie error etdvriy meddi h otnosmdl(ihpretsd

pioltabltit v are disciussed. F-or thle cointinuiouis chianinel it is assumted iniformiationti) is p~ointe(,( out.

fiat t lie receivser ftas atn accuiirate~ knuowledge of thle satti ple pathI of 3.2 No interleaving: Ilere. thle uipper bouinmd oii P( c - e) depends

the r'a lizeuf faudinig proucess. We forcis onl obitainin g th liemi nit of tilti ott the Fred holi d (et ermiinalit for the 'filtered' fad inig process, nanuely

hat'' performiance anud oti verifYing uitider what coniditions the above tilie process imiultiplied by lie window funict ion A(tI) which is $ 0 over

muentitotted p.c a pprouxim iatiott is adequhat e. ('out ipari sois to tilie block- I hue svitbols whtichi do not agree in r antd ý. Whentitlie different symibols

faditig miodef are also discuisseid. are consecutive. the evaluation is straight forward. In the general Case.

the Fredhloi determinant of a cotnplex (Gaussiaui process filtered by

2. The Piecewise-Constant Approximated Channel a tutne-varying filter should be evaluated. To solve for the Fredholm

determinantit we use a state-space representation of the system, and

2.1 Coded BPSJ( performance; A sticcessiont of uppifer botunds ott (*olfit,' umodificatiotn to the Riccati equation [3]. and obtain for an

t he fiai rwme error ftrotlabIifit y (Mr) - ý () is reviewedl ( based] oil [11). intiierest inig ex am ple a closet)- forni sofuttion.

'Iwo toil *:. of [I] are rigorously firovitI. References

Theoremn For a chatnnel Witli p'( r) > p(r ) tie performtatnce is nitt

fortitlv in ferio r in cmttpa risotn itt the performiianitce over I lii chtann tel Witlli [1) F. G;agnon atid 1). II accoun . "An upper bou nd on coded per-

pr . itt Ierit i of tilie utpiler hoiiu ot il Ottw i pai rwise error ;t mbabhifit v. fornuance with non i ndependettt fading", Ecole P1olvtes'hniq ue de

Corolar I-r th exonetialy crreatedc!!unv (p~T) q"ý %onitreal, Tech. Rep. Ep\M/RT-90/0i. See also IEEE Trans, on

amonilg all cutiewitris of dlistatnce (I fromti the Itransmitttted one., mtie worst CrntnVl 1,N.2 ~h 92 p .130

uipper bound (in tilie pairwise error probtabliity htaptpe'ns ahle all thle [21 AXN Trofimnov, "('nnvolutional codes for channels with fading".

erroiwuttiis (oir dillecetit ) symtbolis are contsecutive I Prob. of Inform. Transmtission, Vlol. 27, Oct. 1991, pp. 155-165.

2.2 Exponential behavior of the error probability: A genieral J.3] C. felestromn. D)etection and Estimation Theory. UC(SD Pres,

uppr bundotttheaveageniesag eror troiahiliv II', fo ratiltut Vol. [I. ch. Xl. 1986, see also U lelstroni. Statistical Theory

coding aidtifi..d.. Gatissiati iniput s is ptrescnt('if. alontg Witlli a tighter oif Signal l)etectioit. Itergamon P~ress. Oxford. ch. IW, XI, 1968.

bound for the expontentially correlated chianne~l Where tile fact that f-](;. Kaplant amnd S. Shanisi (Shiiz). "Achievable P'erformance over
lie ('¼ r ref ated H iciani ('hit alt tEE" . 1 F it fcat ion No. 837, Tech-

fititti. Jllte I 992, alsot sitbuilt ed toi 11-11 Trnus. Onl Conmmtun..
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Error Probability Bounds for M-ary DPSK Signaling over Doubly
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Abstract A inethodl is described for obtaining tight closed- is evaluated by the approach of [1]. Thus, tight bounds on the
formn bounds ou the probabililty of error for MI-ary differential crror probability are obtained for M-ary DPSK and a general
phase-shift keying and Rician fading diversity channels. The class of fading diversity channels.
channels exhibit doubly selective fading. In addit~ion, the gains An application of the results of this paper is illustrated in the
of the diversity channels are correlated. As an example, the figure, where tipper and lower bounds on the bit error probability
results of applying this technique are given for Ifi-ary DP'SI arc given for 16-ary DPSK signialling aud dual diversity combin-
signaling. ing. Each diversity channel is a doubly selective fading channel.

The delay spectrum of each channel is rectangular with a nor-
mualized rmis delay spread of t0.1 and the timne-correlation func-

I. S m aytion is exponential with a normualized Doppler spread of 0.0001.
Summay 'The signal-to-noise ratio is the ratio of the inean received signal

Differential phase-shift key ing ( DISK) modulation and diversity eniergy' to the noise power density.

transinission have long been employed for coininunicat ions over
fading, miultipat h channels. In recent years, the desire for high
bandwidth efficiency and the introduction of multi-phase coding References
scheines have led to consideration of MI-ary DPSK with Ml > 4.

Prevousreslts 1) or iffrenlal inay PK sinalng ver [1) P'. A. Bello. "lBinarY error probabilities over select~ively fad-

dloublly selective fading dliversity channels can he extended to dif- ing ~ OL vol.el (otiin spOM-a coi.pp. 40-40," Aug. I 966.

ferent ial quadriphase shift keying. Performance of NI-ar *' Dt)SK Cyiu,11 5Nlvl ON11.p.40-0,Ag 96

is analyzed in [21 for doubly selective fading dliversity channels. [2) D. L. Noneaker anti NI, 13. Pursley "MI-ary (differentiial phiase-
An ieratve epresionfor te lero probability is given for a- shift key3inig with di(iversity cominn fcomniain

bitrary symbol set size and aii arbitrary order of diversityv com1- over a tunec- andI frequency-selective fading channel," Pror.

biniug. The results of [2] are appllicable only to R ayleigh fading 1992 lith rutotnal ('onfiercric on 'ominnumicatofws. pp. 46

Ii versit y clhanniiels t Iiat are modeled by inude(pend(ent , idlen tical l .1 50, hirw 1 992.

(list ri blited randlom p~rocesses. [int (his paper we presenit a miet hod [31 1P. .1. L~ee. '( urn piitntion of thle hit error rate of cohe'ent NM-
ford(etcr1 in i ing pierformnance bouinids wvheii tled(i ye rsit Y cliainel ar ('1 ,r P S w ~ith (; raY cod1e hit niia ppi ug." WI,'E 1'rans. Cornu-
exhibit correlated flician fading. noun.. vol. ('OM-34, pp. 488 491, May 1986.

It has been shiowni [3) thIiat for MI-ary DI) ISK thle bit err-or io"
probability caii be houndi(led iii e ruts of 1he probabl i ty t Iiat tl( Xi
('omtplex-valtned dlecisioni statistic falls withlin any of seve,(ral spec-
ified Iialf-planes and qiiarter-plaiies. llowever, for (the system
aniid chianniels unider coilsiinderatIion iii thIiis paper th Ile P robabi lit % ~
that thle dhecisioni statistic falls wvithini ami arbit rary qiiarter-plaiie
canniot. be ex pressed iii closed for in. Thuiiis, we mu'se ()till ybouniid s
obtained by considlerinlg half-planes.

'Thle reeivye r employs (diffe rentitally coelerenmt (leteto andI uo~-'
square-latv diversity c-ombiniing, as iii [2]. The diversity (lianilels
are iiiodleledl as jointly G auissian %viile--.seujse-st atioiiarvN niiicorre-
f ated'( sc'attern ig fad inig chianniels. 'I' IeP robabil i t' tv li at f it(, dce-
ci sioui st at ist ic falls w it~h in a speciIi ed Iial f-plane is eq ii al to tl( he1
probability that. a certain Hlermitian quadratic formn in jointly ) 5 1 IS 2 25 0

Camussianu randlorn variables is less thn11 zero. This proba bilit tv0 5 0 1. 20 2 0
Signialtoic-nicise ratio (till)

I'Iiisrcscarh assi poi d y 1wIccmiservices El'circcrmivi-sI'in- Figurce. I'c'mrc-mawie or 16(-ccry 1)1'SK

grain c midlcr granti NOtW) 14-90-i- I271. acld dual chversiy c"c,;chccinit.
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LIMITING CUTOFF RATE FOR PHASE-ONLY MODULATION
ON A SLOW-FADING RICIAN CHANNELt

J.W. Modestino
Electrical, Computer and Systems Engineering Department

Rensselaer Polytechnic Institute
Troy, New York 12180

Abstract In the present paper we provide the derivation and numerical
We consider the limiting channel cutoff rate for memory- evaluation of the cutoff rate for phase-only modulation on the

less phase-only modulation operating on the slow-fading Rician slow-fading Rician channel under the assumption of ideal inter-
channel for large alphabet size, M. Previous work has con- leaving/deinterleaving and for the two extremes of perfect and
sidered evaluation of the cutoff rate, R 0, in bits/channel use, no CSI. The channel modeling assumptions include the AWGN
for multiple phase-shift keyed (MPSK) modulation with fixed as a special case. Indeed, in this case we demonstrate that
M as a function of the channel parameters, as well as sys- for large Eb/NO the cutoff rate is approximately 1.68dB from
tem implementation details such as whether or not interleav- the asymptotic capacity determined in [2]. Thus, at least in the
ing/deinterleaving ar channel state information (CSI) is used. AWGN case, conclusions based on capacity arguments are mim-
Here we evaluate the limiting R0 when the restriction of a icked by the corresponding cutoff rate results. This is heartening
fixed alphabet size, M, is removed but the transmitted sig- since, as first argued by Massey [3],[4], the cutoff rate has come
nal is restricted to utilize memoryless phase-only modulation. to be accepted as the practical upper limit on channel signaling
Results are provided under the assumptions of ideal interleav- rates for which arbitrarily high reliability can be expected.
ing/deinterleaving both with perfect and no CSI. In the case of
no CSI we show that there exists a maximum useful signaling The more general results for an arbitrary slow-fading Ri-
rate which depends only upon the ratio of specular-to-diffuse clan channel are likewise useful in assessing modulation/coding

energy. tradeoffs on representative fading channels. For example, for
the case of no CSI we show that there exists a maximum useful

Summary signaling rate which depends only upon the ratio of specular-
to-diffuse energy. Thus, regardless of the alphabet size, M, the

In previous work [1] we have evaluated the channel cutoff channel throughput cannot be improved by increasing Eb/No as
rate for multiple phase-shift keyed modulation (MPSK) oper- is the case within perfect CSI.
ating on the slow-fading Rician channel. Here, the cutoff rate,
R0 , in bits/channel use, was evaluated for fixed alphabet size, References
Al, as a function of channel parameters as well as system im- [1] J.W. Modestino, K. Park and S.N. Hulyalkar, "Trellis-Cod-
plementation details. The latter include whether or not inter- ed MPSK Operating on the Slow-Fading Rician Channel,"
leaving/deinterleaving or channel state information (CSI) is em- submitted to IEEE Trans. on Inform. Theory.
ployed. It is of some interest to determine the limiting cutoff
rate performance under the same conditions when the restric- [2] R.E. Blahut, Principles and Practice of Information
tion of fixed M is removed but the transmitted signal is re- Theory, Addison-Wesley, Reading, MA, 1987.
stricted to utilize memoryless phase-only modulation. [3] J.L. Massey, "Coding and Modulation in Digital Commu-

The capacity under a memoryless phase-only constraint is nications," Proc. 1974 International Zurich Seminar on

described in [2] for operation on the additive white Gaussian Digital Communications, Zurich, Switzerland, March 1974.

noise (AWGN) channel. No work to the author's knowledge has [4] J.L. Massey, "The How and Why of Channel Coding,"
considered the corresponding cutoff rate, under a phase-only Proc. 1984 International Zurich Seminar on Digital Coin-
constraint, on the AWGN channel let alone a fading channel. munications, pp. 67-79, Zurich, Switzerland, March 1984.

t This work was supported in part by DARPA under Contract

No. F30G02-92- C-0030.
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Bidirectional Decoding of Convolutional Codes over Rayleigh Fading Channels1

Jean Belzile, David Haccoun and Serge Forest Viterbi decoding of a v = 6 and rate R = code over Rayleigh
Department of Electrical and Computer Engineering f codered Firt

Ecole Polytechnique de Montreal fading channels. Two fadmg channels have been considered. First,
P.O. Box 6079, station "A" the urban radio mobile channel with Rayleigh fading and Bessel

Montreal, Qc, Canada autocovariance of the received symbols' energy is examined.
H3C 3A7 Results show that a gain of 3.7 dB to 4.5 dB is achieved by the bidi-

rectional algorithm over the Viterbi algorithm on a frame error

Abstract probability P, < 10- for normalized Doppler frequencies ranging

A suboptimal breadth-first multiple-path bidirectional decoding from FDT = 0.1 to FDT = 0,005. These last results have been
algorithm for convolutional codes has been shown to provide very obtained for a frame length of L = 500 information bits, but exten-
attractive error performances over the binary symmetric channel. In sive simulation results indicate that the gain provided by bidirec-
this paper, new computer simulation results for bidirectional decod- tional decoding, for frame error performances, is only slightly
ing of convolutional codes over soft-decision Rayleigh fading dependent on the frame length. However the bit error performance
channels are presented. Using a memory length v = 19 and rate gains obtained by the bidirectional algorithm over the Viterbi algo-

Scsrithm are frame length-dependent since the bit error rate of the bidi-
R = •code, these results show that a gain near 5 dB can be rectional algorithm is influenced by the length of the data frame.
achieved for a low frame error probability (p < 10-3) over the For frames of L = 500 information bits, results show that gains

Viterbi algorithm of equivalent decoding complexity ranging from 0.2 dB to 2.3 dB for a bit error probability Pb < 10-5
I can be obtained with bidirectional decoding over the Viterbi algo-

(v = 6, R = ý ). The results also indicate that, depending on the rithm of an equivalent computational complexity.

length of the frames, a significant gain can also be achieved for low Computer simulation results for the Rayleigh fading channel
with exponential autocovariance will also be presented. These

bit error probability (Pb < 10-)• results, over the same normalized Doppler frequency range
(FDT = 0.1 to FDT = 0.005), show that the Viterbi algorithm

Summary performs better in this channel than in the previous one, reducing

The Viterbi algorithm is widely used for the decoding of convo- somewhat the advantage of the bidirectional algorithm over the

lutional codes [1-3). This optimal algorithm [41 exhaustively Viterbi algorithm. Nevertheless, substantial coding gains in the

searches all states of the trellis and delivers the most likely informa- frame error performances (2 to 3 dB) can still be achieved and, fur-

tion sequence given the received symbols. The major drawback of thermore depending on the length of the frames, an improvement in

this technique is that its complexity increases exponentially with the bit error performances (about 1 dB) can also be obtained with

the memory of the code, making its use restricted, for practical rea- the bidirectional algorithm.

sons, to short memory codes (v < 7). For the decoding of longer
memory codes, suboptimal decoding procedure must be consid- Reference
ered. I1I BHARGAVA, V. K., HACCOUN, D. MATYAS, R. and

The M-Algorithm 15] and other breadth-first decoding algo- NUSPL, P. P., Digital Communications by Satellite. New York:
rithms [6,71, have a constant computational load which is guided by John Wiley & Sons, 1981.
the number of paths explored, M, instead of the number of states in
the trellis. A major drawback of these decoding techniques is the [21 WU, W. W., HACCOUN, D., PEILE, R., and HIRATA, Y.,
lack of resynchronization, leading to long error events when the "Coding for Satellite Communication," IEEE Journal on
correct o~ath is lost. Selected Areas in Communication, vol. SAC-5, pp. 724-748,

The bidirectional decoding algorithm 181 has been shown to be May 1987.
very effective in reducing the length of the error events caused by 13] PROAKIS, J. G., Digital Communications, McGraw-Hill, 1989.
correct path lost. This suboptimal algorithm, suited for long mem- [4] VITERBI, A. J., "Error Bounds for Convolutional Codes and an
ory codes, uses a fixed number of paths, M, all of equal length, in a Asymptotically Optimum Decoding Algorithm." IEEE
bidirectional breadth-first tree searching manner. By a judicious Transactions on Information Theory, vol. IT- 13, pp. 260-269,
sharing of the forward and reverse explorations of the tree, this
decoding technique restricts the extend of the error propagation due April 1967
to correct path lost. Bidirectional decoding does not introduce any 151 JELINEK, F. and ANDERSON, J. B., "Instrumental Tree
computational variability and effectively lowers the number of Encoding of Information Sources," IEEE Transactions on
computations in order to achieve the same bit error rate as a Viterbi Information Theory, vol. IT-17, pp. 118-119, Jan 1971.
decoder of equivalent decoding complexity, that is, same number of (61 SIMMONS, S. J., A Reduced-computation Trellis Decoder with
path extensions at each decoding step. Inherent Parallelism, Ph.D. Thesis, Queen's University,

In this paper, bidirectional decoding of a v = 19 and rate Kingston, Ontario, Canada, June 1986.

R convolutional code with 64 path extensions at each decod- 171 LIN, C. F., A Truncated Viterhi Algorithm approach to Trellis
Codes, Ph.D. Thesis, ECSE Dept., Rensselaer Polytechnic

ing step (M = 64) is compared using computer simulations to Institute, Troy, N.Y., September 1986.

181 BELZILE, J. and HACCOUN, D., "Bidirectional Breadth-first

1. This research has been supported in part by the Natural Sci- Algorithms for the Decoding of Convolutional Codes," IEEE
ences and Engineering Research Council of Canada, the Fonds pour
la formation de Chercheurs and I'Aide A la Recherche of Qudbec
and tire Canadian Institute for Telecommunication Research under
the National Centers of Excellence program of the Government of
Canada.
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A BAYESIAN METHOD FOR DEPENDENT ERASURES IN FREQUENCY-HOP COMMUNICATION
SYSTEMS WITH RAYLEIGH FADING

Carl W. Baum Michael B. Pursley
Clemson University - ECE Department and Coordinated Science Laboratory

207D Riggs Hall, Box 340915 University of Illinois
Clemson, SC 29634-0915, USA 1308 W. Main St., Urbana, IL 61801, USA

Abstract receiver determines a set of symbols to erase, makes hard decisions
on the other symbols, and then employs errors-and-erasures bounded-

The use of block coding and errors-and-erasures decoding can en- distance decoding.
hance performance in frequency-hop communication systems, provided We let YJ denote a vector of envelope detector outputs that corre-
that a good scheme is employed to determine which symbols to erase. spond to the j-th code symbol in a codeword. The conditional density
The problem of making erasure decisions from collections of receiver of Y', given that the j-th code symbol sent was ai, is denoted by
outputs is investigated in this paper. Methods to determine which re- f(yj[a,). The receiver we propose can be described as follows:
ceived symbols to erase are derived from Bayesian decision theory. The 1. If the jth code symbol is not erased, choose the ai that maximizes
result is a Bayesian scheme in which erasure decisions are made collec- f(yi[s1).
tively for each codeword. The performance of this scheme is compared 2. If I symbols are to be erased, then they should be the symbols
with the performance of another Bayesian method in which erasure with the I smallest values of L(yj), 1 < j !5 n, where
decisions are made independently from symbol to symbol, and both ,1-i
are compared to the performance of receivers that do not erase. The L(y) = max f(yflsk)/ E (y[JA,).
Bayesian method with dependent erasures is found to provide the best y m0
performance. 3. For each i, 1 < s < n, let Li be the ith smallest element in the

sequence L(y'), L(y 2 ), ... , L(y*). Then I symbols are erased if
Summary and only if I minimizes

The performance of frequency-hop communication systems that P(Xt1+ + X1+2 +"" + X,. > [(n - k - 1)/2j),
are subjected to wideband noise and frequency-selective fading is gen- where Xi is a Bernoulli random variable with parameter L.
erally unacceptable without some form of error correction. Erasure The receiver described above is quite general, and can be applied to a
of the least reliable symbols prior to decoding can provide significant variety of channel and signaling models. For the channel and system
improvement in performance if the communications receiver has some described above,
way to accurately determine the reliability of the received symbols. To (j _2, (I, 2,2)]

accomplish this, the receiver must generate a statistic that is a measure L(yl) = max5 eXp{( 5 )2/[ r( + -)2T/)]

of the likelihood that a symbol is in error, and the decoder must use Xj exp{(y I 2 /[2 I 2(1 + )_2//-.)])'

this statistic effectively to decide whether to erase the symbol. Some
approaches require the transmission of additional redundant symbols where o, and r satisfy T 

2 / 12 = (log12 i)(k/n)(Eb/Ne). In this expres-

in order to obtain side information for determining which symbols to sion, Eb is the average received energy per data bit, and yy is the value
erase (see [1] and the references in [2]). of the envelope detector output that corresponds to a,.

An alternative approach is to base erasure decisions on the enve- The performance of this erasure decision scheme is measured by the
lope detector outputs of a noncoherent receiver, without transmitting probability of not decoding correctly. For performance comparisons,.
additional symbols. In 121, Bayesian decision theory is used to obtain we consider the Bayesian method in [2] as well as simple hard-decision
a erasure scheme that minimizes a bound on the probability of not demodulation (no erasures). Our simulation results show that, over a
decoding correctly. With this method, one first computes a function of wide range of error probabilities and with (32,12) and (32,16) RS codes,
the envelope detector outputs that correspond to a given code symbol the method in [2] provides several dB of performance gain over errors-
(this function is essentially a reliability function). The result is then only decoding, and the dependent erasure scheme provides roughly an
compared to a threshold to decide whether to erase the corresponding additional 0.5 dB of gain.
symbol.

There is one significant drawback to this Bayesian technique. Be- References
cause the erasure decisions are made independently from symbol to
symbol, it is possible that more symbols can be erased than the code [1] K. G. Castor and W. E. Stark, "Parallel decoding of
is capable of correcting. One intuitive solution to this problem is to diversity/Reed-Solomon coded SSFH communications with repe-
employ the Bayesian erasure scheme in parallel with errors-only decod- tition thresholding," Proc. of the Coal. on Inform. Sc. and Syst.,
ing. This has been proposed with other erasure schemes[l, 3]. Unfor- pp. 75-80, March 1986.
tunately, our studies show that negligible performance improvements [2] C. W. Baum and M. B. Pursley, "Bayesian methods for erasure
result for the Bayesian scheme. insertion in frequency-hop communication systems with partial-

In this paper, we propose the use of a Bayesian decision rule that band interference," IEEE Trasm. Commta., vol. 40, pp. 1231-
makes dependent erasure decisions. The form of this rule is obtained 1238, July 1992.
by using a decision-theoretic approach to minimize the probability of [3] M. B. Pursley and W. E. Stark, "Performance of Reed-Solomon
not decoding correctly under a model that distorts the prior prob- coded frequency-hop spread-spectrum communications in partial-
abilities to make all symbol sequences equally likely. The result is band interference," IEEE Trans. Comm%%., vol. COM-33, pp.
a decision rule that offers significant performance improvements over 767-774, Aug. 1985.
the Bayesian scheme with independent erasures with only a modest [4] M. B. Pursley, "Frequency-hop transmission for satellite packet
increase in complexity. switching and terrestrial packet radio networks," IEEE Trant. In-

The system under consideration is similar to the system described form. Theory, vol. IT-32, pp. 652-667, Sept. 1988.
in [4]. Frequency-hop spread-spectrum transmission, noncoherent de-
modulation, and an (n, ,.) extended Reed-Solomon (RS) code are em- Acknowledgement. This work was supported in part by the Joint
ployed. The modulation is M-ary orthogonal signaling with M = n, Services Electronics Program under Grant N00014-90-J-1270 and in
and n is a power of two. The channel includes the effects of Rayleigh part by Motorola, Inc. Carl W. Baum is the recipient of a Motorola
fading as well as white Gaussian noise with spectral density !N 0 . The Partnerships in Research Grant.
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Performance Analysis of
Frequency-Hopped Digital FM Diversity Systems

Leonard E. Miller and Jhong S. Lee
J. S. Lee Associates, Inc., Rockville, MD

The system studied is a frequency-hopping continuous- & = (AO/2wr) e-pU (4b)phase frequency-shift keying (digital FM) communicationsyastem frequency- that utiizes error-control commnii intr The probability density function (PDF) for Vk exists in integralsystem (FH/CPFSK) that utilizes error-control coding, inter- fr 2,adagnrlepeso o t H osnteiti

leaving, and L hops/bit diversity to mitigate the effects of noise form [2, and a general expression for its CHF does not exist in
and jamming. In the slow-hopping transmission scheme, coded closed form. However, an excellent approximation for the CHF
binary data symbols are repeated on L different hops in order has been found to be [11
to increase the likelihood that some of the symbols are free of CO,(v; p.; 6) - E(p) s +in 1 7 + (p)] e-'/ 2 , (4c)
partial-band jamming interference. The coded symbols are first

read into a Q-symbol buffer, where Q is the number of symbols with a02 and the mixture parameter e approximated heur-
that can be transmitted in one hop period. After interleaving, istically by C2 0 - r2e(p)[3
L copies of the Q-symbol sequence are transmitted on L succes- 0(P) = e 2 p and a2 - ( (4d)
sive hops. The reception scheme uses a method for combining The formula for v02 is based on equating the actual phase noise
diversity transmissions whose performance is to be evaluated, variance, o2, with that of the approximate PDF corresponding

The conditional bit error performance of a binary FM com- to (4c). For high SNR, the differential phase PDF approaches
munications system employing as a decision variable the sum of that for a Gaussian distribution, while for low SNR it ap-
L demodulator output samples zi (i = 1, 2, ... , L) that are inde- proaches that for a uniform distribution.
pendent and identically distributed can be formulated as A form of "adaptive gain control" (AGC) combining has

i 'V [ . been proposed, under which it is assumed that the SNR p. can
Pc ) = j - ,( )J, 2 be measured on each hop and that the L detector output sam-

where C,,(v; P) is the characteristic function (CHF) of zi under ples are weighted in proportion to the value of p. associated
parametric conditions denoted by P. The unconditional error with each sample. Referenced to the absence of jamming, for
probability is found by averaging with respect to the para- partial-band jamming the two weights referred to in (2) then
metric conditions; for example, fP can represent the effects of can be expressed as
intersymbol interference (ISI), with the averaging being taken
over different adjacent-bit patterns. This formulation can be Wo = 1 and wi = PT/PN. (5)
applied to FH digital FM systems in which the decision var- This weighting scheme has the effect of improving the quality
iable is a weighted sum of diversity transmission samples that of the decision variable by de-emphasizing the samples on
are subject individually and independently to jamming (as jammed hop transmissions, unless all hops were jammed. In
under partial-band noise jamming of FH signals) by writing the oral presentation, example comparisons will be shown of the

6) =I- uncoded bit error probability (vs Eb/Xj) that results from using
( = (1 -t)C 2(wov; PN; fi)+ yCi(w~z; PT; f)" (2) an adaptive gain control combining scheme for differential de-

In (2), y is the probability that a hop is jammed (fraction of tection and for limiter-discriminator detection under the as-
band jammed); (PN, wo) and (PT, w,) are, respectively, the sumption of selected values of L, EJ0/X, the FM modulation
combinations of SNRs and of weights multiplying the samples index h, and IF time-bandwidth product WIFT; and for worst-
that pertain under non-jamming and jamming conditions; and case partial-band noise jamming, in which -y is chosen to max-
CQ(v; p,; fP) denotes the characteristic function for a sample imize the error probability. The effective jammer spectral
when the SNR in the signal intermediate-frequency (IF) band- density level is assumed to be Jj/y its average over the
width equals p. = Eb/LJK, (x = N for noise-only, and x = T for hopping band divided by y, so that there is a tradeoff between
noise-plus-jamming), the bit energy-to-noise power spectral how much of the band is jammed and the strength of the
density ratio, divided by the number of hops per bit. jamming in the jammed portion of the band. Also, as L

For a differential detector, in [1] it is shown that the CHF increases, the energy per hop is reduced but the chances of
for a demodulator output sample has the form having an unjammed hop increases; the tradeoff involved is

1 that the noncoherent combining of the detector output samples
Q P) = 1 + 4cc 2 +cannot recover the total energy effectively, that is,

(;c+ 2j(c 2 - c) Pe(L) > P,(l) without jamming.
(jv(cld, - c2d2) - 2t,2c1c 2(di + d2) (a The use of AGC diversity combining results in significant
Iep I + 4V2cc+2jv(c- c) (3a) performance improvement. In one example, a 10-" probability

where in terms of the in-band noise variance a 2 and its in-phase of bit error can be achieved for about 24dB more jammer pow-
and cross-phase correlation coefficients r and A er when L is increased from 1 to 2. Generally, the amount of

"diversity gain" depends on both the type of demodulator and
c1 . 2 = T2( - A) (3b) on EIX0 . Comparisons of demodulator types based on having

their Eb/No values sufficient to produce the same probability of
and 2p,{U' - rW'cosAO 4± Z- r 2 W'sin A}4( error for L = 1 and no jamming reveal that a system using the

d'1 - r2(4 --r2 T A) differential detector with diversity will outperform one using
In (3), the ISI-dependent parameters are p (U', W', A , the limiter-discriminator; the reason for this effect is that theIn (), he SI-epeden paametrs re l-(t, ', ¢), limi ter- discriminator incurs more noncoherent combining losses
where U' and W' are the values of the arithmetic and geometric t er- discrim nat incu ore nocheren combinin os
means, respectively, of the SNRs at the beginning and at the than does the differential detector. In the oral presentation of
end of the bit interval, when the SNR value is p, = 1; ± AO this paper, additional results will be shown, including com-
are the possible values of the output sample (a differential parisons of the adaptive gain control scheme with a hard-
phase) in the absence of noise. decision combining scheme in which a majority vote is taken

For demodulation using a limiter-discriminator, the CHF among bit-value decisions made on each hop.

for a demodulator output sample has the form [1] (1] J. S. Lee Associates, Inc., "Studies of ECCM Improvements for
CQ(v; p,; 0) = e-'(1 -cos 2 rv)-jnsin2 rs1C,(v; P'; f), (4a) Frequency-Hopping CPFSK Systems," report to US Army Research

Office under contract DAAL03-89-C-0010. May 1990. (DTIC
with a denoting the average number of FM "clicks" [2] and accession number AD-A222 995.)
C (i; p( ; ), the CHF for V,, the value of the modulo-2r [2] R. F. Pawula, S. 0. Rice, and J. H. Roberts, "Distribution of the
ditferential phase of the signal in noise at the end of the bit Phase Angle Between Two Vectors Perturbed by Gaussian Noise,"
interval. An estimate of a is [1] IEEE Trans. on Commutn., vol. COM-,0, pp. 1828-1841 (Aug. 1982).

I10



ALGORITHMS FOR PARALLEL DECODING
Wayne E. Stark' and Amer A. Hassan2

Electrical Engineering and Computer Science Department
The University of Michigan, Ann Arbor, MI 48109 USA

2GE Corporate Research and Development Center
Schenectady, NY 12301 USA

Abstract ing). The above formulation is valid for parallel demodulation

In this paper we address the parallel decoding problem in or decoding of concatenated codes in which the inner decoder
a general formulation. The structure of the receiver consists of branch i is characterized by a threshold 6i. Also, the above
of a bank of z demodulators each followed by an errors and formulation is solvable for many channels including the simple
erasures correcting decoders. Each demodulator has a threshold M-ary input-output channel with the Hamming distance as the
0 that determines an erasure region; we then assign a cost f(O) cost function and the additive channel where the cost function
to the interference for causing an erasure and a (larger) cost corresponds to Euclidean distance. The next two examples illus-
f(9) for causing an error. The goal in designing the receiver trates the applicability to noncoherent channel with ratio thresh-
is to choose the thresholds to maximize the interference cost old like decision rules.
necessary to cause a decoding error. We demonstrate that the Noncoherent Case- Ratio Threshold
above formulation is solvable for many channels of interest. Consider the transmission of M-ary code symbols over a con-

Problem Statement tinuous additive white Gaussian channel, using orthogonal Fre-
quency Shift Keying (FSK). The received signal is noncoher-

Parallel decoding is of considerable interest to improve on ently demodulated with the resulting M matched filters energy
the performance of coded communications systems limited by outputs {Yo, ... , YM-I }, each corresponding to a transmitted M-
various types of interference. Early work on parallel decoding ary symbol. In conventional receivers the transmitted symbol
dates back to Forney in his work on generalized minimum dis- is chosen that corresponds to the largest energy value. With
tance decoding [1]. Parallel decoding has been used since then no loss of generality, assume that symbol 0 is transmitted and
for decoding concatenated codes [2, 3, 4, 5]. In parallel decod- Y1 = max{Y, ...,Ym-}. The decision rule for a decoder with
ing the channel output is processed by z branches; each branch Viterbi ratio threshold characterized by 0 is:
consists of a demodulator connected to a decoder. The i-th de-
modulator is characterized by a threshold Oi for deciding whether Choose 0 if -II < tan 6;
to erase or to output its best estimate to the decoder; the in- Erase if tan0 < f < cot0;
put to the decoder is then an erasure, a correct estimate, or an Error if Ld > cot 0.
erroneous symbol. Then z identical bounded-distance decoders -

(one for each branch) are used to correct the maximum number It can be shown (see [6]) that for worst case interference the
of errors and erasures. The receiver, therefore, produces z can- cost function is
didate estimates of the transmitted codeword in which the most
likely codeword is selected. The interference distorts the signal
and there is a cost associated with each type of distortion. The f(0i) = sin 2 0i O, E [0, -

'2
cost of causing an erasure in branch i is f(Oi). The larger cost f(0i) = cos2 o,.
f(0i) is incurred for causing an error to the nearest code sym-
bol. The above communication system can be characterized by For arbitrary number of branches the optimal 0's and the
the following a game with two players: the communicator and a error correcting capability of the decoding algorithm a are, re-
jammer. spectively,
Communicator's Game - Choose the thresholds 0 ,., to
maximize the minimum cost necessary for a jammer to cause sin 2 0k= k 2z
the overall decoding system to err (not decode to the correct 2z +1 ' 2z + I
codeword). It can be shown [6] that the error correcting capabilitya, for
Jammer's Game - Chose the distortion to minimize the cost difference thresholding type of decoder is larger than that for
needed to force the communicator to cause an error no matter ratio thresholding by a factor V2. This corresponds to a gain of
what thresholds are used. 1.5 dB in signal-to-noise ratio.

d[1 G.D. Forney, Concatenated Codes, MIT research mono-Solution and Examples graph No. 37, The MIT press, Cambridge, Mass. 1WM.
[21 I.1. Dumer, V.A. Zinovev, and V.V. Zyablov, "Cascaded de-The solution to the game above can be proven to satisfy the coding with respect to minimal generalized distansce" Prnb-

following set of equations: le,, of Control and Informnation Theory, Vol. 10. No. 1.
1982. pp. 1-17.

f1[31 A. A. Hasasm and W. E. Stark, "On decoding concatenated
f(Ok)+f(O 1) = a k= 2,..., codes," IEEE Trans. Inform. Theory, vol 36, no. 1, pp.

677-683, May 1990.
with the following boundary conditions (41 S.I. Kovalev, "Two classes of minimumgeneralized distance

decoding algorithm," Probl. Peredachi Inf. vol. 22. No. 3 1986.
[51 V. V. Zyablov, "Optimization of concatenated decoding al-f(0ý+,) = f(B, goritbms." Prob. Peredach, Isf, vol. 9. no. I, pp -26-32 1973."f(+) = f ) + f(Oo) [61 A. A. Hassan and W. E. Stark, "Parallel decoding for chan.

z+1) = :) +P )nels with jamming," Proceedings of the IEEE Conference on

and with f(Oo) = 0 if the demodulation is continuous and f(00 ) =Miitary Comnications. October 1992.

1 if the demodulation is discrete (e.g. Hamming distance decod-
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Exact Analysis of the Lempel-Ziv Algorithm for I.I.D. Source

Tsutomu Kawabata
Department of Communications and Systems

University of Electro-Communications

Abstract: A new analysis shows that, when we apply the Remark: This shows sufficiently that limjo_. R(to) = H.
Lempel-Ziv incremental parsing algorithm to i.i.d. source with
probabilities:pi, i = 1,..., m, the expected length EjW,1 of These theorems are based on the following two lemmas.
the t-th parsed segment Wt is given by a simple formula. Fol- Let us consider W,+1 instead of Wt, since the former gives
lowing this approach we can show a VF(Variable to Fixed more elegant discussion.
length) version of Ziv-Lempel universal coding theorem. Lemma 1

Let A = {al...,. a-) be an alphabet. Denote by A* := EIWt+iI = E p(y)Pr{y E TZ), (4)
u1. 0A' the set of all strings and by A E A* a null string. YEA-
The Lempel-Ziv parsing LZ : A' - (A')' is defined(Ill)
for an instance LZ(x) = (w 1,w 2 ,...,w, .... ) such that x = where p(y'|) d 1 p(yj ... yk) = rlk1 p(Y4, and the expectation
WJW2... and for each t > 0 recursively wj+j is determined is taken over all random generations of the parsing tree T1
to be the shortest string not in the set TI ;= {A,w,,..., wt). after the t-th parsing.
For a given TI, let 8T7 denote the set of possible outcomes
of wt,+. (Since Tt' can be regarded as a set of inner nodes of exke y ter as f) av s lta
a tree, 82T is a set of corresponding leaves.) Since T = expression given as follows.
(m - 1)t + 1, at most Plog 2 f'l__, (m - 1)t + l] infomation Lemma 2 For any fixed y1' E A', let N1, N2.... be indepen-
bits are sufficient to represent w Iw2 ... wto. Now, consider an dent (not identically distributed) geometric random variables,
i.i.d. process taking values on A with probability parameters distributed as
{pjj!=.. By the renewal theory we may define a rate R(to) of Pr{N& = n} = (1 -- P•y"))*'P(y') for all n> 1. (5)
the Variable to Fixed(VF) source code, which consists of all
possible concatenations of first to parsing segments, by Then

R(to) := log2 {(m - l)t+1) pr{y• 6 TI) = Pr{Z, N < t). (6)

Effil EiW, I
To have Theorem 2, we have evaluated the following in-

where 1W11 denotes the length of the string Wt. The term equalities for a summand in Lemma 1. These may be interest-
EIWdj is given exactly and asymptotically respectively by the ing by themselves.
following two theorems. Lemma 3 (An upper bound)

Theorem 1 (Main theorem) , p(y)Pr{y E TI) 5 El1 - (1 -p(Y1
1 ))')]. (7)

- - YEA&
EIWt I = E(Ir' ( ) HOl - Z1- (2) Lemma 4 (A lower bound) For any real J > 0,

X1=1 1=2 i=1

where the null product is 1. E p(y)Prfy E 7V)
YEA/h

Remark: In [2], the sum S(t) e.! F,=, EIW~i is considered _> (1 - e-)'Pr{kJp-'(Yk") _ t - k}. (8)
directly and the following recursion is obtained by a different
approach from ours: Refe-ences

Sv--,,t'( t. \P - p=)-+S(k I1I J.Ziv and A.Lempel, "Compression of Individual Se-SF'tk =pilo - + )'& - 1). quences via Variable-rate Coding," IEEE Trans. on Infor-
i-- k=O mation Theory, vol.IT-24, no.5, pp.530-536, Sept. 1978.

with S(-1) = 0. (21 Y.M.Shtarkov and T.J. Tjarkens, "The redundancy of the
Ziv-Lempel Algorithm for Memoryless Sources," The Pre-

Theorem 2 (VF coding theorem) For an i.i.d. source liminary Manuscript for the International Workshop for
with entropy H, Information Theory, at Einthoven, Aug. 1990.

EIW.I = H- (3) [33 T.Kawabata, "Exact Analysis of the Lempel-Ziv Parsing
lim, H-1.--3 Algorithm for II.D. Source," IEEE Trans. on Information
t-co logs tTheory, to appear.

112



On Asymptotic Optimality of a Sliding Window Variation of Lempel-Ziv Codes

HIROYOSHI MORITA AND KINGO KOBAYASHI

Department of Computer Science and Information Mathematics.
The University of Electro-Communications. Chofu, Tokyo 182. JAPAN

Abstract 2. Tile longest matched sequence is parsed into a phrase W.

Ziv and Lempel proposed two important universal coding algoritlmis in 3. Without finding any matched sequence. the next input symbol is
1977 and 1978[1, 2]. While the second algorithm called LZ78 ha." been parsed into a phrase of length 1.
sufficiently analyzed in the literature, the first LZ77 has not yet. LZ77
parses input data into a sequence of phrases, each of which is the longest The above algorithm to parse the input sequence will be denoted as
match in a fixed-sized sliding window which consists of the previously PARR (Parsing Algorithm based on Restricted Reproducibility).
encoded M symbols. Each phrase is replaced by a pointer to denote
the longest match in the window. Then a window slides to just before Coding Methods
the next sy'nbol to be encoded, and so on. In this paper, we modify the
algo:irhm of LZ77 to restrict pointers to starting only at the boundary The encoder converts each phrase into a binary codeword under one
W4 a previously parsed phrase in a window. Although the number of of two separated modes, Which mode is taken depends on the status
parsed phrase should increase more than those in LZ77, the amount of of the algorithmn when parsing a phrase. One mode is corresponding to
bits needed to encode pointers is considerably reduced since the number the case no match is found. The other is to the case the longest match
of possible positions to be encoded is much smaller. Then we show is found. The former case is denoted as a direct mode. and the latter
that for any stationary finite state source, the modified LZ77 code is case as an indirect mode. In a direct mode. the encoder sends out one
asymptotically optimal with the convergence rate O(log log M1 log M) bit 'zero' followed by a symbol which has been pamsed into a phrase
where M is the size of a sliding window. length of I since there is no match for it. On the other hand, in anindirect mode. it sends out a codeword consisting of three parts: one

bit 'one', the position p of the longest match W. and the length I of W.
Definition of Stationary Finite State Sources To encode a symbol. a matched position, and length. it is sufficient to

assign [log a] bits for symbol a. [log M1 bits for p. and 2 log(l + ')]
Let X1" = XI.X2 ..... X5 be a finite output sequence of an in- for I.

formation source where Xi is a random variable which takes val- The decoding process is quite simple. The first step of the decoder
ues in the finite set A with cardinality JAI = a (< sc). Also. let reads in a single bit. If this is a zero. the next flog a] bits will contains
So = So, S1 .S2  S. be a sequence of states of the source where a symbol. If the input bit was a one, it reads in a matched position and
S, is also a random variable which takes values in the finite set S with length instead of a symbol. Then the decoder can reproduce a phrase
cardinality SIS = ;3 (< .) where So is called the initial state. We also from the contents of the current window. Repeat the above procedure
use a bold italic letter to represent a sequence or string of symbols such until the code sequence is exhausted.
as X or S if its length is given in the context. The structure of thc
source is described by giving the statistical dependence of X, on states Results
of the source: A source is said to be finite-state if the joint probability
of X = X1` and S = So" is given by Let us suppose that x is parsed into v, phrases. W1 ,W2.....' W.

through PARR and encoded according to the method described above.
Then the total length of a codeword pm (x) is given by

Pr(X = x,.S = ) =q(so)flP(r,.s.i)
=1 fpA(x) = m'+ F [logal + - J [log1n,1 + 2log(1  + 1)J}

for any x = x)X2"...,, E A" and s = s0 s1 ."s E S"+' where -'s"" iCJi
p(a, sit). a E A. s. t E S are conditional join probability mass functions where in is the number of the previously parsed phrases to be referred
and q(-) is a probability mass function. Since the state sequence S is not when parsing W. into a phrase, and 1 is the length of W, Moreover,appaent parsiy the outpo seuec Xhae ans oberabe Tis tprolngtaobiliMreoer
apparent. only the output sequence X is observable. Thye probabty JD is the mumaber of phrases which belong to the direct mode and J1 is
of X is determined by that of those which belong to the indirect mode. that is. v = I'DI+ IJII.

Pr(X = x)= • Pr(X = x.S=). Then, we have obtained tfie following main result.

sesn+' Theorem Let. {X,}',=- be a stationary finite-state stochastic process
with the state set S. Let pM (x) be the codeword length associated

Both probabilities Pr(X = x. S = s) and Pr(X = x) are also denoted with X = XI.X 2 ..... X, where M is the length of a sliding window
by P(x, s) and P(x). respectively. Moreover. P,,; denote the class of associated with PARR . Then. for any M > 0. if n is sufficiently large.
all stationary finite-alphabet source with A and S where JAI = a and then
ISI = 13.

A coding scheme considered here is mostly the same as time LZ77 1p. ) 1-pm1 X) < h- lg Iunax P(X) + O(log log M/ log M)
scheme, except making pointers denote only boundaries of previously 0 7i PEPs
parsed phrases as follows: where Ps denotes the class of all stationary finite-state sources with

the finite alphabet A and the finite state S.
A Parsing Algorithm PARR

R EF ER :NCISRepeat. the following steps until the input is exhausted: [11] J. Ziv and A. Lempel. A Universal Algorithm for Sequential Data Com-
1. Find the longest match of the current input sequence from the pression. IEEE Tran.s. Inform. Theory. 23(3):337 343. May 1977.

previously parsed sequence within the window of length M. The [21 J. Ziv and A. Lempel. Compression of Individual Sequences via Variable-
start position of the match must be that of the head of a previously Rate Coding. IEEE Tran.s. Inform. Thfory. 24(5):530 536. September
parsed phrase. And the longest match is allowed to extent beyond 1978.
the window as long as it. matches the input data.
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Adaptive Multi-Dictionary Model

for Data Compression*

Chia-Lun Yu and Ja-Ling Wu

Department of Computer Science and Information Engineering

National Taiwan University, Taipei, Taiwan, R. 0. C.

The main purpose of data compression is to represent source We proposed a new adaptive multi-dictionary model to describe

data with a compact form by applying coding techniques. It can the behavior of compression coding by the management policies

use fewer amount of data to substitute original large volume of in- of dictionary. Parameters defined in the model include: the num-

formation. Compression techniques can be applied to data storage ber of dictionaries, the sizes of dictionaries, the generate policy to

and data transmission applications. It can save the space needed define new words during encoding, the codeword representation

when storing enormous data and reduce the time used when trans- mapping that specifies the output bit pattern of each dictionary

mitting data via communication channels. Data compression plays entry, the flagbit representation mapping that specifies the flag

a very important role in modern information systems. By its re- bit pattern to point out the current used dictionary, the place-

suit, data compression can be classified as two categories: lossless ment policy to decide where a dictionary word should be placed,

and lossy compression. Lossless compression assures the original the replacement policy to throw away old entries when dictionary

data can be exactly recovered without any distortion. We will fo- fills, the update policy to control the exchange of words among dic-

cus on lossless case in the following discussions. Common lossless tionaries, and the adjustment policy to modi'y codeword mapping

techniques include run-length coding, Huffman coding, arithmetic after each coding step.

coding, Lempel-Ziv coding, and BSTW coding. Two major fun- Under the proposed model, the coding process of dictionary-

damental models are probabilistic model and dictionary model. based coding can be viewed as the construction, insertion, dele-

One obvious redundancy of many data sets is the repeated tion, and modification of dictionary contents. The characteris-

occurrence of substrings or patterns. Techniques that factorize tics of Lempel-Ziv type methods such as LZ77. LZ78, and LZW

common substrings are known as dictionary techniques. A dictio- can be exactly described by the specified management policies.

nary of common substrings could be constructed using dictionary Meanwhile, some other non-dictionary techniques can also be in-

techniques either on the fly or in a separate pass. It may use eluded in our model. By relating the coding procedures with the

the same dictionary for all input data sets (static) or construct a dictionary management actions, we had successfully interpreted

different dictionary for each data file (adaptive or semi-adaptive). lluffman coding and arithmetic coding as special cases tinder the

Lempel-Ziv coding can be classified as one of the adaptive dictio- proposed model.

nary techniques. The model describes the operational behavior of dictionary-

Cache memories are high-speed buffers which are inserted be- based coding by nine parameters. Compression efficiency is af-

tween the processors and main memory to capture those portions fected greatly by those factors. The features of our proposed

of the contents of main memory which are currently in use. Some model include multiple dictionaries, time-varient codeword map-

well-known management policies include: block placement, block ping mechanism. adaptive vocabulary exchange capability between

identification, block replacement, and write strategy. The idea of dictionaries, and the placement, replacement, update policies for

fast access in cache can be applied to data compression. If we col- dictionary vocabulary.

lect frequently occurring substrings (patterns) in a small cache-like Possible applications of the proposed coding model are: First.

dictionary and encode these patterns with fewer bits, the overall it provides an unified framework to interpret existent techniques.

compression performance should be better. Second, it points out the possible directions to improve current

For dictionary techniques, policies that maintain the contents techniques. Third, new coding system can be easily developed by

of dictionaries can be adopted from those of cache management. choosing suitable management policies. The influences of different

parameters on compression are the future research topics.
"*This work was mupported by National Science Council, Taipei, Taiwan,

Republic of China, under the contract No. NSC-0408-F-002-232.
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UNIVERSAL REDUNDANCY RATES DON'T EXIST

Paul C. Shields
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The expected per-letter redundancy to the author by Shtarkov. Iteration of the method leads
to a sequence of periodic measures p" such that

ni R.ý•(Ca._, p-)M-z p(n-.) =

me.-, res how far the n-block -to-variable length binary
p,,t..: code C., with length function L., is from being op- and such that only a few substitutions and deletions are

inal r,fr a given source distribution p. If a sequence of needed in a p"' periodic sample path to produce a p"-+'
block-t, variable length prefix codes is to be used on a periodic sample path. The latter will guarantee the exis-
class 8 of sources then a standard requirement is univer- tence of a limit measure u for which Theorem 1 holds.
sality, namely that R,.(C.,p) -' 0 for each member p of Acknowledgements. The author was partially sup-
the class, as n goes to infinity. The existence of universal ported by NSF grants DMS8742630 and DMS-9024240.
codes for the class 6 of all ergodic sources with a fixed al-
phabet is well known; for example, the Ziv-Lempel code
as well as other codes are known to be universal for the
class of all ergodic sources. A stronger requirement is to
ask that &,(C., p) go to 0 at some universal rate for each
member of the class. Sequences of prefix codes which have
the property that the expected redundancy per symbol is
O((log n)/n) have been constructed for various classes of
sources, such as the class of memorlyless sources, the class
of Markov sources of a given order, and, more recently, the
class of finite-state sources with a given number of states.
Furthermore, such results can easily be extended to count-
able unions of such "nice" classes. Thus, for example, there
is a sequence such that R&(Cn., t) = O((log n)/n) for each
pu which is Markov of some order, or for each finite-state
process p.

The purpose of this paper is to show that rates of con-
vergence for redundancy are possible only for special classes
of sources, that is, there is no universal redundancy rate
for any sequence of prefix codes on the class E of all ergodic
sources. The following is a precise statement of this result.

Theorem 1 For each n let C,. be a prefix n-code and sup-
pose lim. p(n) = 0. There is an ernodic source p' and a
subsequence n. such that

P(.-,) = oo, a.s.

The starting point for the construction of a counterex-
ample p is a simple method for selecting a periodic measure
p" such that R,(C.),p m) > 1 - o(1), a method suggested
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Abstract _.0

The LZW(Lempel-Ziv-Welch) data compression method is the most
popular universal coding algorithm and used in several practical sys-
tems. The LZW method, however, has following two disadvantages:
the compression ratio converges too slowly and the compressibility is
poor when the entropy of the information source is very high. In or- • 0.8 "
der to alleviate these disadvantages, we propose a novel source coding
technique based on the LZW Algorithm and a splay tree. Our pro-
posed method is superior to the LZW method in terms of universality . , . LZW method

and convergency. Especially, it is very effective to compress the high E
entropy information source. 0 ' ropose..Method0.6 Proposed Method

Summary

In the LZW algorithm[l], at the beginning of encoding (Case I)
or in the case that the entropy of an information source is very high
(Case 2), parsed strings in a string table are not used efficiently and 0.4
symbols are encoded frequently. In these cases, it is not effective to 0 2000 4000 6000 8000 10000
map a source alphabet A = {a,,a2,...,aa} into fixed-length codes Length of input sequencc (h•le)
which are longer than r log 2(Cr) I bits, where a is the number of the
source alphabet A. Here, for the ith segment, LLZW(bits), the length Fig.1 Compression ratio vs length of input sequence (C program)
of the ith codeword is

Lzw. = r logo ) (61 1.

where 6 is the number of entries in the last string table. As a result,
this mapping cause following two problems: in Case I, the compres-
sion ratio converges very slowly and in Case 2, the compressibility is 1.0 LZW method
poor when the entropy of the information source is very high.

On the other hand, binary trees are excellent in terms of conver- " =
gency of the compression ratio because the codewords assigned to . Splay Prefin Code
symbols depend on the probability of their occurrences. Jones pro- 0.9
poses a data compression method using a splay tree[2], which is a -
self-adjusting binary tree. It can adjust itself quickly to a local redun-
dancy of the information source, and is effective to the high entropy
information source. 0.8

In this study, we propose a novel source coding technique based on \
the LZW Algorithm in order to alleviate disadvantages on the LZW
method. This technique maps the source alphabet into variable-length
codes by using the splay tree, and maps parsed strings into the short- -.7_
est fixed-length codes, which is suitable for the number of entries in 0 5000 10000 15000 20000
the string table. However, in this mapping, the decoder can not recog-
nize which code is sent, variable or fixed. In order to distinguish one Length of input sequence (hyteo

from another, we use a flag bit which is added to the codeword. Here, Fig.2 Compression ratio vs length of input sequence (image data)
for the ith segment, LP'°PO'e(bits), the length of the ith codeword is

variable-length + 1 (0 < i < a) because parsed strings cannot be encoded effectively. The proposedr 109 2 16 - (- - 1)- 1 + I (a -i < D method, however, can further compress because it maps symbols into

where D... is the maximum dictionary size. As a result, the proposed variable-length code. Furthermore, the proposed method can adapt
method is expected to be superior to the LZW method in terms of itself to these files more quickly than the LZW method.
convergency of the compression ratio and the compressibility in en- The proposed method is not only superior to the LZW method in
coding the high entropy information source. terms of convergency but also compresse- the high entropy informa-

Let the number a of symbols be 256. In the proposed method and tion source effectively. That is, the proposed method has the higher
the LZW one, the dictionary size, which correspond to the maximum universality.
number of parsing segment, is restricted up to 4096. Both methods
use LRU (Least Recently Used) deletion heuristic. After the symbol References
is encoded, the splay tree is updated by using semi-splaying, a variant
of splaying. (1] T. A. Welch, "A Technique for High-Performances Data Compres-

Figs.I, 2 show the compression ratio at the beginning of encoding sion," IEEE Computer, Vol.17, No.6, pp.8-19, June. 1984.
respectively for C program and image data which are digitized using [21 D. W. Jones, "Application of Splay Trees to Data Compression,"
256 grey levels. For the low entropy information source such as C Communica4on, of tah ACM. Vol.31, No.8, pp.996-1007. Aug.
program, the proposed method gives a high compression ratio which 1988.
is almost equal to that of the LZW method because parsed strings can
be encoded effectively. For the high entropy information source such
as image data, the LZW method are difficult to compress structurally
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Abstract

We are looking for an "essential statistic" of a
finite-alphabet ergodic source, that, under a given
storage (memory) constraint, will allow discrimina-
tion between the given source and any other finite-
alphabet source.

In our model an encoder is given the n-th order
statistics of a stationary process, and the encoder
output is a binary N-vector. A discriminator, ob-
serves the n-th order statistics of a second source
that is either identical to the first source or differs
from it by a specified Kullback- Leibler divergence.
In a sense made precise in the paper, we show that
when n is large, this can be done if and only if
N > exp(nH), where H is the entropy of the first
source.

117
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1 Introduction For Markov sources, let p(ijl) = Pr(zi = alx,_- = al). Then
the recursion for N(K) splits into two parts. The first is for the

In a recent paper submitted to IEEE Transactions on Informa-

tion Theory [1], we introduced BAG. BAC is a variable to fixed first input symbol; the second is for all other input symbols:

block coder in that the input is parsed into variable length sub-
strings which are encoded with fixed length output strings. As- N(K) = 1 + ZpiN(Kill) (3)

sume the input is taken from an alphabet with m symbols and I=1

the codebook has K codewords. With each input symbol, the N(K I) = 1 + Ep(i1l)N(Kili), (4)
encoder splits the set of codewords into m disjoint, nonempty
subsets. The recursion continues until fewer than m codewords (5)
remain. One of these is transmitted, and the encoder reinitial-
ized. The encoding process is described in Figure 1. where N(KII) is the number of input symbols encoded using

K codewords given that the current input is at. (N(K) does

K = Ks; not include the current input, a1.) The heuristic is as follows:

A = 1; Choose Ki = p(i1I)K]. The optimal Kj can again be chosen by

while ((I = getinput0) 6 EOF){ dynamic programming. We can state the following theorem:

Compute K 1, K 2 ,. . ., K,; Theorem: If the Markov chain is time-invariant, ergodic,

A + 1_1 Kj; and symmetrical in the following way,

K =KI;
if (K < m){ H(XII) - •p(jil) log p(jil) (6)

Output code(A); J=1

A = 1; is independent of 1, then, for all 1,
K = Ks;

Nh(4 11) >_ logK _C (7)
} H(XIl)
doeof(A, K); and

adlog K _'

Figure 1: Basic BAC Encoder. N(K) >H(X I) (8)

The Ki satisfy the following: 1) Kj = 1 + Lj * (m - 1) for Proof (sketched): The symmetry condition allows that the en-

L =0, 1, 2.... and 2) ET, K, = K. The first condition assures tropy solution, Kj = pjK, satisfies (4). The proof that Nh(KAI)
=J= satisfies (7) follows almost identically from [1]. (8) follows dir-

two things: that Kj > 0 and that Kj equals the number in acomplete and proper set. Let N(K) denote the expected num- ectly from (7).
If the encoder starts anew with each block, then some loss of

ber of codewords encoded with K codewords. For i.i.d. inputs, efficiency occurs since the first symbol of each block is encoded
N(K) satisfies,• with its stationary probability, nots its Markov one conditioned

N(K) = 1 + Fp^N(Kj) (1) on the previous symbol. However, encoding blocks separately
j=1 yields greater resistance to channel errors.

The principal question is how are the K, determined. In (11, To get a feeling for the magnitude of C, we computed N(K)
we offered several methods. Firstly, K, can be chosen optim- for two situations. The first is a binary symmetric Markov chain

ally by dynamic programming. Secondly, K, can be chosen by with crossover probability equt.1 to 0.05. For 65536 codewords
an arithmetic coding heuristic: Kj = [pj,], where [pjK] is a (16 bits), N. = 53.4, No = 51.0, and Nh = 50.5. The second is
quantization such that conditions 1) and 2) above are satisfied. a binary asymmetric Markov chain with crossover probabilities
Thirdly, if we imagine that we can ignore the necessity that equal to 0.05 and 0.50. Again for 16 bit codewords, N, = 45.3,
Kj be integer, then take Kj = pjK. This solution results in a N, = 45.2, and NA = 44.4.
hypothetical entropy coaer.

Denote the expected number number of input symbols en- References
coded with K codewords by N,(K), Nh(K), and Ne(K), respect-
ively. Then, for i.i.d. inputs, for all K and for some constant C, [1] C. G. Boncelet Jr. Block arithmetic coding for source com-
we showed the following: pression. IEEE Trans. on Info. Theory, 1993. Submitted

(2g ) Sept. 1991.
K= N.(K) > No(K) > Nh(K) t:! H(og--" - C (2)H(X) - - -
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A Positional Representation for Noiseless Compression
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Absirac--The usual representation of a random sequence on Let M = {mf = (ni, vi); i = 1,.-. , NV} be a sequence com-
a finite alphabet Is obtained by recording the value occurring prising an arbitrary permutation of the elements in the product
in each position as the positions are scanned in some standard space A( x V. Define the indicator process {f(m); m E M} by
order. Here, we propose a representation obtained by record-
Ing the positions occupied by each value as the values are 4(mn) = lx(ni, vi) for i = 1,... ,NV.
scanned in some specified order. Entropy is preserved in
converting to the positional representation. Also, the unknown This is just an arbitrary one-dimensional ordering imposed on
positions can be arbitrarily rearranged as the occupied posi. the elements of A( x V so the entropy
tions are revealed. Under control of a memory model, we
propose a rearrangement acting to reduce the first-order H(f) = H(lx) = H(X)
entropy. This allows better compression using an adaptive
method, such as the Lempei-ZIv algorithm. Memory effects is still preserved.
over large sample distances, multiple dimensions, or large The process {4} has a strong memory effect due to the
alphabets can be directly applied in predicting positions rather constraint on the process {lx}. Suppose m4 = (n,,v.) has
than slowly learned by the adaptive coder. Some empirical §(mN) = 1. For some j > i, if mj = (nj,vj) has nj = ni,
results for grey-scale television-quality Images (480 rows by 512 we observe that 4(mj ) = 0 must obtain. That is, once a value
columns by 256 Intensities) are included, is determined for a particular position n E K(, no other value

can be specified for that same position. Define the modified
indicator process {*(m); m E M} by

A Summary of the Representation [ 1, if 4(mj) = 1
0, if §(m,) = 0 and 4(m4) = 0

Suppose the source to be compressed is characterized as the *(mj) = for all i < j having ni = ni
discrete-time, discrete-valued random process {X.; n E O} A, if 4(mj) = 0 and 4(ni) = 1
where each X,. E V. For simplicity, we will assume here that for some i < i having Ni = ni.
the sequences Y = {1,.--,N} and V = {1,... ,V} are finite.
This model is sufficient for one video or audio frame which has Here, A is the null symbol. Since knowledge of M allows the A's
already been quantized over a bounded interval, to be inserted, they can be left out of the representation of {9}.

Typically, the source would be processed by considering the Again, the entropy
values X, under the prearranged ordering of the n E Y. For a H(*)= H(f)= H(X)
speech frame, we usually process the samples in time order. For
an image frame, we usually process the pixels in the order they is preserved, for any choice of the ordering M on A( x V.
appear in a raster scan (left-to-right pixels within top-to-bottom We conjecture an advantage in doing lossless compression
rows, say). using the process {*} for three reasons. First, {9} is binary,

Consider the indicator process {lx(n,v); n E Y,v E V• regardless of the size of the source alphabet V. Second, {9} is
derived from the source process by one-dimensional, regardless of the natural or usual dimension-

f, if X,=V ality of the space K( indexing the original source process {X}.
lx(n,v) 0, otherwise. Third, the freedom in choosing M means that the compress-

ibility can be maximized by u * g memory modelling, combined

Note that {lx(n, v)} is constrained to be unit-valued for exactly with backward adaptation or side information, to determine the
one v E V at each n E K. Clearly, the mappings between the best permutation of K x V.
source representations {X,.} and {lx(n,v)} are unique, so the Lossless compression methods, such as the Lempel-Ziv algo-
entropy rithm, work best on small alphabet sources having a low first-

H(lx) = H(X) order entropy. We split M into two contiguous segments, Me
having the probability of obtaining 9(m) = 0 maximized, and
iM,1 having the probability of obtaining 9(m) = I maximized.

These are compressed separately. The memory model is applied
to yield a good choice for M, and the split into Mo and M 1 , in
the sense of minimizing the first-order entropies of the segments.

This work has been supported by the Natural Sciences and
Engineering Research Council of Canada under Research Grant
A6658 and by the Information Technology Research Centre, an
Ontario Centre of Excellence.
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LIKELIHOOD METHODS IN IMAGING
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Summary original motivations from single-slice tonmographic
imaging in nuclear medicine will be mentioned, but

The use of likelihood methods to treat image data emphasis will be placed on more recent develop-
has grown significantly over the past twenty years. ments, applications, and trends.

Three forces continue to drive this evolution. The
first is the rapid and continued development of in-
strumentation used to acquire image data, with
tomographic instrumentation in nuclear medicine
and radiology being an important early example.
A second important development was the identifi-
cation by L. Shepp and Y. Vardi in 1982 of numeri-
cal procedures making likelihood methods feasible.
Lastly, the increasing power of digital computation
has permitted more and more complicated likeli-
hood methods to be used.

As in other application areas, the power of likeli-
hood methods for imaging relies on having an accu-
rate statistical model describing the available data
and how these data are influenced by the under-
lying objects to be imaged. Poisson and Gaussian
processes in time and space often appear in models
that account for most of the major sources of noise
and distortion in a wide variety of imaging modal-
ities. Side information placing constraints on the
object to be imaged can also be of major impor-
tance. U. Grenander's theory of object shapes, the
introduction into imaging by U. Grenander and M.
Miller of jump-diffusion processes, and the use of
Markov random fields to accommodate shape con-
straints are all important developments strength-
ening the use of likelihood methods for imaging.
Regularization is also significant because imaging
problems are uo-,, ill posed leading to unstable
solutions wil , u uastrained maximum likelihood.
Penalty coi, ,-'',, including object-model con-
straints, have 6een found useful as a form of regu-
larization as has U. Grenander's method of sieves.

My objective in this talk is to review likelihood
methods that are being used for imaging. The
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ON T1I E PRINCIPAL STATE METHOD Ws(n;i) = U Vs(nj)"

FOR PU N LENGTH LIMITED SEQUENCES. M" IOd- ij min (.,k - )

Now we can formulate our goal and the result:

Tjalling Tjalkens Given n, k, and d, (with the restriction n > k > 2d > 0), find

Eindhoven University of Technology, the set S" C [0; k] such that:

P.O.Box 513, 5600 MB Eindhoven, k-i k-d

The Netherlands. WS.(n) = max minl1WV(n;i), = j'ZU(n - d- i-3).

Abstract. Sc[O;k] seS i= " =-

We present a detailed result on Franaszek's principal state method for the Message mapping for state independent decoding

generation of runlengt.h constrained codes. We show that, whenever the Partition the WS. messages into sets Mf of sizes Mi _ Vs.(n;d-t i)l,
constraints k and d satisfy k > 2d > 1, the set of "principal states" is where i = 0,1,-- ,k - d. Let r he the number of trailing zeros in the
sos8,1-4-1-. Thus there is no need for Franaszek's search algorithm previous codeword. WVe distinguish between the following cases:

anymore. The counting technique used to obtain this result also shows
that. "state independent decoding" can be achieved using not more than d = 1 and r = 0: The messages in the set Mi are assigned to the set

three codewords per message and it allows us to compare the principal state VS. (n; i + 1).

method with other practical schemes originating from the work of Tang and d = 1 and r >_ 1: The set Mo is assigned to VS.(n; 1) and At U. ... U.M&_
Bahl and also allows us to use an efficient enumerative coding implements- are assigned to Vs.(n;O).
tion of the encoder and decoder. d> I and r<d: For all i = 0,...,k-d-rwe assign totheset Alf the

Introduction. codewords from VS. (n; d+i) respectively. For i = k-d-r+ I..k-d

Shannon (4] considers the (d,k)-constrained channel, where the only pos- we assign to the set Mi the codewords from VS.(n;i + 2d - k + 1)
sible binary sequences that can be transmitted over the channel are those respectively.
containing runs of zeros of length d,... k. (d < k). These channels can be
described by a state model where each state is indexed by the length of the d > I and r > d: The sets M0 U Mt U... U M1,.-d are assigned to VS. (-; 0)
current run of zeros. Shannon defines the capacity of this channel as the and VS.(n; 1) in that order.

limit as n - no of the logarithm of the size of the set of all sequences of So, it is easy to see that every message is encoded into one of two or three
length n satisfying the (d, k)-constraint divided by n. different codewords, depending on r.

A runlength constrained code, (d, k)-constrained code, is a binary encoding Enumerative coding.
of information such that in the code sequence successive ones are separated We shall briefly indicate the application of the well-known enumerative cod-
by at least d zeros and at most k zeros and thus is well suited for use on a ing technique [2] to the generation of the (d,k)-constrained sequences.
(d, k)-constrained channel. First we determine the message subset Al, of the message m that we want to
We shall consider fixed length codes for these purposes. Valid codewords transmit. Then, with the rules of the previous section we determine the set
follow a possible path in this state model, starting at the state where the VS.(n;j) and the relative index i(zk"; VS.(n;j)) of our message in the set.
previous codeword ended. So, a code for this state model contains sev-
eral codewords sets, each containing a variable number of words, where the nally we use the enumerative reconstruction to produce the codeword E

selected set depends on the previous codeword and is such that the concate- Vso(n;j) from its index.

nation of that codeword with any word in the set is permissible. Since we Let the codeword zn be given as r- = 0-"-0-' I ... 10*,. So a0 = j.

consider fixed length codes the size of the code is determined by the smallest Although we will not need the (source) encoding algorithm, it is instructive

set belonging to some state in the model. to see how the index can be computed recursively as

Franaszek [3] noted that if we take a subset of all states in the model and i(zW;VS(n;j)) = i(z ; VS (n-j;0)) =
require the codewords to start and end in states of this subset then an
optimum subset exists. This subset is known as the set of principal states
and Franaszek described an algorithm to search for these principal states. X (L-(t)+ 2 , VS,(n - o(e_) - 1;0)) + • 1Vs.(n - I- 1;0)1,

Another approach, presented by several authors, [1, 5, 6], is to use a single I=d

set S of codewords that satisfy the (d,k)-constraunt internally. A special where a(X") = a, as given above.

sequence is put in between two codewords such that the (d,k)-constraint Note that this computation produces a lexicographical ordering given the
remains satisfied between codewords, symbol ordering "1 < 0". Also note that in order to compute the index we

The principal state method is an optimal code for systems that can be de- only need the n + I numbers IVs.(p; 0)j for 0 < p:< n.

scribed in the state model framework, and thus it is at least as efficient as Reconstructing i[" involves producing the e0 . .. and they can be found

any of the glue methods, since the glue methods can also be described in the recursively by the corresponding enumerative decoding algorithm.

state model framework. References.

The principal states. (1] C.F.M. Beenker and K.A. Schouhamer Immink, "A generalized method

Our goal for encoding and decoding run-length-limited binary sequences," IEEE

We start with the definition of the building blocks or basic sets U(m) for Trans. Inform. Theory, vol IT-29, pp. 751-754, Sept. 1983.

the codeword sets given the (d, k)-constraint, containing all sequences that [2] T.M. Cover, "Enumerative source encoding," IEEE Trans. Inform. The-

start and end with a "one" and satisfie the (d,k)-constraint internally. Let ory, vol IT-19, pp. 73-77, Jan. 1973.
11(m) denote the size of U(m). a 3 .. Faazk seunesaecdn for digital transmission,"

In the following we shall repeatedly use the shorthand notation [(nb] (3] P.A. Franaszek, "Sequene-state codingf
(a,a + b.). B.S.T.J., vol 47, pp 143-157. Jan. 1968.

Let S C (0; k] denote the set of permitted channel states, (not necessarily the [4] C.E. Shannon, "A mathematical theory of communication," B.S.T.J. vol
set of principal states). Consider the sets Vs(n;i) containing all sequences 27, pp. 379-423, July 1948.
starting with a run of i zeros and ending in a run of r E S zeros and satisfying
the (d. k)-constraint internally. Note that Vs(n;i) can be described using (5] D.T. Tang and L.R. Bahl, "Block codes for a class of constrained noiseless

the basic sets as channels," Informnation sad Control, vol 17, pp. 436-461, 1970.

VK(n; i) = ( (0')* U(n - i - j) * (0j), [6] J.i. Weber and K.A.S. Abdel-Ghaffar, "Methods for cascading

)ES runlength-limited sequences," Peoc. Twelfth Sympossm os Information
Theory in the Benclu:, Veldhoven, May 23 & 24, 1991.

where U * V indicates the set containing all concatenations of the sequences
; E U with any sequence y E V.
With these sets we can make Franaszek's state depending codeword sets
tVs(n;i), i.e. the set of possible codewords of length n starting in state
i E S and ending in any state j E S. We have
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Joint Runlength/Error-Control Codes Based on Set-Concatenatable Collections

Jian Gu and Tom Fuja
Department of Electrical Engineering
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Recent work by the authors [I] described a new approach If M > 2"', we can construct a code with df,, = 3 that can
for constructing fixed-length (d, k) codes; these codes are "block- encode 2"' messages by numbering the elements of SO (resp., SO)
decodable" - i.e., they can be decoded with no memory and no with even (resp., odd) integers; the rate of the resulting code
anticipation [2] - and they do not require look-ahead at the en- will be m/(n1 + n2). This is done by constructing a completely
coder. Furthermore, it is shown in [1] that the approach described connected trellis with 2"' states numbered by {0, 1,-.. , 2"' - 1)
therein is optimal over all block-decodable codes with no look- such that the edge from state x to state y is associated with the
ahead. The new codes do not rely on a search, and they have a "codeword" - the set of (n, + n2)-tuples, actually - numbered
very simple structure. In this talk we shall discuss how the new with the integer L(x, y) = z - 2y (mod 2"'+1). This encoding
approach can be combined with an error-control structure to yield rule guarantees a non-catastrophic encoder such that the outgoing
combined modulation and error control coding. edges from any state have the same "parity" - i.e., are labeled

The approach in [1] is based on set-concatenatability. Let C" with either the elements of SO or S° but not both. This in turn
denote the set of binary n-tuples satisfying the (d, k) constraint, guarantees a free distance of at least three.
Then a set S ={So, S1 ... SM-1} of disjoint subsets of C" is Example: We shall construct a code with (d,k) = (2,4),n =
called a set-concatenatable collection (SCC) if for any Si, Sj E S 9, R = 2/9. Start with a (2,4) code with blocklength n, = 6:
and any x E Si there exists a y E Sj such that x * y E C2". The
block codes in [1] are based on the maximal set-concatenatable so = {000010,010001} S1  {000100,010010}
collection (MSCC), and they can encode up to M messages where
M is the size of the MSCC. (In [1] it is shown that M is equal to S 2 = {001000, 100001} S3 = {001001, 1000101.
the number of (d, k) sequences of length n with at least d leading We now use as the "parity check" S,, = {0", 1"} where 0" -
zeroes and at most k - 1 trailing zeroes.) {000,010} and 1" = {001, 100}. This yields the collection

In this talk we demonstrate how the simple structure of the
codes in (1] is easily incorporated into a joint runlength/error- So = {000010001,010001000} S" = {000010010,010001001}
control scheme. In this summary we shall show how the approach
of Lee and Wolf [3] may be easily adapted to the new technique. S1 = {000100100,010010010} S3 {000100010,0100100010

Let S = {So,...,SM-_1 be a MSCC with blocklength n, for S" = {001000100,100001000} S" = {001000010,100001001}
the (d, k)-constrained channel; assume that S is constructed ac-
cording to the procedure described in [1]. Let 3,, = {0, 1*} be S5 = {001001000,1000100101 S = {001001001,100010001}
another set-concatenatable collection - one of size two with the Using the completely connected trellis with four states labeled
smallest possible blocklength n2; assume once again that S,, is according to the rule above, we can encode data at a rate R' = 2/9
constructed using the approach of [1]. It can be shown that with free distance three. By comparison, if we use the approach

d +1, if k > d + 1; in [31 - which employs codewords that can be freely concatenated
n2= (d + 2, if k = d + 1. regardless of encoder state - the best rate that could be achieved

with blocklength n = 9 would be R = 1/9. To obtain a rate
Definition: Given x = (X1,X 2,... , ,,) E C"' and c E Ss, close to 2/9 using the method of [3] would require a blocklength

define a generalized parity check h(.,.) as follows: of n = 14, with the resulting increase in complexity. 0
0, if Z--1 xi is even and c E 0* Moreover, when k > 2d+1, we can construct quasi-systematic

x 0, if 1' x. is odd and c E U" codes whose codewords are made up of d merging bits, n1 - d
h(xc) = if E!", is odd and c E 1 information bits, and d + 1 checking bits - provided we revise

1, if x•£ x is odd and c E O* h(., .) suitably.
A class of single bit-shift error detecting and/or correcting

Given S and SW, we "glue" them together in two different codes can also be constructed by defining an appropriate parity

ways to obtain two new collections S" = {So, Sr,..-., St_ } and function. Furthermore, these codes are able to deal with bit-shift
So = {S , S•,..., 1-.4 : errors crossing the border of two adjacent codewords.

SO = {x * c : X E S,c E (0" U V),x * c E C"'+", h(x,c) = 01 References

1. J. Gu and T. Fuja, "A New Approach to Constructing Opti-
and mal Block Codes for the Runlength-Limited Channel," sub-

Si' = {x*c : x E Si,c E (0" U.1"),x*c E C"l+2,h(x,c) = 1}. mtted to IEEE Transactions on Information Theory.

Claim: `SO and ,S* are disjoint collctions such that ISel = 2. K.Immink, "Block-Decodable Runlength-Limited Codes via
Clai = M. Furthermore, seU,* is a set-concatenatajle collection; Look-Ahead Technique," Philips Journal of Research, June

finally, any two codewords from different elements of SO (reap., 3S) 1992.
lie at distance at least two from one another. 3. P. Lee and J. Wolf, "A General Error-Correcting Code Con-

struction for Run-Length Limited Binary Channels," IEEE
Transactions on Information Theory, November 1989.
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Systematic Runlength-Limited Codes
For Single Error Detection

In the Magnetic Recording Channel.

by Patrick Perry
January 1, 1992

College of Micronesia

The runlength-limited codes are used in magnetic
recording. A runlength-limited code is characterized by its
(d,k) constraints. The d constraint being the minimum run
of consecutive zeros and the k constraint being the
maximum run of consecutive zeros.

Methods for mapping unconstrained binary
sequences to (d,k) constrained sequences exist. Such
mappings are called modulation codes. In this article, we
assume the existence of a modulation code and are
concerned with detecting errors which occur in magnetic
recording.

Errors which occur in magnetic recording can be
categorized as drop in errors, drop out errors, or shift
errors. A drop in error occurs when a zero is changed to a
one. A drop out error occurs when a one is changed to a
zero. A shift error occurs when the pattern 01 is changed to
10 or the pattern 10 is changed to 01.

To detect single errors for an unconstrained binary
symmetric channel, a single parity bit is adjoined to each
information sequence. With a runlength-limited code for
the magnetic recording channel, the detection of single
errors is not so trivial. The parity must be chosen to
maintain the runlength constraints and to detect all three
types of channel errors.

The purpose of this article is to present a
construction of systematic runlength-limited block codes
for detecting single errors in the magnetic recording
channel, whether a drop in, drop out, or shift error. The
codes can be designed for any (d,k) constraints. The
encoder table has 3(k+i) entries. Error detection is
performed by a simple arithmetic calculation. Optimal
systematic single error-detecting codes are obtained, for
the (1,k) and (2,k) constraints with k > 2(d+l), by
truncating the constructed codes.
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Reduced Complexity Encoding and Decoding Algorithms for a

Class of Runlength Limited Error Control Codes
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Summary References
Recently a new class of maximum runlength limited error con-

trol codes (RLLECCs) have been id-untified (1-31. They are [11 POPPLEWELL A. and O'REILLY J.J.: 'Runlength lim-

formed by taking an appropriate coset of a linear transpar- ited binary error control codes', fEE Proceedings Pat I,

ent error control code and thereby inherit the error control 1992, 139, pp. 349-355.

characteristics and implementation advantages of the parent

linear code. A new class of parent codes which realised opti- [2) POPPLEWELL A. and O'REILLY J.J.: 'A new class of

mum RLLECCs with minimum distance 4 was recently iden- runlength limited error control codes with minimum dis-

tified in (21. These codes were defined in terms of their parity tance 4', lEE Proceedings Part I, in pre".

check matrices and although linear they are not cyclic. Con- (1PPLW L .adORIL .. Rneghlm
sequently practical realiuation of these schemes necessitates a [3] POPPLEWELL A. and O'REILLY J.J.: 'Runlength im-checkitedrcodes forarandomhandnburstherrorecorrection', CEE

network of EXOR gates for encoding, whilst more obviously ited codes for random and burst error correction9, 7EE

for decoding storage of lists of syndromes and corresponding Electronics Leters, 1992, 28, pp. 970-971.

error patterns. However the parity check matrices of these

optimum codes possess some cyclic-like properties and in this

paper we exploit these features to develop simplified encod- 1.OE-02 Residual Error Rate, PIe

ing and decoding algorithms which readily lend themselves to -- Theory c ydrore

implementation using VLSI microcircuits and require no stor- 0 A A Algorithm

age of syndromes and error patterns. These circuits can be

realised simply with EXOR-gates, AND-gates, a 4-input ma- I.OE-03

jority gate and shift registers. Furthermore, we find that the

circuits are general for a particular runlength constraint the

only difference for higher rate codes being the number of shifts I.0E-04

required to perform the encoding aud decoding operations.

Encoding and decoding algorithms for three particular par- 1.E-05

ent ECCs which when modified appropriately yield runlength

constraints 2, 6 and 14 will be considered, although similar

algorithms could also be developed for other cases. Circuits

which perform the coding operations will also be presented IM0E-06

and an error performance comparison of the new algorithms

with conventional syndrome decoding will be carried out. By

way of example figure I shows a comparison between the per- I.OE-07

formance of the new algorithms and syndrome decoding for I.0E-05 1.OE-04 I.OE-03 I.OE-02

a (64,46) code with a maximum runlength constraint of 6. Channel Err Rate, Pce

Whilst clearly syndrome decoding performs the best there is

no significant degradation in performance for the less com- Figure 1: Error performance of (64,46) code with different

plex new algorithms A and B. These new algorithms are also decoders

readily adaptable to perform soft decision decoding and the

potential coding gains using soft decision versions of the de-

coders will be considered.
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Abstract and simulation methods have been used. Special attenti,,n has
been paid to the important case (d, A.) = (1. 7).

A techniqb e for joint modulation and error corretlion We have calculated and compared for a fixed number of infirina-

icdescwithed. In orduati ler to at con rructs tip d, I errors.ai tion bits the total redundancy for each method. Among other re-
code wvith s information bytes that corrects up to terrors.

a single error-detecting (inner) block modulation (ode is suits, it turned out that the block scheme with the error-detecting

combined with an (outer) [JK + 1, KI Reed-Solnomn code, inner code minimizes the redundancy when K is relatively small.

The performance of this scheme is compared to the related By establishing bounds on the rate difference for the inner block

scheme using an (inner) block modulation code and an codes with and without error detection, the two block schemes

(outer) (K + 2f, r] Reed-Solomon code, as well as to I lie could be compared.

traditional method in magnetic recording. which involves Note that a bit error often causes a violation of the (d, A-) con-

thie concatenation of an error-correcting code with a sliding straints. For a block scheme, this leads to a symbol erasure, since

window modulation code. the received (inner) word does not any longer correspond to an
(outer) symbol. Hence there is a kind of interaction between the

1 Introduction demodulator and the decoder in the block schemes, which seems
to be missing in the traditional scheme. Since it is hard to nea-

A well-known method to construct a (d, k) modulation code with sure the effect of this interaction analytically, we have run various

error-correcting capabilities is to concatenate an inner bl,,ck mod- simulations. Noise was injected based on observations made in [3).
ulation code with an outer Reed-Solomon code [2]. To lie more For the (d, k) = (1, 7) case, the results seem to indicate that it is

precise, let I be a binary block code of size 2" for which the cas- hard to improve upon the traditional scheme. However, it was als',

cading of codewords gives sequences with runlengths of at least noticed that for the block scheme, the k-constraint can Ihe lowered

d and at most k. O's between any two consecutive l's. For corn- from 7 to 5 without losing rate.

bined error protection against up to / errors and inodulati(,n' of Ii,

information bits, we concatenate the inner code I with an outer References
[r + 2t, KI] Reed-Solomon code 0 over GF(2").

In this paper, we consider a modification of the above-described [1] K.A.S. Abdel-Ghaffar and J.H. Weber, "Bounds and Con-

scheme by choosing the inner code to be single error-detecting. structions for Runlength-Limited Error-Control Block Codes,"

Since a single error in an inner codeword will thus always result in IEEE Trans. Inform. Throry, vol. IT-37, pp. 789-800, May

a symbol erasure for the outer code, 0 only needs to be a [I, +1. 1.] 1991.

Reed-Solomon code in order to correct up to t bit errors.

The idea of using an error-detecting inner code is not completely [2] M. Blaum, "Combining ECC with Modulation: Performance

new. In fact, this scheme can be considered as a special case ,4f Comparisons," IEEE Trans. Informn. Theory, vol. IT-37, pp.

Ytrehus' general scheme for constructing runlength-limited codes 945-949, May 1991.

for the mixed-error channel [6] (by choosing s = 0 in this scheme, [3] T.D. Howell, "Analysis of Correctable Errors in the IBM 3380

while Ytrehus himself accents the .ý ase .s = 2). Disk File," IBM J. Rcs. Devdop., vol. 28, pp. 206-211, March

The single error-detecting capability of the inner code can be es-

tablished by choosing (d, k) constrained sequences of either odd

or even weight [4],[5]. However, by using more advanced methods [4] K.A. Schouhamer Immink, "Error Detecting Runlength-

like the one presented in [1], we occasionally obtain higher rates, Limited Sequences," Eighth International IEE Conference on

especially when k is close to 24. Video, Audio, and Data Recording, Birmingham, April 1990.

[51 P. Lee and J. K. Wolf, "A General Error-Correcting Code Con-
2 Comparisons struction for Run-Length Limited Binary Channels," IEH"

7T-ans. Inform. Theory, vol. IT-35, pp. 1330 1335, November
The traditional way to establish modulation and err,,r protection 1989.

in magnetic recording involves the concatenation of an interleaved

error-correcting code with a sliding window modulation ode [2]. [6] 0. Ytrehus, "Runlength-Limited Codes for Mixed-Error Chan-

We have compared the performance of this traditional scheme with nels," IEEE Trea?.. Inform. Theory, vol. IT-37, pp. 1577-1585,
the two block schemes from the lprevious section. Both analytical November 1991.

*This author wa., smlpport,,d in part ty NSF Grant NCR I9-ISls Itl by
an IBM Fatr-ilty )•vr'lopm,ýnt Award.
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A typical encoding configuration for a magnetic or optical record- modulo 7 is 0. The last symbol in a block and the first symbol in
ing channel consists of encoding the information bits with an error- the next block are chosen in such a way that their sum is equal to 6.
correcting code, generally, a Reed Solomon code, followed by a Thus, we are inserting exactly 10 binary symbols between blocks
(d, k) constrained code [1). in the binary sequence. It is important to have a fixed amount of

In.general, Reed-Solomon codes can handle the most common type redundancy while attempting to recover synchronization. Finally,

of errors: random errors and peak shifts. A random error can be ve set the initial condition ao = 0.
of two types: a 0 becomes a 1, denoted 0-1, or a I becomes a At the receiving end, if a 7-ary sequence h0 , h1. bI2.... has been
0, denoted 1--,0. Peak shifts are also of two types: 0 1-1 0 or received, and errors have occurred, including possible insertions
1 0-0 1. and/or deletions of symbols, we show how to recovei synchroni7a-
However, there are other types of errors that cause a catastrophic tion with high probability under the following conditions (that are
failure due to loss of synchronization. They are, deletion of a determined by the error statistics of the channel):
symbol (0 or 1) and insertion of a symbol (0 or 1). Although
deletions and insertions are not as common as the other types of 1. At most 3 errors in at most A consecutive 7-ary blocks of

error, if we are able to determine how many insertions or dcletio•ns length n have occurred, say in blocks mm - 1.n + .. I+.

occurred in an interval, by inserting or deleting a proper amount where r < \ - 1.

of symbols we are going to have a burst error that will either be 2. After the last block in error, say block m + r, there are at

corrected by the outer error-correcting code or, if uncorrectable, least s error-free blocks.
at least it will have a limited length.
Consider (1, 7) sequences (the method can be generalized to any 3. The length r of each block is at least 7 (in general, A'- I+ 1).
(d, k) sequence). We make the following 1-1 mapping between a
(1, 7) sequence and symbols in Z7 (i.e., set of integers modulo 7): Under these conditions, we present a method that will allow us

to each run of O's, we associate the number of zeros minus one. to determine how many symbols have been deleted, allowing fr

If we denote by L the length of the binary string, by P the length recovery of synchronization.

of the 7-ary string and by S the sum of the symbols in the 7-ary
string, these three parameters are related by L = S + 2C. References
At the 7-ary level, we encode the information using an [7,)1 - 2]
block code, where it > 7. The first and the last symbols in a [1] P. H. Siegel, "Recording Codes for Digital Magnetic Storage,"

block are redundant, while the middle ii - 2 symbols carry the IEEE Trans. on Magnetics, Sept. 1985, pp. 1344-1349.
information. We require that in each block, the sum of the symnbols
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Abstract (b) Find all vectors -Y E Z' such that
An algorithm is presented for the construction of fixed length inser-
tion/deletion correcting RLL codes. This algorithm uses one or more N
fixed length q-ary codes with given Lee-distance to generate fixed ,

length binary (d, k)-constrained codewords. This construction can be 0 < Vi S r, if AI E {0, 1 ..... r 2 }.
used for all possible (d, k)-constraints. 0 < -y !S r, - I if di E {r 2 + 1,r 2 + 2,...,q - 1}.

(4)

Introduction (c) Take as a codeword in the code C 2 the word

In [1] the authors describe a way to construct peak-shift error cor- x = 1 0 p+d+'Y-j 1 0-I 2 +d+'n'q ... 1 00+d+-Y'. (5)

recting variable length RLL codes. In their construction they use a
Hamming-metric based code to generate (d,k)-constrained codewords. (d) Repeat step 2(c) for all -y of step 2(b).
However, due to the way the problem is stated, it is more obvious that 3. Repeat step 2 for all 3 of step 1.
Lee-metric based codes are used as generating codes. This was also
noticed by Roth en Siegel in [2]. The main idea is to use a Lee-metric Decoding is now done by taking I runs at a time, and then decoding
based code to encode the runlengths of an RLL code. This allows us the IR of the word they form together. Due to the fact that we have
not only to correct peak-shift errors but also insertions and deletions assumed that an error has maximal size s, and the alphabet of the
of zeroes. code Cq has size 2 • s + 1, it is always possible to distinguish between

insertion and deletion errors.

Preliminaries In general not all codewords 3 of the code C. can be used to generate
binary (d,k)-constrained codewords of length N2 . This is due to the

In the sequel we assume that an error has some maximal size of s bits. fact that it does not always hold that
So, in case of a shift error, a one is shifted over at most s positions,
and in case of an insertion (resp. deletion) error, at most s zeroes are Wab.(fl ) S n (mod q). (6)
inserted (resp. deleted). Now q will be defined as 2.s+ 1. Furthermore,
if x = 10* 101 ... 10*1 is a (d, k)-constrained word, then the Integer This car be solved by adding a parity symboltha+t to a q-ary codeword

Representation (IR) t3 of x is defined by 3 , such that

(oi - d) mod q, i = 1,2 .. , 1. (1) 1+1
Y/3.+(I+l).(d+1)=N2 (modq), (7)

The absolute weight W.b,(/3 ) of a q-ary vector 3 of length 1 is defined
as I or equivalently

W~bo 03 3: i, (2)
Wa =31 )+1 = (n- (d+ 1)- W..(O3 ))rmod q. (8)

where the sum is taken over the integers. In order to increase the number of codewords of the code C2 , we can
In the sequel C will denote a q-ary code of length I and minimum se more q-ary codes C say C for = 12.. where the code C
Lee-distance t, and C2 will denote a binary (d, k)-constrained code of usen ore the c ens ,. iq = 1o.d what

lengh N := + - ( + ) fo soe n 0.has length 4i. For the lengths li it most hold thatlength N2 := n + 1 -(d + 1) for some n >_ 0.

If t = 2. r. s + 1, then C, is capable of correcting r errors, where each It 1N+jJ - (-
error has size at most s. 2 + < l+a - (9)

li < I•I (9

The Construction Furthermore, if we assume that only 1 run can be affected by errors,

We are now able to give a construction for the code C72, using the code we can take q to be s + 1. This is due to the fact that the code C2 hasCWe a fixed length N2 .

Construction: References

1. Take)3 E C, with W.b,(f )= L and (n - L) = 0 (mod q). [1] H.M. Hilden, D.G. Howe, E.J. Weldon Jr., Shift error correcting
modulation codes, IEEE Trans. on Magn., Vol. MAG-27, No 6

2. Take all x F+'(d+1) with IR 3 , that also satisfy the (d,k) (November 1991), pp. 4600-4t%5.
constaints. Do this as follows:

[2] Ron M. Roth, Paul II. Siegel, Lee-Aletric BCH Codes and
(a) Define r, and r2 such that their Application to Constrained and Partial-Response Channels,

{ k-~rl~~r•,preprint.Jk - d =r, - q + r2,prrit

q= = J, (3)
r2 = (k - d) mod q. 127



The APPLICATION of g--ary CODES for the CORRECTION and H for N = 7 (q=7, r=l) constructed according to the
of SINGLE PEAK-SHIFTS. DELETIONS and INSERTIONS 7

of ZEROS described procedure are given below.

120 120120
A.V. Kuznetsov, A.J. Han Vinck H32 12 120121, H10 1234560=7 1 2 4 0 4 2 1'

'A.V.Kuznetsov, IPPI Ermolovoy 19, Moscow.101447 Russia. 0 0 0 1 2 0 2 1 0

2 AJ. Han Vinck, IEM, Ellernstr. 29, 4300 Essen, Germany. Proposition 1. The linear q-ary code defined by the parity check
matrix H as given in (4)-(5), has length N = qr, and K >

Abstract. We construct q-ary block codes that allow correction N-(r+l) information symbols. The code corrects peak-shifts
of specific types of double errors. These codes can be used as (1)-(-3) of size t, t < (k-d)/2 and is transparent.
codes for correction of peak--shifts, deletions and insertions of
zeros in (d,k)-sequences applied in magnetic recording. For B. PEAK-SHIFTS DELETIONS and INSERTIONS of ZEROS
single peak-shifts over t < (k-d)/2 positions left or right, the
codes have dimension N=qr, K=qr-(r+l), q=k-d+l. An The proposed method can be used for the correction of other
adidtlonal conditio• on the structure o. the code gives types of errors. In this section we present codes that can correct
transparent block codes which are used to control the maximum in the (d,k)-sequence a single distortion of the following type:
binary length of the code words. Encoding and decoding are
done by simple algorithms without using look-up tables, a) apeak--shift or (k-d)/2 or less positions;
enumeration or denumeration procedures and therefore the code b) a deletion or an insertion of (k-d)/2 or less zeros
length may be large. The rate of the overall encoding approaches between adjacent one's.(21og2(k--d+1))/(k+d+2) for large codie word lengths.

2 The list of possible types of error vectors (1)-(3) is extended

A. CORRECTION of SINGLE PEAK-SHIFTS with the following

For the transmission through (d,k)--constrained channels, q-ary ej = t for some 1 < j S N, ei = 0 for 1 < iij S N. (6)
code words (where q=k-d+1) are converted to binary sequences
satisfying the (d,k)--constraint by replacing q-ary components In fact, errors of type (2) are particular cases of (6), and thus
by binary strings of i, d<i<k, consecutive zeros followed by a later we consider only three types (1),(3) and (6).
single one. If at most a single peak-shift of value t occurs, then
the output code word of the encoder x E C and the input word g Let N = qr, where q = k-d+1 > 3 is a prime, r > 2 is an
of the decoder are related by the equation z = x + e, where + is arbitrary integer, and let -y be a primitive element of GF(qr)
the componentwise addition of integers, and e =(e 1,e2,. ..,eN) is such that the element Vq-3(1-,y) is not an integer in GF(qr). For

an error vector with integer components el, that belongs to one values of q and r such that qr < 128, Tables from [2, Chapter
10] can be used to select a primitive element y1, that satisfies this

of the following three classes: condition. For the correction of errors (1)-(3) and (6) we use a

I) e,=0 for I < i < N (no errors); (1) q-ary linear code C defined by the parity check matrix

2) e 1=0 for 1 < i < N-1 and eN f 0; (2) 1 1 1 1 ... 1 1 1 1 ... 1

3) ej=t, ej+I = -t for some I<jSN-1, ei=0 for iej,j+l. (3) 0 21 72 4 3 ... q-2 q-1 0q 1 .q+l ... (N-

We have related the problem of peak-shift correction to the with elements hi,1, h2 j, • GF(q) and h3,J E GF(qr). The code
construction of block codes over the ring of integers modulo q dimensions are N = qr, K= qr--(r+2). The code defined by this
correcting double errors of the type (3) and a single error in the parity check matrix is transparent. This follows from the
last component of the code word (2). definitions and the fact, that the summation of all elements in

GF(qr) gives 0 for any r01. As an example for q=3 and r=2 the
Let N = qr, where q = k-d+1 > 3 is a prime, and r > 1 is an parity check matrix is shown below (7 =(1,0)Tr, and GF(3 2) is
arbitrary integer. For peak-shift correction we use a q-ary represented as in Tables of [21),
linear code C of length N defined by the parity check matrix H
= J(hij with two rows of following elements hl,. E GF(q) = I I I 1 I I1 I 1
{0,1,...,q-I} and h E GF(qr): 2 2 2 0 1 2 0 1 2

2 = 0 1 2 2 0 2 1 1 0,

hl,j = j mod q, I < j • N; (4)

h2 ,j+1 = h2 ,j + wj, 1 <_ i N-1, (5) Error correction uses the syndrome S = (SI,$ 2 ,$3)Tr = H.zTr.

where wl,w2,...,wN_1 are distinct nonzero transposed r-tuples Proposition 2. The linear q-ary code defined by the parity check
matrix H as given in (7), is transparent, has length N = qr, and

with components from GF(q), h2 ,1 is the transposed r-tuple T K = N-(r+2) information symbols. The code corrects

(1,0_,), and + in (5) represents componentwise modulo q peak--shifts of size t (1)-(3) and t insertions and deletions of
addition of r-tuples. zeros (6) for t < (k-)/2.

Transparency. As was pointed in [1], for the maximum length REFERENCES.
control the code C must be transparent, that is, the all-ones I1] A. Kuznetsov and A.J. Han Vinck, "Single Peak-Shift
word I =(1,1,..,I) of length N must belong to the code C. This Correction in (d,k)-sequences," ISIT 1991, Budapest, Hungary,
conditon can be satisfied in several ways. For example, for any 1991, pp. 256.
prime q ? 3 and r > 1 (except the case q=3 and r=l) , as an (2] R. Lidi, H. Niederreiter, "Introduction to finite fields and
element wi we may use the ordinary q-ary representation of its their applications," Cambridge University Press, 1986.

index i = 1,2,...,qr-I considered as an integer.

Examples. The parity check matrices H3 for N = 9 (q=3, r=2)
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A CONSTRUCTION OF CODES WITH SPECIAL PROPERTIES
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In this talk we present a new construction of codes Theorem
with zero or constrained power of signal at zero fre-
quency, of codes that detect svnchronization failures, (i) [5]. Let k > 3. The construction (1) defines the dc-
and of a family of sequences with low periodic correla- constrained code A with the parameters [k, q, M -
tion. The first problem has been recently given a consid- q', d > ((k - 1)/k)(q - 2rV/j) - 2r] and S(A) <
erable attention (see [1]) while the two latter problems srp 3 2 (1 + log p).
have been studied since long ago [2],[3].LavebeenstuAkieMd dnoe aon k-aryg o de of1 . l(ii) [5]. Let q be an odd prime and k > 3. The codeLet A[k, n, M, ad] denote a k-ary code of length n,

with M words and Itamming distance d. We assumie A defined by (1) contains a coiniIia-free subcode
that the alphabet letters are denoted by the kth degree Al[k, q, Al - q,- ,d > ((kA- _I)/A)(q - 2 r-Vf) - 2r]

roots of unity. with p(A) > ((k - 1)/k)(q - 4ry¼ej(1 + log q)).

The running digital sum of a code A is, by definition, (iii) For any two cyclically distinct vectors dti) and ah)

S(A) := it E A -max S(d). defined by (1),

Following [4], let us call a family {A,,} of codes of grow- <()A(T) < (2r,- 1)/I.
ing length n de-constrained if

S(A,) < c(n), The proof utilizes estimates of incomplete character

where c(n) = o(n) is a slowly growing function in n. sums similar to the Vinogradov-Polya Inequality [6].

The capatcity of a code to detect synchronization er-
rors is determined by tie c(-(, scparation [2]. For k-ary References
vectors d = (a ,a1 , .... ,a,-,) and b= (b,, b1 ......
let us introduce an n-vector [1] R. Karabed and P.Siegel, Matched sI)ectral-null

T L(dE) = (ai,ai+l,. < i < codes for partial-respo||se channels, IEEE Trans.
Inform. Theory, IT-37 (1991), $18 855.The code separation is dlefinedl byp(A) := sp, b, e A -s 1 i < n- 1 -- (T1 (,). [2] V. I. Levenshtein, Bounds ir codes that provide
error correction ali(l synchronizationi, Probhmy

Codes with p(A) > 0 are called comyna-fret. Pe.redach. Inform.,5,2 (1969), 3- 13, and Probl. In-
Finally, the periodic corrchiation of two complex vec- form. Trans. 5, 1969.

tors d, b is defined by: [3] D. Sarwate and M. Pursley. Cross-correlation prop-
n-1 erties of pseudorandom and related sequences.

Od E(r) := (terbg, 0 < r < it - 1 Proc. IEEE, 68, 5 (1980), 59.1 618.
t=0

Consider the following code construction [4-5]. Let [4] A. Barg and S. Litsyn, DC-constrained codes from
q = pm, where p is an odd prime, and let, k(-) be a Iladamard matrices, IEEE Tran .s. Inforin. Tltfory,

multiplicative character of the field Fq of order k'(q - 1). IT-37,3,Pt.2 (1991), 801 807.
Consider the set P of meoni polynomials f(i), 1 < f < [5] A. Barg, Incomplete sinus, dc-coistrained codes,
r, that satisfy the following restriction: in the expansion and codes that maintain synchronization, Designs,
into irreducibles f = g, g' all ci _ k - 1. Consider a Codes, and Cryptography, to appear.
code A with its vectors defined by

-fn = x(f(i3q)), I < i < q - 1 f E P (1) [6] 1. M. Vinogradov, Elcru nis of Ninbe r Theory. 9th
ed., Moscow. 1981, in Russian.

where (f0 ..... 3q-i) is some ordering of the field ele-
ments.
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Appendix A

In emission tomography, useful for studying brain function, a source So as not to interrupt the main ideas this paragraph serves to
of radioactivity is ingested by a person, say as sugar, and a Poisson explain to the uninitiated reader what A(A) is and why it is log concave.
number, n(b), of radioactive emissions arises in each box (pixel), b, Observe that n*(d) are independent Poisson variables since n(b)
of the brain depending on the brain activity there, and A(b) = En(b) are independent and Poisson and each transition from each b to some
is sought. Each emission (not directly observable) makes an indepen- d is done independently. Thus if n(b,d) is the number of emissions
dent Markovian transition to some detector unit, d, with probability in b that become counts in d then by the thinning property of the
p(b,d), Edp(b,d) = 1, where p(b,d) is known from the geometry and Poisson law, n(b,d) are all independent Poisson for different b's and
performance of the detectors. We measure n*(d), the total number of for different d's. But n'(d) = E6 n(b, d) and so n*(d) are also Poisson
counts in each d and wish to estimate A(b) to get an image of the brain and independent.
activity, say during counting, speaking, or other function. Thus A(A) = fId e- '(d)A\(d)n*(d)f/n*(d)! where A'(d) = En'(d)

For each A there is a likelihood (see Appendix A), A(X), to observe Er~bn(b,d) = ZbA(b)p(b,d). We seek an MLE which maximizes
n" and one popular approach to reconstructing or estimating A is to A(X). It is easy to see from this formula that the Hessian of log A(A)
seek a maximum likelihood estimator (MLE). Surprisingly enough, is negative definite and so A is log concave. For more details see (4].
ideas of information theory have provided useful insight into the theo-
retical understanding of MLE even though entropy doesn't appear to
be directly involved.

Noone knows how to produce an MLE directly but the so-called
EM algorithm is used beginning with an initial AP to produce ever
more likely A', A2 ... estimates.

The only rigorous proof [1] of convergence of A' to a limit maximiz-
ing A(A) is heavily information theoretic. Unfortunately this limiting
MLE was seen [2] not to be a robust estimate - due to the fact that
n(b) is small and hence statistically noisy - and indeed was totally
useless as a practical image. If MLE were not unique then the vai-
ious ML estimators could be averaged, and since A(A) is seen to be
log concave (see Appendix A), an estimate could be obtained which
is both smooth as well as maximally likely. On empirical grounds
it was conjectured [2] in 1988 that MLE was, under general condi-
tions, unique. Very recently, again using ideas of information theory,
Charles L. Byrne, succeeded [3] to formulate a general and natural hy-
pothesi6 on p(b, d) under which the conjecture is true. This dashes all
hope that smooth MLE's exist in practical emission tomography. The
present approaches involve either stopping the iteration early, smooth-
ing at each step or at the end, or maximizing posterior likelihood with
a Gibbs prior.

I hope information theory will continue to shed light on emission
tomography.
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ABSTRACT estimation problem into a particular complete data - incomplete

data setting, and applying a version of the "data processing the-
We give a class of iterative algorithms to monotonically approx- orem" for Fisher matrices, the Fisher matrix Fx for the com-
imate submatrices of the CR matrix bound on the covariance of plete data set can frequently he used as a splitting matrix. This
any estimator of a vector parameter J. A natural implementation complete-incomplete data setting is similar to that which un-
of the iterative algorithm employs a "complete data - incomplete derlies the classical formulation of the EM algorithm. The EM
data" formulation similar to that underlying the EM parameter algorithm generates a sequence of estimates { k }k for J which
estimation algorithm. Our results make it feasible to compute successively increase the likelihood function and converge to the
CR-type bounds for previously intractible problems involving a maximum likelihood estimator. In a similar manner, our algo-
large number of "nuisance parameters," such as arise in image rithm generates a sequence of tighter and tighter lower bounds
reconstruction, on estimator covariance which converge to the actual CR matrix

bound. The iterative algorithm allows one to compute the CR
bound for estimation problems that would have been intractible

I. Summary by exact methods due to the large dimension of Fy.

We conclude with an implementation of the recursive algo-
rithm for bounding the minimum achievable estimator error co-The Cramer-Rao (CR) bound on estimator covariance is an im- variance for problems arising in emission computed tomography

portant tool for predicting fundamental limits on best achievable (ECT). For the case where the complete data is selected as the
parameter estimation performance [5], predicting the impact of set of image pixel emission counts in each of d "detector tubes",
side information and constraints on estimation performance [3], which is the standard choice of complete data for the EM image
and obtaining optimal experimental designs [1]. For a vector pa- reconstruction algorithm, Fx is diagonal. Furthermore, due to
rameter -0 E 0 C R" the upper left p x p matrix of the inverse of the sparseness of the tomographic system response matrix the
the n x n Fisher information matrix provides the CR lower bound computation of each column of the CR bound matrix recursion
on the minimum achievable covariance of any unbiased estimator only requires O(n) memory storage as compared to O(n2 ) for the
of 09 ,..., Op, p _< n. Equivalently, the first p rows of Fj7' provide general algorithm. We show that in general the rate of conver-
the CR bound. The method of sequential partitioning [41 for gence depends on the image intensity and the tomographic sys-
computing the upper left p x p submatrix of F17' and Cholesky tem response matrix. We have applied the iterative algorithm to
based Gaussian elimination techniques [2] for computing the p compute the CR bound for practical estimation tasks including:
first rows of Fj7l are efficient direct methods for obtaining the reconstruction of a small region-of-interest (ROI), estimation of
CR bound but require O(n') floating point operations and O(n 2) total uptake in a ROI, estimation of dose distribution hetero-
memory storage. Unfortunately, in many practical cases of inter- geneity in a ROI, impact of anatomical side information on ROI
est, e.g. when there are a large number of nuisance parameters, reconstruction.
high computation and memory requirements make direct imple-
mentation of the CR bound impractical. For example, in the REFERENCES
case of image reconstruction for a 256 x 256 pixelated image Fy
is 256 2 x 2562 so that direct computation of the CR bound on
estimation errors in a small region of the image requires on the [11 V. Federov, Theory of Optimal Ezperiments, Wiley, New
order of 2566 or 10'9 floating point operations and on the order York, 1972.
of 4GByte of memory storage!

In this paper we give a class of iterative algorithms for comput- [2] G. H. Golub and C. F. Van Loan, Matriz Computations (.ud
Edition), The Johns Hopkins University Press, Baltimore,ing columns of the CR bound which requires only O(n2 ) floating 1989.

point operations per column of FrF'. These algorithms fall into
the class of "splitting matrix iterations" [21. The inverse of this [31 J. Gorman and A. 0. Hero, "Lower bounds for parametric es-
splitting matrix should be sparse and simply determined. The timation with constraints," IEEE Trans. on Inform. Theory,
splitting matrix is chosen based on purely algebraic or purely sta- vol. IT-36, pp. 1285-1301, Nov. 1990.
tistical considerations to ensure that a valid lower bound results
at each iteration of the algorithm. By embedding the parameter [4] A. R. Kuruc, "Lower bounds on multiple-source direction

finding in the presence of direction-dependent antenna-array-
calibration errors," Technical Report 799, M.I.T. Lincoln'This research was supported in part by the National Science Foundation Laboratory, Oct., 1989.

under grant BCS-9024370, the National Cancer Institute under grant R01-
CA-54362-02, and a DOE Alexander Hollaender Postdoctoral Fellowship. [5] C. R. Rao, Linear Statistical Inference and Its Applications,

Wiley, New York, 1973.
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SIMULTANEOUS RECOVERY OF THE OBJECT AND
ABERRATIONS FROM A SEQUENCE OF IMAGES DEGRADED

BY ATMOSPHERIC TURBULENCE
"I "iothy .1 c'uhii

Michigan I " 1chnologica I "nivI r.,iI.y

1) arha /nt oof Akhclrical Elgini e ing
IHoughton. All 19931

(90(i) .1S7-2751 Entail: chulz urtlt u.edu

Sunmmary "ihe est iuat ion probleni I address is then one of es-

Atmnospheric turluleice severelyv limits the effective litnatiilg the desired. information-bearing signal s(x).
resolution of a long-ijtegratiou iuage obtained bh an mi- frori t he t'as!'ed dat a { d.(.r)}- \Vhen the atmo-
compensated, ground-Ilased telescope. Becatuse of this sphicric phase-aherrations {1*bk(1)} are known, the point-
fact, most ground-based telescopes typicallv collect a se spread functions {hk(.rI)} are known and a riulti-framt
quence of short-exposure images. The siniplest and most th(io'olulioi proble tO must be solved. When the at-
widely used model for the intensity of the ./t 1h short ex- moslpheric phase-aberrations are not known, the prol,
postire iniage-intensity is lent is much more ditficult. In this case. the point-

spread finctlions are not known and a toulti-franif blind-
k.(.rx) = h,.(r) * .)(.r). (1) dcoi rolution probhl nh must be solved. This is the prob-

lei I address.
where s(.r ) represent s the light-iit tensity vlist riIut ion of TIFie phase-aberrat ions { I,.(ti ) } can be modeled as a
the object being viewed and hq.(.-) represents tile point- collectior iif determiniistic functions or they can be mod-
spread function due to the telescope's finite apertire the eled as a collection of rardori-processes that fluctuate
turbulent natut t", !!,c Earth's atmosphere. TIlie point- randonilv witl, IV. Itr this talk. I consider the first situa-
spread functionis are con i only Ilrodeled as t ion. Ilowever. when sound statistical models are avail-

able for lie ptase-aberratiori processes they should be
,.t.) = k',.- Fv {.-)(ii ), j'I') } I. (2) used. Ie 'testimation lproblem is stated as one of forming

tihe erin,.itii-lik-lihood (stimates of the information-
where K•k is a constant that depends. among other fac- bearing signal .,() and the phase-aberrations {•p(u)}.
tors, on the duration of the ktll data-collection jiter- froi t the dat a jdk(.r) J.
val, Y denotes the Fourier traisform operator .4(u) Ii the talk. a tmierical techniiq iie based on the
is a known. binary function that describes tlie teh'- exphiect atitt-maxiriza ii 7.t ion (EM) algorithm will be pfre-
scope's aperture, and *P.(() describes the tuibllence- sented for forming solutions numerically. Examples us-
induced phase-aberrations that occur during the Atth ing both simulated data and real. telescope data will
data-collection itterval. also Ib presented do deruonst rate the usefulness of the

In all real sittiations. tile intellSit ies {r1.6-0)} are technique.
not detected perfectly. Instead. they arte corriipted by
sorie type of noise. Examples include read-out noise
for charge-coupled-devices (('('Ds) and photon noise for
photon-counting cameras. For this talk. I Will discuss
tie situation for which the data are corrupted by 1 iphoton
noise. Ini this case. tile data collected in the Atth frame
are denoted as (1k.r1) and. conditioned on tile object in-

tenusity ' (.) and the poilt-spread ftirictior) hi.ir), d(x)
is Poisson-proc-'ss whose itirensit'ty is k ( .r) Fiurt her. for
k $- j. the processes d)(.rx) and d,(.r) are statistically

independent.
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Searching for Circumstellar Disks with
Space Telescope Observations

Donald Geman and Joseph Horowitz
Department of Mathematics and Statistics

University of Massachusetts at Amherst
Amherst, Massachusetts 01003

At present, there are no known examples of planetary The usual approach to image restoration results in a

systems other than our solar system, in which the orbits single "restored image," deemed to capture the original

of the planets all lie nearly in the equatorial plane of the brightness pattern without degrading effects, or at least

sun. It is conjectured that, soon after its birth, the sun to suppress noise and enhance resolution. This approach

was surrounded by a disk composed of dust and gas, out is non-dedicated and nonparametric: except for specific

of which the planets agglomerated, the residual material knowledge of the image formation process, it incorpo-

being blown away by high energy winds along the polar rates only generic assumptions, for example constraints

axis of the sun. In fact, astronomers believe that many on the positivity, smoothness, or entropy of the bright-
young stars are surrounded by extended, essentially pla- ness pattern. Examples of such techniques include those
nar objects composed of dust and gas, called "circumstel- based on pseudo- inverses, maximum entropy, maximum
lar disks," and that these are the environment in which likelihood, and Bayesian inference with "prior" and "pos-
planetary systems develop. Apparently, this brief episode terior" distributions.
of stellar evolution is part of a broader scenario, only In contrast, we formulate the problem of the exis-
loosely understood, thought to begin when a cold, rotat- tence of disks as one of statistical hypothesis testing. The
ing protostellar core condenses inside a large molecular probability distribution of the data is derived by model-
cloud to form a star-disk system. Eventually, the star ing the image formation process using the semiclassical
enters the main sequence (i.e., hydrogen-burning) stage, model of photodetection (which means that quantum ef-
possibly accompanied by a planetary complex and other fects are accounted for only at the detection end of the

disk remnants, system) as well as other important factors such as bias

Aside from our own solar system, the direct opti- correction, quantum efficiency, and read-out noise. Ba-

cal evidence for the existence of circumstellar disks is sically, we wish to test the hypothesis Ho :star alone vs.
sparse. An extended object, thought to be a disk, was H, : star plus something. The test statistic is based on
observed in 1984 around 3 Pictoris. In addition, the "in- the (generalized) likelihood ratio. This is less straight-
faeexesobservedin1984 around Pitorisome Inaddit, theh "- forward than it might appear. For one thing, nearby
frared excess" observed around some stars is thought to "calibration stars" provide only estimates of the PSF,
be starlight absorbed by dust particles in a disk and re- and hence there is a random factor in the mean bright-
radiated at longer wavelengths, resulting in significant nenc ttern is a ra ctr fn the ob-enryat infrared and other frequencies. Finally, there ness pattern which has to be "subtracted" from the ob-
energy served one. In addition, it is necessary to adjust for the
is indirect evidence for large planets derived from per- difference in overall brightness between the calibration
turbations in stellar trajectories and velocities. (Direct and target stars. Finally, it is also necessary to account
imaging of planets is beyond current technology.) for bias correction, variability of detector sensitivity, and

This talk concerns the problem of detecting circum- electrical noise. Results will be reported on at least one
stellar disks based on Hubble Space Telescope (HST) ob- set o ise . R e veral be r s in t Ta urus-
servations. We are currently analyzing images recently set of observations of several young stars in the Taurus-

obtained with the Wide Field Planetary Camera (WF/PC) Auriga star forming complex.
of several nearby, pre-main sequence stars, both single
and binary. Despite the advantages of placing a telescope
outside the earth's atmosphere, the images taken with
the WF/PC are still considerably degraded, mainly due
to the severe blurring resulting from the infamous aber-
ration in the optical system. The point spread function
(PSF) for the WF/PC has significant mass over a radius
on the order of one arc-second, and exposure times are

limited by its instability. In addition, there are several
other factors which limit the amount of information that
is readily accessible (e.g., visually evident), including the
usual limitations imposed by photon-limited data, stabil-
ity problems with the spacecraft (resulting in "trailing"),
local variations in the point spread function, variations

in detector sensitivity and cosmic ray strikes.
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A Model-Based Approach to Magnetic Resonance Image Estimation

Timothy .1. Schaewe Michael I. Miller
IBM - Federal Systems Company Washington University

Owego, NY 13827-1298 St. Louis, MO 63130-4899

Model-based image reconstruction methods such as Under the assumption of additive, white, Gaussian noise in
maximum-likelihood (ML) or maximum a-postcriori (MAP) the MRI measurement data, the maximum likelihood
estimation require a signal model describing tile relationship estimates of the spin density and spin-spin decay image
between the image parameters to be estimated and the parameters are those parameters which minimize the squared
measurement data. Two of the parameters of interest in error between the measurement data and a signal estimate
magnetic resonance imaging (MRI) arc the tissue spin density, computed from the image parameters using the model
A, and spin-spin decay time constant, T2. This paper presents described above. To compute these image parameter
a mathematical model for the signals observed in standard estimates, we have implemented a form of the iterative
two-dimensional MRI experiments and discusses how this expectation maximization (EM) algorithm of Dcmpstcr, Laird,
model is incorporated into a maximum a-posteriori parameter and Rubin [3]. This algorithm has the property of
estimation algorithm to compute image estimates of spin decomposing the 2 x M x N-dimensional least-squares
density and spin-spin decay time. A detailed description of optimization problem stated above into Af x N independent
this work can be found in [I]. 2-dimensional minimizations at each iteration, allowing for

efficient parallel implementation of the algorithm. The
The basic response of a magnetically sensitive population of algorithm also incorporates a Markov random field prior
nuclei to excitation in a magnetic resonance experiment was constraining the roughness of the computed image estimates,
described by Bloch [2] as an exponentially decaying sinusoid similar to the technique employed by Miller and Roysam [4]
whose frequency is proportional to the strength of the static for emission tomography. The MRI parameter estimates
magnetic field to which the nuclei are exposed. In an MRI produced by the algorithm, then, are MAP estimates rather
experiment, magnetic fields which vary with spatial position than ML estimates.
are employed to create a relationship in the observed signal
between the frequency and phase of a sinusoidal signal Magnetic resonance image reconstruction is typically
component and the spatial position from which the signal performed using a 2-dimensional Fourier transform. Under
originated, the assumption that the signal emitted from a single voxel is

simply a non-decaying sinusoid, the Fourier transform is
The parameterized signal model which forms the basis of our exactly the maximum likelihood solution and further
MAP image reconstruction algorithm is based upon three computation is unnecessary. However, the more detailed
assumptions: I) The frequency and phase encoding magnetic signal model stated above provides additional information
fields used for spatial localization vary linearly with spatial about the behavior of the MRI signal that allows for
position. 2) Voxels of dimension D, x D, cm 2 arc small enough improved image estimates. The model used in our MAP
that the spin density and spin spin decay time constant within algorithm exploits the fact that the sine-modulated,
a single voxcl are constant. 3) The loss of signal coherence exponentially decaying sinusoidal signal components oscillate
due to static magnetic field inhomogeneity results in signal in phase with one another, whereas the Gaussian noise is
attenuation which can be represented as an exponential decay modelled as the superposition of non-decaying sinusoids with
with time constant TM . Under these assumptions the signal random amplitudes and uniformly distributed, random
emitted from a single voxel at position (x,y) takes the form phases. The Fourier transform approach models signal and

noise components identically, while the MAP method uses the
sit, r)= sin(ncxDxt) sin(ic•Djr) ,Ae~ . r/i_ ,iT2,V,(y)i +ft),) differences between signal and noise to reduce the sensitivity

ext I[ ryT of image parameter estimates to distortion by noise. For this
reason, the MAP algorithm produces image parameter

The frequencies of oscillation f,(x) = crx and f.(v) = •y are estimates which arc of higher precision (i.e., lower variance)
linear functions of the encoding gradient strengths c, and cy than than those computed using Fourier transform based
and position (xy). The sine-function parameters rA, and techniques.
cD, are equal to the frequency bandwidths across the (,r,v)
dimensions of the voxel. The full two-dimensional MRI signal References
is represented as a superposition of sinc-modulawed, [I] T'. Schaewe. -Maximum likelihood Estimation for Magnetic
exponentially decaying sinusoids of the type above, one from Resonance Imagc Reconstruction.' I). Sc. disscrialion. Washington
each of the M x N voxels which form the image field. University, St. IA)uis, MO, 1991.

[2] F. BIoch, W.W. Ilanwcn, and M.I. Packard, 'Nuclear Induction,' I'hys.
Rev. Vol. 70, 1946.

(3] A.D. D)cmpster, N.M. laird, and D).1. Rubin, "Masimum I ikelihood

from Incomplete Data via the EMI Algorithm." Journal (if the Royal
Statistical Socicty. Vol. B-3Q. 1977.

[4] MI. Miller and B. Roysam, "Baycsian Image Rcconstruction for
Emission Tomography Incorporating Good's Roughness prior on

Massively Parallel Proccssors,' lPrec. Nail. Acad. Sci, ISA Vot. RR,

Apr. 1Q91.

Presented at the 1993 IEFFE International Symposium on Information Theory,
TJ. Schaewe was supported for this work via an NSF Graduale Iclloivhip. MT. Miller
was supporled by the NSF under a Presidential Young Invesfiualor Award #R55251 ,
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MODEL-BASED MULTIRESOLUTION RFSTORATION OF
SPECKLE IMAGES: APPLICATION TO RADAR IMAGING

P. MOULIN

Bell Communications Research
445 South Street

Morristown, NJ 07960

Abstract In (2), ¥ 0.57721 is Euler's constant, and

We consider the problem of restoring images corrupted by speckle {e(x,y) := In u(x~y) - in2 - y} are zero-mean iid additive noise sans-
noise with iid-exponential statistics. This model occurs in a variety of pies with pdf denoted by pe(.). The log-likelihood for S is given by
coherent imaging problems including diffuse-target radar imaging. Our lS np npxy n nSxy
estimation approach is obtained by statistical inference on the wavelet I(S) u np npxy n nSxy
coefficients of the logarithm of the image. Under a large-sample approx-
imation, the inference problem takes a very simple form. Estimates ca The unconstrained ML estimator is simply the preimage and is
be obtained under various noise/resolution tradeoffs, unsatisfactory. In the following we show how wavelets can be used t

achieve regularization of the estimates.

1. Diffuset ~ o, •wTarget Imaging 3, Wavelet Regularization

Maximum-likelihood (MIL) estimation methods have recently been
explored for forming images of diffuse radar targets [1,2]. The diffuse- lo eaottefloigdsrt rhnra aee ersna
target model assumes independent scatterers and models the reflectivityfo nxy)
of the target as an uncorrelated, Gaussian random field. This model has In S(x,y) = • ai s4,jr1•/(x,y) , x~y C U , (3)
been described in the electromagnetics literature and used in the signal j.k,l a A

processing literature, where {Vjl',(x,y)}JktltG A is a two-dimensional wavelet basis for U, j
We denote by c(x,y) the reflectivity of the target in range and and (k,l) are the scale and location parameters in the discrete index set

cross-range coordinates and we define A, respectively, and [aJk, } are the wavelet coefficients for lnS(x,y).
S(x,y) dx dy :=E [ [ c(x,y) dx dyl[2 ]. S(x,y) is the scattering fiunc- Similarly, we introduce the wavelet coefficients [bjtk } and [e~itt } for the
tion of the target and is the desired image of the target. The received data scaled log-preimage and for the additive noise e in (2), respectively.
are a linear transform of use reflectivity. From (2), we obtain bp.t1 = a~t + ejt , j, k, ! e A, in which 1ejla is

It is known that ML estimation of a whole function such as S(x,y) interpreted as an additive noise corrupting the wavelet coefficients of
from finite data is an ill-posed problem and requires regularization. A inS(x,y). The estimation problem consists in estimating {ajla } given the

possible solution consists in representing S(x,y) in terms of a small trnfmedaasuicntttsis) b .Apoil ch eisr-
number of basis functions and estimating their coefficients [2]. In this posed in [3] and outlined below.
paper, we present a regnlarization method based on a wavelet representa- Under a simple technical condition on the wavelet transform used,
tion for InS(x,y). This method offers the ability to capture significant a good large-sample approximation consists in assuming that [ejt } are
components of lnS(x,y) at different resolution levels. This capability for iid Gaussian [3]. Then the log-likelihood for the wavelet coefficients of
multiresolution estimation allows for increased flexibility over single- the scattering function can be maximized over each wavelet coefficient
resolution regularization techniques such as those in [2]. There are two independently. If lnS(x,y) is smooth enough, the wavelet coefficients
essential motivations for parameterizing lnS(x,y) instead of S(x,y) [a jrl decay rapidly at fine scales [4]. This behavior is to be contrasted
itself. The first is the need to preserve positivity of scattering function with that of the wavelet coefficients for the noise {egjt }, which have
estimates. The second is that in the log domain, the estimation problem scale-independent variance. This property can be used to discriminate
can be set up as the problem of restoring an image corrupted by additive between signal and noise components of the observations. The
non-Gaussian noise. By application of statistical hypothesis-testing prim- significance of each wavelet coefficient can be tested by application of a
ciples a solution to this estimation problem can be derived under various likelihood ratio test (LRT). By application of this classical regression
noise/resolution tradeoffs, technique, only significant wavelet components of lnS(x~y), regardless

of their scale, are retained in the regularized wavelet representation.
2, Statistical Model Various noise/resolution tradeoffs can be obtained by selecting the

Denote by N the number of data, U a discretization of the (x,y) significance level of the LRT appropriately. The complexity of the esti-
domain into a set of N points, L the linear transform (assumed to be in- mation algorithm is linear in the number of pixels of the image.
vertible) that maps the discretized reflectivity onto the data r, and define
p(x,y) := (L-" r)(x,y) 12. In the radar community, p(x,y) is referred References
to as the preimage and is often used as an estimator for S(x,y). The [1] DL. Snyder, J.A. O'Sullivan. and Mli. Miller. "The Use of Maximurntlikelihcxxl
preimage is a sufficient statistic for the ML estimation problem and is Estimation for Forming Images of Diffuse Radar-Targets from Delay-Doppler

analogous to the classical periodogram in spectrum estimation [2]. It un- Data," IEEE Trans. on Info. Theory, Vol. 35, No. 3, pp. 536-548. 1989.
fortunately exhibits poor statistical properties that follow directly from 11 P oln .A 'ulvnadD .Sye.AMto fSee o uuoo

the tatsticl mdelfor he efletivtylution Spectrum Estimation and Radar imaging", IEEE Trans. on lnfo. Theory,

p(x,y) = S(x,y) u(x,y) , x,y e U , (I) Special Issue on Wavelet Transforms and Multiw.esolution Analysis, Vol. 38. NO.

where {u(x,y) , x,y a U} are iid exponential random variables with 2, pp, 801.813, 1992.
unit mean. In the image processing terminology, u(x,y) is a speckle [31 P. Monlin. "A Wavelet Regularization Method for Diffuse.Target Radar imaging

noise. Model (I) fits a broad class of coherent imaging problems, as well and Speckle-Noise Reduction." to appear in)Y. of Math. Imaging am/tVisom• Spe.
as power-spectrum estimation problems. We use a logarithmic transform cial Issue on Wavelets, Jan. 1993.
to map the multiplicative model (I) into an additive one. [4] S. G. Mallat. "Multiresotution Approximations and Wavelet Oslhonornial Bae of

In p(x~y) - In2 -y In S(x,y) + e(x,y) , x,y a U . (2) L
2fR)." Tran' Am Math 5oc.Vol 315. No I.pp 69"87"1959



A Markov Random Field Product Model for Complex-Valued Radar Imagery

John D. Gorman and Brian J. Thelen

Environmental Research Institute of Michigan, Box 134001, Ann Arbor, MI 48113-4001

1 Summary That T is Markov follows by noting that 0,\ is a continuous
The zero-mean delta-correlated complex circular Gaussian one-to-one transformation from R+ to R and that X is a
random field model is commonly used as a spatial model MRF.
for the joint statistics of the complex amplitudes of the pix- Parameters of the product model to be estimated are the
els in a radar or coherent optical image [1, 3 and references mean and covariance of the Gaussian MRF, p and E, and
therein]. Two deficiencies in the model are the lack of the the Box-Cox parameter A. We will denote these parameters
ability to model heavy-tailed distributions and spatial corre- by O.
lation. Tails of the empirical distributions of real imagery are
often heavier than those predicted by the Gaussian model. a ete r Etm tio Approach
Real imagery can also exhibit spatial correlation, an effect Let for. bthinoation diver gen beteen
that is not captured by the classical delta-correlated Gaus- fs and fsj_. Application of this criterion for parameter es-

sian model. timation in the MRF product model is based upon the fol-
We introduce a generalization of the Gaussian speckle lowing heuristic. One can view the speckle process 5 as amodel called the Markov randomlfield (MRF) product model. "noise" process and fy(_11y;_0) as an estimate of the pdf ofThismodel slled fored as the m pixel-by-pix product bodetwn this noise process. Minimization of the divergence then is inT his m odel is form ed as the pixel-by-pixel product betw een so e en e q u v l tto c o i g th p a m t r f r w i ha nonnegative spatial random process T, called the texture some sense equivalent to choosing the parameter 0 for which

apronessand a spatially-whdte process S called the spectue the residual speckle term, as predicted by fsjy, is "white",process, and a spatially-w hite process _S , called the speckle e g ,i e t m t h o rf r o ri d s e k e m d l Eprocess. An essential property of this MRF product model e.g., is a best match our for our lid speckle model, fs_.
Maximization of the following criterion:

is that it admits the heavy tails and spatial correlation seen
in real imagery.

We propose a particular MRF product model in which log f_(,;_)- D tsssjysIl;Os)
the texture process T is represented by a transformed Gaus- results in an alternative to the maximum-likelihood estima-
sian MRF (TGMRF) [4].. The TGMRF is a nonnegative tor (MLE) that is computationally simpler to evaluate than
MRF generated through a one-parameter nonlinear trans-formgio ofa Gussin MF. e ten dscus pramter the MLE. This alternate criterion results in an estimator9
formation of a Gaussian MRF. We then discuss parameter that simultaneously maximizes the likelihood function and
estimation in the MRF product model using an alternative minimizes the information divergence between fs and f:y.
criterion based upon Csiszar's information divergence. We investigate properties of this estimator both theoretically

The MIRF Product Model and via simulation.
Let K denote a set of pixel indices. We will denote

the radar image by Y, where Y = {Yk; k E K} is the References
lexicographically-ordered vector of complex pixel amplitudes [1] Dainty, J. C., (editor) Laser Speckle and Related Phe-
in the image. The model we propose is: Y = SkTk, k E K, nomena, Topics in Applied Physics, Vol. 9, Springer-
where S is a spatially-white, zero-mean compiex circular Verlag, New York, 1975.
gaussian process with identity covariance and T is con- [21 Hernandez, F. and Johnson, R., "The large-sample be-
structed as follows, havior of tranformations to normality," J. of American

Define the power-law transformation: Stat. Ass., vol. 75, 855-861, 198
[3] Snyder, D. L., O'Sullivan, J. A., and Miller, M. I., "The

Sf (y' - 1)/A y> O, X >0 Use of Maximum Likelihood Estimation for Forming Im-
, log(y) 0 > 0, A = 0 (I) ages of Diffuse Radar Targets from Delay-Doppler Data,"t IEEE Trans. Info. Theory, vol. 35, no. 3. pp 536-548,

Equation (1) is typically referred to as the Box-Cox transfor- May, 1989.
mation (2]. The term I/A is included to ensure the continuity [4] Thelen B. J., and Gorman, J. D., "A nonnegative MRFfor modeling nonnegative imagery," Proc. Conf. Info.
in A of vN(y) at A 0. Sci. and Sys., Princeton, NJ, March 18-20, 1992.

Suppose that there exists a Gaussian MRF X -,X(, E)
such that

4 = <() - A(p,u E), (2)

where the transform V\ is applied on a pixel-by-pixel basis.
This latter relationship then specifies a spatial model for T
that is a non-Gaussian Markov random field (but includes
Gaussian model as a special case when A = 1):

T t, v- I(N). (3)
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THE NORMALIZED SECOND MOMENT OF THE BINARY LATTICE
DETERMINED BY A CONVOLUTIONAL CODE

A. R. Calderbank
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Murray Hill, NJ 07974

The output of a finite state machine is a collection of codewords apparent in the work of Conway and Sloane. The extension of this
that can be searched efficiently to find the optimum codeword with re- correspondence to sequence based methods of quantization and shap-
spect to any nonnegative measure that can be calculated on a symbol ing has been described by Forney.
by symbol basis. One recent application of this principle is the trellis We calculate the per-dimension mean squared error p(S) of the
coded quantization work of Marcellin and Fischer where the measure 2-state convolutional code C with generator matrix [1,1 + D], for the
is mean squared error (m.s.e.). A second application, closely related symmetric binary source S = {0, 1}, and for the uniform source S =
to the latter, is the trellis shaping work of Forney. Trellis shaping [0. 1]. When S = {0, 1}, the quantity p(S) is the second moment
is a sequence based technique for decreasing the average transmitted of the coset weight distribution, which gives the expected Hamming
signal power in a communications system, and in this application, the distance of a random binary sequence from the code. When S = [0, 11,
measure is the power of an individual signal point. Both applications the quantity p(S) is the second moment of the Voronoi region of the
involve representing a source sequence z as the sum of a codeword c modulo 2 binary lattice determined by C. The key observation is that
and an error sequence e = (ei). In quantization, the objective is the a convolutional code with 2' states gives 2' approximations to a given
codeword c, and the expected value E(e?) is the mean squared error source sequence, and these approximations do not differ very much. It
(per dimension). In trellis shaping the objective is the error sequence e. is possible to calculate the steady state distribution for the differences
The signal constellation will be the error sequences e that result from a in these path metrics, and hence the second moment. In this paper
suitably chosen discrete set ot source sequences x. Here the expected we shall only give details for the convolutional code [1, 1 + D], but the
value E(e?) will determine the extent to which average transmitted method applies to arbitrary codes.
signal power is reduced. This correspondence between vector quan- We also define the covering radius of a convolutional code, and
tization and the design of finite dimensional signal constellations is calculate this quantity for the code [1,1 + D].
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New Constructions of k/(k + 1) Rate-Variable Punctured Convolutional Codes

Pisit CharnKeitKong t, Kazuhiko YAMAGUCHI t, Hideki IMAI ttt
tFaculty of Engineering, $Department of Computer Science and Information tttCenter of Function-Oriented Electronics.

Yokohama National University. Mathematics, The University of Electro-Communications. Institute of Industrial Science, University of Tokyo.

t l n our previous study, it was shown that good high-rate punctured systems give moderate BER performance at low-rate. At high-rate,
convolutional codes(PCCs) in the class ---I (- 1 -PCC) can be systematically these new systems give significantly better BER performance than
searched. Leting Pw- = {Po0PI .- "..P-I } be a set of n different generators for that of the best known rate-variable systems.
a =-f-PCC, we construct a rate-variable PCC by using only the generators in
P=. For constraint lengths 7. 8, and 9, we have found new good k/(k + 1) TABLE L:RATE-VARIAVLE PCC SYSTEMS
rate-variable PCC systems that provide good BER performance for k =1,2,. -. ,7. Constraint Length p = 7

Rate code dI,., b-g,,,b.e, ,bd,,+, 4

Introduction 1/2 (Pf, P6)° 10 10,0,73,0.687
(ph. Pt)L 10 2,23,62,165,404

Punctured Convolutional Code(PCC)[3] is a class of high-rate 2/3 (PI.1 P6 ). s 7 45,206.891.4076,18052(Pu,.1),P• 8 395,o,669.0,13528
convolutional codes obtained by periodically puncturing the outputs 3/4 (Ph. Pi).P.Ps 6 8 09,0_,63839,245.0 ,152" 15

of a low-rate encoder. The Viterbi decoder of a PCC is much more (. PNI),•AP.4  
6 67,651.4008,24638,153642

than tht of the usual high-rate codes. However, because of 4/15 (PI, P6), P1, Ps, P 6 1s99.0,130944.0.8065820
simple h an (o.P 1).P2. P2, P., 5 93,873,7017,59170.482219
the lack of mathematical structures good high-rate PCCs could not 5/6 (P6 ,P 2),Pd.P,P1 AP" 5 329,3834.38819.385064,3716879
be efficiently searched by a systematical algorithm. This problem (P, Ph)P, 4 fP1iP 5 366,4287.4436.423337,4009089

6/7 (ns. P6). P, 1 PA, ,s P. 5 723.10310,123861,1459133.16w_,6S0
was solved by introduction of fI[l]. The punctured convolutional (Ps, P.),Pt.P2,P1,Pý,P 4 17.1008,12651,152171.1780906
encoder for a E1 code, Ef-PCC, can be obtained by a systematic 7/8 (Ph, P.),it. P6 P21,P ft. P3 4 39,1863,31388,444036,5963198
search algorithm. (Ps. P),a P.), Pu, P0, P1 4 77.2122,32024.455479.6099937

Constraint Length " = 8The conventional method to construct a rate-variable PCCs is to Rate code dir, +

search good PCCs for different coding rates restricting n generators 1/2 (Pj,P 4 )0  
12 67.0,472,0,3363

to those for an optimal rate 1/n code. In this paper, rather than (po,P1 )L 11 3,26,53,150,379

using the generators of a low-rate code, we construct rate-variable 2/3 (P, PS). PT 8 1•09,3496,0. 2693
- ihp',Pt), 8• 109,0,'2966,0,56458

PCC by using different generators for a good high-rate Bf-PCC. 3/4 (Ph, P4), P2, Ps 6 27,610,3196,17838,110761
(Po. Ps), P4, P. 6 52,490,2902,17935,109020

Background 4/5 (P., PS). Ps. P5 , P? 6 749,0,61866,0,3838837
Bck ud(P. Ps)., P, P, 5� 12,196,2413,20874,169543

5/6 (FPp. 4): P21. Pe. Ps. Fm 6 2750.0,312103,0,28775304
Yamada et al,[2] proposed a maximum likelihood decoding tech- (Pu. P), Ps.i P. Pý 5 152.1688,183.18251981778286(617 RA),T , •, P, 5 9758,10,1437137,01836831782S6

nique, called the YHM algorithm. This is a breakthrough over the 2/7 (P,),Po, Pi.Ps,1s ,s. 6 9758;0.1437137,0.183683846
Po , P', Ph: P, 4 4.462.6229,73501,87979Sinherent difficulties in decoding of any high-rate convolutional code. 7/8 (P, PR).,P4 , PtPsnP.,P-1 5 931,14309.200512,2749601.:15974195

The idea of YHM algorithm is to divide the trellis diagram of the (P.. PI),Pt.P3,P3::.Pi: Po: 4 13,1572,23200,317333,4268249

syndrome-fornier of a rate k/(k + 1) code into k + 1 stages such that Constraint Length v = 9
Rate code d

1
,.,, b~,..b,bls+l,-" ,b,,,,,+4

there are only two branches or less entering each state. Rate 12 20.. 170,0.1116

- is defined in [11 as a class of (k + 1, k. v) convolutional codes (Ph..p1 )H 12 14,.2674,257,496
having il, < 2. where 77, is the number of polynomials Hi(D) having 2/3 (Ps Ps, P' 8 54,0.1720,0,30595( P, P ),P•7 3,70.207,836,4411
deg(HJ(D)j = v in the parity-check H(D). S codes can be efficiently (Ph ) P o, 3' 2.027.8446 1

3/4 (ns s), Ph, 1s 8 2118.0,78M46,0,2915853
decoded by YHM algorithm. In general, however, the trellis of a S (Ps. P, ). P', PI' 6 38,270,1640,10554.63601

code has time-varying branch structure. E1 is a particular class of 4/5 (iP. Phi).Pj P b. P, 6 291,0,25235,0,16118071
(Po.Pi). P i.,P1P 4 6.3,298,2604.19132

- codes that can be decoded by the fixed branch structure trellis. 5/6 (Po. -P).Ph.PJPu.P 5  
6 2180.0,226105.0,20626620

Since E is defined by the parity-check matrix, it can be efficiently (Pb.P1),PiPo, Po6. 5 201.2104,22183,217194.2041494
constructed by a systematic algorithm. Several good high-rate E and 6/7 (P'. P,).Po. Pi.Pi.P 5 94.4027.36019.511214.5033081

(Po,P,),Po ,PsPI. 5 267,5105,56285,656627.7433871
fj codes of df... = 4,5,...,8 have been reported in [1). 7/8 ('2.Pa).,P.P3.PPP2 P,1P. 5 662.10320.150932,2033984,2fn12.597

In [1]. it is pointed out that the trellis in YHM algorithm of (P.,P,), PýA.P1.P,,P.,P 4 3,690,10528,150237.2007749
a (k + l, k. v) -E code is exactly the same as the trellis in Viterbi 6:8es codeselected from P= = {Ps.P,,P2,P 3 .P4,Pspe)={337.227.221.207.215.327.255).

algorithm for a (k+ 1, k, v) PCC. Hence, the punctured convolutional {461,563.537.575.673,67..613}
encoder for Ej can be derived from the trellis of a -- code. The PCCs 3:Best code selected from Pz = {Ph.PPs.PP={(1147.1317.1037.1725 I

L:Best code selected from code generator sets {Pb,P 1 ,P 2 ,P3 }={337.251,237,235), (765,
obtained by this method is called ',I-PCC. 473,463.457),found in [4].

H:Best code selected from code generator set (P.Pj )={1167,1545} found i"[2)
Code Search Results *:E/-PCC.

References
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d= min (RouRoG - 2E`- Riu(j)RIG(nj)
A new formula is derived to compute the codeword weights Wx)00

of rate 1/n convolutional codes. This formula allows us to derive degu(X)I+O(

a new asymptotic lower bound on the row distance that surpris- +4 j.k R2 (j, k)R2G(nk, nj) -... ) (5)
ingly reaches the upper bound on free distance in the limit of (5) gives a general formula for computing the row distance
large memory m. This formula also leads to a new approach for of order I of a rate 1/n convolutional code. This formula can be
constructing finite constraint length convolutional codes. simplified when m goes to infinity. Specifically, let us construct

Summary our generator polynomial by randomly selecting its coefficients
from F, that is: i,=1-

Costello [11 and Zigangirov and Massey [21 have derived lower from F t i,:

and upper bounds on the free distance of fixed and time-varying - (6)

convolutional codes by deriving bounds on ensemble averages. where g, E F {0, 11 and Pr(gi = 0) = Pr(g, = 1) for
In this paper, we investigate a new approach to deriving an 2

asymptotic lower bound on the row distance of order 1 of rate any integer i > 0. For these randomly constructed codes, the

1/n convolutional codes, i.e., the lowest weight of codewords following theorem can be derived:

generated by information sequences of length less than or equal Theorem 2. Let G(X) of degree n(m + 1) - 1 be the corn-
to I + 1. Although this bound is valid only asymptotically, it posite generator polynomial of a randomly constructed rate 1/n
suggests that a similar bound might also be found for finite con- convolutional code with memory order m. Then, for any finite
straint lengths, and it leads to a new approach for constructing order 1, with probability 1,
finite constraint length convolutional codes. lim ;( + 1 (7)

Suppose (x, y) are two elements from the binary field F .. . m+) 2
{10,I, e,) denotes addition in the binary field, and + denotes Thus, by taking a random generator G(X), with probabil-
addition in the integer ficld 1. Then ity 1 the row distance of any finite order I is on the order of

x e y = x + y - 2xy. (1) n(m + 1)/2 as m goes to infinity. Since there exists a large num-

In order to derive our new formula on the row distance of ber of randomly generated codes, (7) represents a lower bound
rate 1/n convolutional codes, we need the following definitions: on the row distance of rate 1/n convolutional codes. This bound

Definition 1. Let a(X) be a polynomial wvith coefficients a,. is significant since it implies that there exists codes for which
Dewdefinition 1.hLet a ) celatioyno h coefcients as. the row distance of any finite order I reaches the asymptoticThen, we define the k t" correlation coeficients as upper-bound on free distance derived by Costello [fl. Since the

i=oo bound is only valid for 1 < m, however, it is not a bound on
Rka(.jl,)2.... ,jk) = 0 aia+ ... a,+1 1++,,, (2) di... = limu-.odi. But, for almost all known codes, the row dis-

wi0 tance reaches the free distance within the first constraint length,
suggesting that it may be possible to strengthen existing lower

Definition 2. Let g()(X),g(2)(X),....g(")(X) be the n degree bounds on the free distance.
m generator polynomials of a rate 1/n convolutional code C. Although the bound derived in Theorem 2 is only valid as m
Then, let G(X) be the composite generator polynomial goes to infinity, it is possible to use Theorem 1 for constructing

rate 1/n convolutional codes. We note that a code with large
G(X) = g~t )(X") + Xg(2)(X") + ... + -"'g(n) (X'). (3) free distance requires the optimization of the functional given

by (5). Thus, different algorithms for seeking optimization of a
Then, for any information sequence u(X), the code sequence functional can be used to construct generators of rate l/n con-
v(X) is generated by volutional codes. A large number of convolutional codes con-

structed in this way have free distances close to optimal codes,
v(X) = u(X")G(X). (4) and the algorithms allow us to construct codes with much higher

Using the previous definitions, we can obtain the following constraint lengths than previously constructed codes.
theorem on computing the row distance of rate I/n convolutional References
codes.

Theorem 1. Let C be a rate ]/n convolutional code with com- [1] D.J. Costello, Jr., "Free Distance Bounds for Convolutional
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order I of C can be computed as: May 1974.
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codes achieve the same bounds as time-varying codes,
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Abstract
Well known techniques from linear block codes analysis are used length vector is (0,0,1, 1, 1,1,1), otherwise the parameters of 71 are

to study convolutional codes. It is demonstrated how these methods 19, k(> 3), 6], but this is impossible by the Griesmer bound. This im-
can be used to determine bounds on convolutional codes of certain plies that T, is a [9,2,61 code, and it is easy to show that the upper
parameters. left comer 2 x 9 submatrix of the binary encoder G(D) is equivalent

(except for column permutations) to
Introduction

An (n, k, , d ) code is a convolutional code of block length n, 0 0 1
dimension k, constraint length v, and free distance df,. The code
can be generated by a k x n matrix G(D) (an encoder matrix), in thus T, does not contain the all-one code word. Further, 72 is an
which each entry is a polynomial in D. The ith constraint length vi [18,9,61 code. From Lemma 1, it follows that T2 contains the
is the maximum degree of a polynomial of the ith row of G(D), and all-one code word, so a sequence of suitable row operations will

k= vi. Without loss of generality we can assume v, < v,~j transform G(D) into another encoder G*(D) which (i) has the same

for 1 5_i <k. We call the vector (vl,... ,vk) the constraint length or smaller constraint length as G(D), and (ii) contains a row on the
vector, form (1 + D)(1,1,1,1,1,1,1,1,1). (i) implies that G*(D) is also

In [11, N(r, v, dfe) is defined as the largest n such that an a minimal encoder. However, (ii) contradicts this (see, for instance,
(n,n - r,v, df,,) code exists, and bounds on this function are de- [4]).
veloped. 0

A particularly useful upper bound on N(r, v, dfr,), originally In other cases, similar methods have made it possible to actually
due to Heller (2], arises from the fact that a set of convolutional code construct convolutional encoders of certain parameters. Thus, for
words of bounded length is a linear block code, called a terminated instance, it is possible
code [3]. . to construct a (9,5,4,8) code through analysis of [18,6,8] linear

block codes, and
Lemma ([2]). Let C be an (n, k, v, d) convolutional code with con-

straint length vector ( vk). Then for all j ý> 1, Ti is a . to construct a (6,2,6,16) code through analysis of 130,4,161 linear

fjn, K(j),da linear block code, where x(j) = Z (j - vi). block codes.

These results determine N(r, v, dfr) exactly in the respective cases.
In many cases the methods in [II are insufficient to determine

N(r, v, df,,) exactly. The purpose of this talk is to demonstrate that
a detailed analysis of the terminated block codes sometimes provides
either proofs of nonexistence of, or suggestions on how to construct, References
the associated convolutional codes. This analysis employs standard
techniques from block code analysis. [1] 0. Ytrchus, "A note on high rate convolutional codes," Department

report 68, Department of Informatics, University of Bergen,
An Example August 1992.

[21 J. A. Heller, "Sequential decoding: Short constraint length convo-
In [1], an (8,6,5,6) code was obtained by computer search. Below lutional codes," space programs summary 37-54, Jet Propul. Lab.,

follows a proof for the nonexistence of (9,7,5,6) codes. Calif. Inst Tech.. Pasadena, Dec. 1968.

Lemma 1. Suppose T is an [18,9,61 linear block code. Then the (3] E. Paaske, "Short convolutional codes with maximal free distances
weight distribution of T is for rates 2/3 and 3/4," IEEE Trans. on Information Theory. vol. IT-

20, pp. 683-689, Sept. 1974.
An = AIA = 1, A6 = At 2 = 102, Ag = Ai0 = 153. (1) [4] P. Piret, Convolutional Codes - An Algebraic Approach. The MIT

Press, 1988.

Proof. Using well-known techniques, it is possible to show that the
minimum distance of T-± = 6, and that no code word in 7 has weight
7. Then (1) is the only positive integer solution to the MacWilliams
identities.

Theorem 2. There is no (9,7,5,6) convolutional code.

Proof. Suppose C is a (9,7,5,6) convolutional code, and that G(D)
is a minimal encoder for C. We can always assume that the con-
straint length vector is ordered. Hence, the only possible constraint
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This talk describes methods for analyzing the expected and worst- of the code. For the rate 1/2 convolutional code [1 + D 2 , 1 + D + D2j,
case performance of sequence based methods of quantization. We sup- this graph has only 9 vertices. In this case it is particularly simple to
pose that the quantization algorithm is dynamic programming, where calculate per dimension expected and worst case rmse, and performance
the current step depends on a vector of path metrics, which we call is similar to the binary [24,12] Golay code.
a metric function. Our principal objective is a concise representation Our methods also apply to quantization of arbitrary symmetric
of these metric functions and the possible trajectories of the dynamic probability distributions on [0, 1] using convolutional codes. For the
programming algorithm, uniform distribution on (0, 11, the expected mse is the second moment

We shall consider quantization of equiprobable binary data using a of the "Voronoi region" of an infinite dimensional lattice determined
convolutional code. Here the additive group of the code splits the set by the convolutional code. It may also be interpreted as an increase in
of metric functions into a finite collection of subsets. The subsets form the reliability of a transmission scheme obtained by nonequiprobable
the vertices of a directed graph, where edges are labelled by aggregate signalling. For certain convolutional codes we obtain a formula for
incremental increases in mean squared error (mse). Paths in this graph expected mse that depends only on the distribution of differences for
correspond both to trajectories of the Viterbi algorithm, and to cosets a single pair of path metrics.
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The Extended Invariant Factor Algorithm with Application to the Forney Analysis of Convolutional Codes
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Summary. functions in the indeterminate D over F. A generator matrix for C is a

In his celebrated paper on the algebraic structure of convolutional k x n matrix with entries in F(D) whose rows form a basis for C. Given

codes, Forney [11 showed that by using the invariant-factor theorem, an arbitrary generator r.atrLK G for C, we can easily transform G to a

one can transform an arbitrary polynomial generator matrix for an generator matrix with polynomial entries by multiplying the ith row of

(n, k) convolutional code C into a basic (and ultimately a m al) G by the lcm of the denominators of its components. In this section,
generator m)atriox fode C. He tlo showed how(a ofind utatlynomialman) we will see how the extended invariant factor algorithm introduced in

verse for a basic generator matrix for C, and a basic generator matrix Section 1 can be used to transform an arbitrary polynomial generator

for the dual code C'. In this paper, we will discuss efficient ways to matrix for C into a basic generator matrix for C. (The transition from
do all these things. Our main tool is the "entended invariant factor a basic to a minimal generator can, if desired, then be done by the

oalgorithese thin. Or mainttole ite. esimple algorithm originally described in [1i, or perhaps more lucidly in
algorithm," which we introduce here. Kailath [3, Sec. 6.3.2], where the process is described as "row-reducing"

1. The Extended Invariant Factor Algorithm. a polynomial matrix). We will see that the extended invariant factor
algorithm also produces, more or less for free, a polynomial inverse for

The goal of the invariant factor algorithm (see e.g. [2, Sec. 6.2.4], 13, the basic generator matrix, and a basic generator matrix for the dual
Sec. 6.3.3], or [4, Sec. 12.2]) is to take an arbitrary k x n matrix G (with code C1.
k < n) over a Euclidean domain R, and by a sequence of elementary Assume then that G is a k x n polynomial generator matrix for a
row and column operations, to reduce G to a k x n diagonal matrix convolutio n code C is a f × n polynomial or
r = diag(-yi..... yk), whose diagonal entries are the invariant factors of convolutional code C over a field F. Since the ring of polynomials over
G, i.e., gi = Aj/Ajj, where Ai is the gcd of the i x i minors of G. The F is a Euclidean domain, we may apply the extended invariant factor
goal of the extended invariant factor algorithm, which we introduce in algorithm described in Section 1, thereby obtaining a decomposition of

this paper, is to take the same input, and not only find r, but also to the form (1.5). In what follows, the matrices XN and YN produced by

find a k x k unimodular matrix X, and an n x n unimodular matrix Y, the extended invariant factor algorithm will be denoted simply by X

such that XGY = r. and Y.

To describe the extended invariant factor algorithm, we need to The matrices, X, Y, and r, contain much valuable information

take a closer look at the original invariant factor algorithm. Formally, about the code C and the generator matrix G. To extract this in-

it can be described as follows. Beginning with the matrix Go = G, it formation, however, we need to define several useful "pieces" of these

produces a sequence of k x n matrices G1 , where G,+i is derived from matrices, which we call rk, r'•, K, and H:

Gj by either an elementary row operation or an elementary column
operation. We can represent this algebraically as r. = leftmost k columns of r = diag(Ty .... ,k). (2.1)

KT= leftmost k columns of rY. ia(yi y) (2.1)Gjj= E.+1 GiFi+1 , (1=.1) - r. diag(-yk/-yi.... yk/'vk). (2.2)

where E,+i and F,+i are k x k and n x n elementary matrices, respec- KT = leftmost k columns of Y. (2.3)

tively. If Gj+I is obtained from Gi via a row operation, then F,+ I = In, HT = rightmost n - k columns of Y. (2.4)
but if G.+1 is obtained from G, via a column operation, then E1+l = It.
After a finite number N of steps, we obtain GN = r. (The details of Here then are useful "outputs" of the extended invariant factor
which elementary row and column operations to perform, and in which algorithm, when applied to G.
order, are of central importance, of course, but for reasons of space, we * A basic generator matrix for C: Cbsk = r'k XG. (That is, Gbj,
refer the reader to [2, Sec. 6.2.4], or 13, Section 6.3.31 for them) is obtained by dividing the ith row of XG by the invariant factor

The extended invariant factor algorithm builds on the invariant yi, for i = 1..,.)
factor algorithm. In addition to the sequence GO, G1 ... CGN, the ex- * A polynomial inverse for Gbas, : KT
tended invariant factor algorithm also works with a sequence of uni-
modular k x k matrices Xo,...,XN, and a sequence of unimodular * A polynomial pseudo-inverse for G, with factor 7•: KT1'rX.
n x n matrices Yo. . YN. The sequences (X1 ) and (Yi) are initialized * A basic generator matrix for C1, i.e., parity-check matrix for C:
as Xo = Ik, 1Yo = In, and updated via the rule (cf. Eq.(1.1)) H.

Xj+1 = E+Xj (1.2) References.

Y~i+ -= Y.Fi+l. (1.3) l[] Forney, G. D., "Convolutional Codes I: Algebraic Structure." IEEE

It is a simple matter to prove by induction that Trans. Inform. Theory vol. IT-16 (November 1970), pp. 720-738.
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XCGYj = Gi for i = 0, 1,..., N, (1.4) Chelsea Publishing Co., 1977.

so that specializing (1.4) with i = N, we have [3] Kailath, T. Linear Systems. Englewood Cliffs, N. J.: Prentice-Hall,
1980.XNGYN =r, (1.5) drB1[41 van der Waerden, B. L., Algebra, vol. 2. New York: Frederick Un-

which is the desired "invariant-factor" diagonalization of G. A rough gar, 1970.
analysis of this algorithm shows that it requires O(dnk2 ) polynomial
divisions, or O(d nk2 ) field operations (addition, subtraction, multipli- Acknowledgements.
cation, or division in F), where d denotes the maximum degree of any The contibution of Ivan Onyszchuk, and a portion of the contribution
polynomial in G. of Robert J. McEliece, to this paper, was carried out at Caltech's Jet

Populsion Laboratory, under contract with the National Aeronautics
2. Application to the Analysis of Convolutional Codes. and Space Administration. A portion of McEliece's contribution was
We define an (n, k) convolutional code C over a field F to be a k- also carried out at Caltech's Electrical Engineering department, and
dimensional subspace of F(D)n, where F(D) is the field of rational supported by AFOSR grant no. 91-0037
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THE PERFORMANCE OF CONVOLUTIONAL CODES ON THE BLOCK ERASURE

CHANNEL WITH VARIOUS FINITE INTERLEAVERS

Amos Lapidoth

Technion-Israel Institute of Technology and
Stanford University, Information Systems Laboratory, Stanford, CA 94305-4055

Abstract is selected at random).

Consider the transmission of a finitely interleaved rate 1 con- We consider a receiver which after de-interleaving uses maximum

volutionally encoded message over a non-memoryless channel likelihood sequence estimation (MLSE), i.e. Viterbi decoding, to as-

having two internal states So and E, where, when in state Ea, timate the transmitted message. We assume that ties are resolved
the channel resembles a noiseless Binary Symmetric Channel randomly. Denote the decoder's estimate of the message by di j =

(BSC), whereas when in state El, the channel is totally blocked 0,.... L - 1.
and is well approximated by a Binary-Input-Single-Output chan-
nel. Assume that the channel's internal state is drawn at random
once every h channel uses, and then remains constant for the fol- probability of a message error,
lowing h channel uses. Further assume that the message is short
in comparison to h, and that due to delay constraints, the mes- PMSG(U) = Pr{30 < j < L - I s.t. di 0 dj}, (2)

sage must be decoded within Nh channel uses, where N need the expected number of bits in error normalized by the message length,
not be large in comparison to the code's constraint length.

The probability of a message error, the normalized expected I L-i
number of bits in error, and the Bit Error Rate (BER) are ana- PL(.) - - " {'ijidj}, (3)
lytically computed for the periodic N x h chip and word inter- j_0

leavers, where a chip refers to a binary code symbol, and a word and the bit error rate
refers to a n-tuple of consecutive chips.

An analytic expression for the BER is also given for pseudo- BER(U) = •imr PL(U), (4)
random word and chip interleavers and for the corresponding L-o

limiting cases of infinite interleaving i.e N -' oo. for the periodic word and chip interleavers.

In practical applications the erasure pattern U is a random variable
Summary and one is then interested in the weighted averages of (2) (3) or (4) over

Let U = (U0,.., UN-,) denote an erasure pattern i.e. an array of all 2N erasure patterns or in some other availability criterion which

N elements Up E {0,1} 0 < p _• N - 1. Let C = (Co,...,CN-1) be can be similarly computed.

an array of N channels where for each 0 < p <_ N - 1 the channel The asymptotic bit error rates (4) for chip and word interleavers
C', is a rlolsclcs. binary-input binary-output channel ("noiseless") if in the limit of infinite interleaving depth, i.e. as N -- co are also

Up = 0 and otherwise, if U, = 1, Cp is "erased" i.e. a binary-input computed. Notice that in the limit of infinite interleaving (periodic or
single-output channel. Thus, if Up = 0 the channel transition proba- random), the channel resembles a descrete memoryless erasure chan-
bilities satisfy P(111) = P(010) = 1, and otherwise, if Up = 1 we have nel. Our approach to the analysis of this case has benefitted from
P(-?"10) = P(""?I1) - 1. the work of Burnashev and Cohn on the performance of convolutional

Consider the transmission of an L-length binary message over the codes on the BSC[1]. The error rate associated with nonideal random

array of channels C using a constraint length K, rate • convolutional chip and word interleavers is also found.

code with zero padding. To fix notations, let D = (do,...,dL-i) di E Some numeric examples for scenarios based on the European cel-
GF(2) be the message of length L which is produced by the source. lular phone system (GSM) [2], are provided.

Using the GF(2) arithmetic, the encoder's output can be written as The analysis of finite messages transmitted using deterministic in-

¢-1 terleavers is mostly combinatoric in nature (once an erasure pattern
E 9. gJdj_ j = 0,..., L + K - 2, 1 = 1, _n, (1) has been fixed). For this situation we give a set of linear recursion
-=0 equations which enable the computation of the probability of a mes-

where di = di unless j < 0 or j > L in which case di = 0, and sage error and the expected number of bits in error. The study of the
where 9() v = 0,..., K - 1 are the coefcients of the l-th generating limit of the normalized expected number of bits in error (BER) for

where g, a' = 0,.., Kt-isareithecoefficintslofsteso-thagneratin

polynomial of the convolutional code. We shall use the term word for this situation involves some algebra.

an n-tuple (cjl,..., cj,) for some j E {0,..., L + K - 2}. Similarly References
we shall use the term chip for a binary code symbol cjj for some fixed

. E {0_..., L + K - 2} and I E { n).... n}. [11 M. V. Burnashev, and D. L. Cohn, "Symbol error probability
for convolutional codes," Problemy Peredaei Informacii, vol. 26,A periodic chip (word) intcrkeaver transmits the chip cgI via the N.4 p -5 90

channel Cp where p = n(j - 1) + I mod N (resp. p = j mod N). A

random chip interleaver transmits cil via a channel which is selected at [2] GSM Recommendations series 05, especially 05.03.
random uniformly from C. A random word interleaver ensures that all

chips of a common word are transmitted via the same channel (which
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Using a Modified Thansfer Function to
Calculate Unequal Error Protection

Capabilities of Convolutional Codes•
D.G. Mills and D.J. Costello, Jr.

Department of Electrical Engineering
University of Notre Dame

Abstract Notre Dame, Indiana 46556

the ilk position is the lowest Hamming weight among all code
This paper proposes a modified transfer function analysis vectors that are generated by input sequences with at least one

that yields the individual bit error probability for any spec- 1 in the ih position. The individual effective free distances are
ified input bit position of an (n, k, m) convolutional encoder. lower bounded by the overall free distance, di,,•
The method is useful for analyzing the unequal error protection In addition to the individual effective free distances, two
(UEP) capabilities of codes. other important factors affecting P1"'(E) are the number of low
Summary weight code vectors and the number of l's in position i that

belong to input vectors corresponding to the low weight code

Unequal error protection (UEP) codes are of interest in sev- vectors. That is, in addition to the traditionally important min-
eral environments, e.g. packet switched networks and multi-user imum codeword Hamming weight and multiplicity, the distri-
environments. A modified transfer function is now described bution of l's in the input vw-7tors is important. The number
that can be used for analyzing the UEP capabilities of convolu- of l's in a particular position is related to the length and to
tional codes. the Hamming weight of the entire input vectors, but the exact

We employ the method of determining a transfer function relationship has not been completely determined.
from an augmented state diagram [1). To modify the aug- Using the insights gained from this new UEP analysis tech-
mented state diagram so that the individual bit error proba- nique, we can design new codes with different individual effec-
bilities are determined, each branch is assigned the new label tive free distances, and therefore, different levels of unequal error
Xyi ... Yki, where jk is equal to the input bit in the kek protection.

position, and i is the Hamming weight of the branch output. Reference
Obviously, the sum of the ik's is the Hamming weight of the in-
put vector. Mason's gain formula is then applied. The resulting 11] S. Lin and D.J. Costello, Jr., Error Control Coding:

UEP transfer function is Fundamentals and Applications, Prentice-Hall,Inc., 1983.
(n.k.A) K UEP T-mdel F.mco

M0 Id .,d -enm rvr _ __rs_ _ _ _ _ _

T(X, Y1 , - Y)= EX •" . ? (3.2.1) 131 2 x'(Y, -og,•) P. TP,
d=dfree =O gT°3=3 Wj)fi gý,-3 X.(y,,_yy.+yO÷VoyO?÷yy, P1")S3P,+IIP.

where Cd, is the number of paths associated with the jt" input JO° . 1 41) -.
sequence distribution of l's that generates code vectors of weight 3 =2 6 -2
d, j,( is the num ber of distinct input sequence distributions that SO'.315 •) -06 lg'115 6 '(Y? + Y ftý + 2 Y .' + ÷Y+2 , 0. S$P,

generate code vectors of weight d, and b1 1, j. - , bkj represents a so.06 s1.).13 j,? + W+- W W + y .yW) +
particular input sequence distribution of l's. The bound for the
individual bit error probabilities is then

P(.,(E) < I B < i _ k, +6.2.1 ll 1 x(Y, +÷2YY, +YYSY,) 5P,+
d d 2r)-2 a)=2 g•9-2 +x7(o. :y,') s.... t,",P,+o,

where P(0' is the probability that a bit located in the it position 8113 il g"-3 (-,-3

of the input vector is decoded incorrectly, Bd(0 = J" is
the total number of l's in bit position i contained in all input g'- g',.2 g'-2
vectors that generate code vectors of weight d, and Pd = 2'[p(1- 1,"-2 g:' = I'g!.3 Is,

p)] 1 
. (For simplicity, we assume a binary symmetric channel (4,2.) 4 X'Y,+2xY 0Y1..

with crossover probability p.) sP) -s 1g- 17 & - 00
The modified state diagram for a particular (3,2,1) code is grl -00 s"-10 glo -14

shown in Figure 1. The generator vectors, the UEP transfer g? '00
function, and the bit error bounds are shown in the first entry A, -0
in Table 1.

Results for a number of other codes are also presented in Table 1
Table 1. It can be seen that several factors affect the bit error
probability for a specific input position. The first term of the
error probability expression is the dominant term. Obviously,
different exponents in the first terms result in large differences in '"
the error protection given to the input bits. The lowest distance /
in the i1 individual bit error bound is defined to be the effective
free distance, deff(,). For example, for the (4,2,3) code in Table ",
1, ddl1(O) = 6 and dejI(I) = 4. The effective free distance for

"This work was supported by NSF Grant EID9O-17558, NSF Grant X4 Y. •

NCR89-03429, and NASA Grant NAG5-557.
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THE MACWILLIAMS-SLOANE CONJECTURE ON
THE TIGHTNESS OF THE CARLITZ-UCHIYAMA BOUND

AND THE WEIGHTS OF DUALS OF BCH CODES
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(0J4ORENOGUPRENET. BITNET, NORENOQSUN386-GAUSS. UPRR. PR)

Carlos J. Moreno
Baruch, CUNY, Box 545, N. Salem, NY 10560 USA

(CARLO$SKRONECKER. BARUCH. CUNY . EDU)

Research Problem 9.5 of MacWilliams and Sloane's book The Theory Theorem C: Let q = 2", m odd and let f'(z) be a polynomial, with
of Error Correcting Codes asks for an improvement of the minimum coefficients in Fq, of degree r, with r equal to 7 or 9. We then have
distance bound of the duals of BCH codes, defined over F2 -, m odd.
The objective of this talk is to give a solution to the above problem
by: (i) obtaining an improvement to the Ax theorem, that we prove EF,

is best possible for many classes of examples, (ii) establishing a sharp Remark: The inequality in the above theorem is tight for q = 2'
estimate for the relevant exponential sums which implies a very good and q = 239.
improvement for the minimum distance bound, (iii) providing a dou- Our doubly infinite family of counterexamples to the MacWilliams
bly infinite family of counterexamples to Problem 9.5 where both the and Sloane question is given by the following result.
designed distance and the length increase independently, (iv) verifying Theorem D: For each prime p for which 2 is of ordc: odd exactly
that our bound is tight for some of the counterexamples, and (v) in (p - 1)/2, let q = 2 ((P-')/2)-. Let ( > 0. Then for infinitely many
the case of even m we give a doubly infinite family of examples where odd m, as well as for infinitely many even m, we have
the Carlitz-Uchiyama bound is tight, and in this way determine the
exact minimum distance of the duals of the corresponding BCH codes. E (-I)z(, _ (p - l)VqV (I -

More specifically we have the following results:

Theorem A: Let F(xi,X2. .... Xn) be a polynomial in n variables The exact minimum distance of several classes of BCH codes have
with coefficients in F9 , q = 2'. Let cr(d) be the binary weight of d been previously computed, but as far as we know, no exact computa-
and tion has been done in the case of their duals. We have the following

s = max {u(d1 ) + . + (d,)}, result in that respect:
( d ,...,d) Theorem E: Let t 1 2' + I and let us further assume that a is the

where the maximum is taken over the degrees of all the monomials in least integer with this property. Then for any b we have:
F. We then have that the exponential sum F ( ( )'2•(-- 1)

S (F ) = y (_)_(F( 
T.....)) 1EF

2 2.t

.:, ..... -.. F, Corollary 1: Polynomials z' for I I 2a + I and for the pairs (a,b)

is divisible by 26, where b = Tmn/sl is the smallest integer _ mn/s. provde a doubly infinite family of examples for which the Carlitz-
Uchiyama bound is tight over fields which are an even power of 2, and

Remark: The above is an improvement to a theorem of Adolphson- of the form F22.6.
Sperber, where the conclusion is that S(F) is divisible by 2f"/ Corollary : The dual of the BCH code with designed distance t+2
where r is the degree of F. To compare with our result in a concrete where 1 12* + 1, and for any odd b, has minimum distance exactly
example, take a polynomial with 54 variables over a finite field with

elements, and assume that there is a term x1,5 with degree 22or
and weight 4, and suppose there is no other term with s > 4. Then The fundamental theorem of Chevalley-Warning has gone through
Irom thvorem 2 we obtain that 2[Ps4/41 = 241 divides S(F) and in several improvements in the work of Ax. Katz, Mazur and Adolphson-
Adolphson-Sperber we get divisibility by 2[354/221 = 28, which is Sperber. What evolves in their work is the role played by the degree of
certainly smaller. equations. It is remarkable that the techniques developed to solve the

Theorem B: Let. q = 2', and let Research Problem 9.5 of MacWilliams-Sloane, a deep question which
reflects the behavior of the weights of BCH codes, have provided a

f(X) = a1 Xd, new insight into the important role played by the p-adic weight of the
degrees in the study of the divisibility properties of the number of
solutions of a system of equations.

be a polynomial with coefficients in Fq. Suppose the maximum binary Our p-adic version of Serre's archimedean bound for the sum of the
weight of the exponents is roots of an L-function and the improvement of the theorem of Ax are

max {(d,)}. ample proof of the utility of the new techniques, both in coding theory
J and number theory.

Let a be the smallest positive integer > m/1. We then have Since the results in this paper are important to mathematicians
and were previously unsuspected by them, they are another example

S(f-) " (deg f - 1) where the theory of error correcting codes has been influential in the

rEF, 2 development of the new mathematical insights.
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Cosct weight eininirators of three Conway-Pless regularity nuinber of C, and the associate miatrix of this minimal

extrernal self-duial biniary codes of lenigth 32 partition is called thle regularity inatniz of the code C.This matrix
dloesn't depend on thle choice of the parity check matrix.

Pau Caiol" Brmid CurtiliitOne implortant examplecof a partition design admitted by a code
Pau Cauioi Brnad Curtaut is tile set of orbits under any subgroup G of thle automorphismn

Adi-cW Moiitjetit t  group of thle code acting oin the syndrome space.

*INIIARocuencurt BP 10, 78.53Le hesay Cdex Frnce We have also proved in an earlier work that the combinatorial
INRI, Rcquricort l~~ 115,7815 LeChenavtieexFrace inatrix A of a code C is completely determined by any partition

tD)ýparternerit de nrat-h6inatiques et. d'inforinatique, Universit6 de design admnitted by the code via a linear recurrence relation. In the

Sherbrooke, Sherbrooke (Qu~bec) JiIK 2RI.This work has been theoretical part of this work, we give an algorithm that computes
supported iy CIISNG grant no. A5120 tile regularity niatrix of a code from the knowledge of any given

piartition design admitted by the code.

1 Introduction

Conway and Pless have eniumerated in 161 the 85 nonr-equrivalenrt 3 Reut
self-dual doubly-even codes of length 32. From these, the five To apply the above theory, we take a permutation group G C
codes having minimum dlistance equal to 8 are called extremial. S(,, letting thle code C =ker il invariant and we let it act on1
Two extremal codes were already known: the second order Reed- the synidromie space Iflas follows-lf or E G and h E IF*, let x
Muller code RNM32 anid thle extended quadratic residue code QR.32 lie any elemient in F.' such that h = ,1 1xT is the syndrome of z.
of length 32. The other three dliscovered by Conway anid Pless were Then the element a(h) = fl(ax)T where ax a'(x,...,X,
new. Ini [8), Koch has given another more direct construction of thle (x,(,t) ... ,(ý) is uniquely determined by hr.
three Conway-Pless codes denoted by himi F, U anid G. Since the We have written programims in thle computer algebra systemi
five extremnal codes, though non-equivalent, have thle same weight M~aple that implement tire above timeoremnsTo obtain thle orbit
eunumerator they also have the samre classical piaramreters anna it is partition designs for the extended quadratic residue code and the
natural to ask for somne parameters which may (listimiguisl them,. second order Peed-Muller code of length 32, we have taken the

Ini 131 we have inrtroduiced a new parameter, thle regularity mnuin- full autoniorlplismn groups PSL 2(31 ) and GA(5, 2) respectively.
ber 'f of a code, which is r-elated to other funrdamnertal piaramneters F-or the code GC 16f;? we have takenm a subgroup of its autoinor-
[71 by the inequalities e < p 5 t < , ST where c. is the error cor- phism group generated by 12 automorphisms fixing the set of glue
recting capacity, p the covering radius, I the external distance (in components [6. p1. 491 which has given 316 orbits in the syndrome
tire linear case t is the number of rnon-zero weight of the. dual code) space. TFhen we have determined the comnbiniatorial matrr'x A arid.
aud -Y is thle number (if distinct, proper coset weight (enumerators by solving a triangular linear system, the distance matrix B. thus
of thle given code, Iin [4, 2, 91 we have developed theoretical tools Obtaining thle coser weight enumerators. Finally, applying our last
based onl the notion of partition desig tha pemtuocluae algoritlmin we have obtained the regularity matrices anid tile reg-
(in prinlcip~le) thle coset weight enumrrerators once a sublgrouip of tile ularitY numbers of tihe conisideredI codles. We have observed that
autoninorphisnr group of thre code is given, inure precisely when, thle all enuimerators of the coset s of weight 1,2.3.5 anid 6 are the sm
(irbit spiace, of this group is Couri)r1ltahle. Tlhe situaiontri appeareud for tIre t lire codes.
for example iii [.ý1 where tIlie uiecessar~y not-innls anid theio-remrs are

state(d.
Ilii this wvork wi- obtain tile inset weighit e-iinilerators.j anid th lierece

piaramreters ý arid T for thle Hr-ed Mutller iodic l(M31 :2. t Ire quardiatic IL .1 . V. Plsý Oil the Co(,. r110/ flldills of (ryIT i~nols(tf-duali
resiume coide QH132 of lenrgth 3i:2 anid tIre t'arilwavý Ness code I (;f 'od t i-1 I[ano rfri ter.2 3 ~5):5 t
d-enot ed by G iin [8). ' i iset Wi-iglit err iiirra t (rs for Q I 2 hias e
al ready been calculIat ed Jiv A ssriris amd I Pless it, il1. [21 IV. ( amii on It. oiirt n-au, 1P. I h-sa rtp. Onl r-palionieyio de-sigjrr il

finor niioiq spnrrcs. T[ch.li. t-1p. 62G1. IN lIlt IA 19K7

2 Combinatorial mnatrix and p~artitionl 13) 1. ta inion - II. touri riau anil 1P. D etsa rto. On) r -;snititon de-siuris
it or lllnnig irirnqsacs. Atpichmable Algebira jir Eniginreerinig, (orilminin.

designs and t oriputo.. 2 (1992) 1.17-162.

Ini [.1, 2, 31 we have initrodurced tlie co 11) nbinoriell iii nit x A of a 11) _tanriioii. It. t.oiirteair. G. Forirnier arid V. S. Kanetkar. Welqigt

code C which i~s related to tile ilistarice (listrihiltirl rimriatrix B3 [7J ) (Isrbinus. I. Ir ifor iffs ot f iin.Si.a 8 or ar 1987)aiz-e 1 23.s

(having as rows tIre cirset \%eight enilririnrators of C ) by th Inn etial- dutle.JIifru 0tin.S.8(9A)12.

Bt-A S where *S is ilrr easily, curritoitednl rirsirigrlar riarligirl ar [51] P. t ;iiiioir. It. ( oiirieani arnd A. loritptictr. Wirght distrihiul Iovil of
Miatrix related to tie krawicioirk rust rix. Sir tIrhe Coset we-ighir ('11 nos, I., of 2- irorvir-oryr-u 7riq hr mr in4 HC( 71odrs of W mgiyt 15. b03 arid

ii erato(rs are easi ly compuiirtabile ornce we knlow thre conrrbiliiratIirial 255, 11-IlK Icarus. onl Irifoririatioriher 38 (1992).

miat rix A. it)) .1N un aY. V. Oi 't-s -( o t ( ~inaloin hontio of .si'f-diiiil (045.Q J..
WVe have alsoiint rorlrired t Ii(' corn-ept nif part it inn nh-sign auhluiit- toiritnir. ITin-nr. S-r. A 28 ( 1980t) 2t6 5:j.

ted by* a Code(. lIn tie (.itsi- where C is a binary" linlear coile of h-rig't [1 71 t'. Iti-sarit-. / ourfiinidoinioito) (sryioniitryis qof ii nY( non
4 

t/i rncmn
7i arrd dimrenision ito A% let Q1 b- thin' set of cillirnirri of a palrit\ illii/,r Iio/inr (liltr.ai (otro2 971 tr-1

check miratix // of ' -I'lit-ril pii~ij tonni ((1,. andIl, noto.3 93fM :

ihe sy-iiilrorri spaie- is said io 1w it r poir-/rholl ihsnqir alhirrit tn-il 'I 1 I l'inh. ()it Of-dlodr. dloubtly~ (rtii ((511.5 if lrrnyt~ .?2. I1. ('oluitniri.

1)iv thre codel C -it' Qh, {tt1. fhr = Qt aid if fill it. 1 - 10 Lt. I. r) henvry'. Sot. A 51)( 9s!)) 63 76.

rant) ar(/r - Ii) l I, ) is it coistait hir all hi (ý Q_, Thei iiirt r x [91 A. Nlorri ein, Cod qa darts (Is ilruiphins nv-guinrs. I'll. I). threstst 1711i
111 = (in71_,) is said( tio bre tIhe (155 icr Ciiat( unari of 7r.- Thre least j nssi - vvrsil d e Sbvierlrooke.sr Caaria. 1 997.
Ide riinln-br r such that, C admiits at rhiart itiiir dlesigrn is called tire
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Weight hierarchies of binary linear codes of dimension 4

Torleiv KlMve, Department of Informatics, University of Bergen,
Hogteknologisenteret, N-5020 Bergen, Norway

For any linear code D, Supp(D), the support of D, is the set of
positions where not all the codewords of D are zero. Let ws(D),
the support weight of D, be the size of Supp(D). For an [n, k]
code C and any r, where 0 < r < k, the r-th minimum support
weight (also known as the r-th generalized Hamming weight) is
defined by

d,(C) = min{ws(D) I D is an [n,r] subcode of C).

The weight hierarchy of C is the set {dI(C), d2(C),"" .,dk(C)}.

For k < 4 we give explicit description of the possible weight
hierarchies.
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MACWILLIAMS IDENTITIES AND COORDINATE PARTITIONS

Juriaan Simonis
Delft University of Technology

Faculty of Technical Mathematics and Informatics
P.O. Box 5031, 2600 GA Delft, The Netherlands

Any partition of the coordinate set of a binary linear code [n,kI code C can be calculated from the Ai,j(T) with i + j <
is shown to correspond to a set of generalized MacWilliams
identities. Thus, a well-chosen partition yields a promising and the Bu,v (7) with (u,v) 0 G.
method to settle existence and uniqueness problems. A short
proof of a generalization of the Assmus-Mattson theorem is The covering radius
given. In the nonlinear case, a generalization of the Delsarte
inequalities is obtained. The following reformulation of this notion in terms of

coordinate partitions might be of some use.
The main result PiLoposition: Let C be a binary linear code of length n and

covering radius p. Then p > t if and only if a (t,n-t)--partition 7
Coordinate partitions exists such that Ai.j(T) = 0 for all i, j for which i > j.

Let C be a binary linear code, with coordinate set S, and
let 7 {T1 , T2 . , Tp) be a partition of S into sets T. of size Generalized Delsarte ineaualities
nu := j Tu J. Then the wetght distribution A(T) of the code C with
respect to the partition I is the set of nonnegative integers Finally, if we define the inner distribution of the nonline

Ai(7) := I{ X EC I IX n Tul = i, Vu}I. arcode Cc C2n with respect to the partition 7 to be the set of

rhe generalized MacWilliams identities nonnegative rational numbers

Ai(T) := ICI-I j{(X, Y) E C - C I w7ýX -Y) = ill,
We show that for each index vector i the weight distri- we can derive the following generalization of the Delsarte

bution A(7)} of C and the weight distribution B(T) of the dual inequalities (cf. [2]):
code CL satisfy the equation E.( P. (Ju;nu))A >0 Yj.

Ai(T) = 2 uP1 pi (j.; n.)) Bp"),u=11 ui(*)
where uReferences

[1) E.F. Assmus and H.F. Mattson, New 5-Designs, J..Pm(x; V) := m J m I mj Comb. Theory, vol. 6, 1969, pp. 122-151.
m=0 I) I ___[2_._____.A Agbai ppoc t heAscito

is the Krawtchouk polynomial of degree i. The equations (*) will 121 P. Delsarte. An Algebraic Approach to the Association
be called the MacWilliams identities of C with respect to the Schemes of Coding Theory, Philips Research Reports
partition 7. They generally give more information about the Supplements, No. 10, 1973.
existence and the uniqueness of the code, but the price is a [3] F.J. MacWilliams and N.J.A. Sloane, The Theojy of
steeply increasing calculation effort. Nevertheless, a happy Error-Correcting Codes. New York: North Holland,
combination of a powerful computer and additional information 1983.
on the codes under consideration should settle quite a few open
problems. The number of equations is substantially reduced if C
has a large minimum weight or if C is a doubly even selfdual
code.

The exact weight distribution

The extreme case is the ezact weight distribution of C, i.e.
its weight distribution with respect to the partition

E := {{i}, {2}, ... ,,{n}}
of the coordinate set S into its one-element subsets. Cf. (I1.
Clearly, a code is completely determined by its exact weight
distribution. Conversely, any nontrivial (0,1) solution of the
MacWilliams identities with respect to the partition C will be
shown to correspond to a binary lir.2ar code.

The Assmus-Mattson theorem

This famous result in f1] states sufficient conditions
under which the words of fixed weight in a code form a t-design.
We give a simple proof of the following extended version.

Proposition: Let I be a (t,n-t)-partition, let 6 be an
integer greater than t and let G c {0, 1, ... ,t}) {0, 1, ... ,n-t}
be a subset for which the "row weights" Vu

LtenE G I x, = u)] form a permutation of {6, 6-1, ... , 6-t}.
the weight distributions A(M) and U(7) of a binary linear
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On the Weight Distribution
of Certain Primitive Binary Cyclic Codes

Jacques Wolfmann, G.E.C.T.

Universit6 de Toulon et du Var, B.P. 132
83957 La Garde Cedex, France

The finite field of cardinality q is denoted by 7?q. Let
n, s, k integers such that ns = 2k -1. Let g(x) be a divisor
of x' - 1 over IF2 , and let 7r(x) be a primitive polynomial of
degre k over IF2 . We consider the following binary codes:

The cyclic code C, of length N = 2k - 1, generated by

XN - 1

g(X)7Tr(X)

The cyclic code F, of length s, generated by

X, -- I

g(X)

Theorem 1. If k = 2t, s = 2t + 1, then the set of non-
zero weights of C is the set of all integers 2 2t-1, (2 t - 1)w,
22t-I - w, 22t-I + 2t - w such that w is a non-zero weight
ofF.

Theorem 2. If k = 2t, s = 2t + 1, and if &(.) is a primitive
divisor of x" - 1 over IF2, then the set of non-zero weights
of C is the set of all integers 221-1, ( 2t - 1)w, 22t-I - W,

2 2t" + 2t - u) such that w is even and
I/l(2t +2 1)I 2

1 2½

Theorem 3. If k = 2t, and if g(x) = Z.V0 X then the set
of non-zero weights of C is the set of all the integers 221-1,
(2t - 1)w, 2 2t-1 - w,2 2t-' + 2± - w such that iv is even and
2 < w <, 2V.

Theorem 4. If
a) IF2 k is the splitting field of x' - 1 over IF2 ;
b) k 2t, and there exists a divisor r of t such that

2' - 1 (mod s),
then the set of non-zero weights of of all the integers

2 V-1 + (,,2t 1) - 1 u 2'

where e = (-1)t/r, and such that u? is a non-zero weight of
1.
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A threshold property of linear codes

Gilles ZVmor, and Girard D. Cohen
ENST

46 rue Barrault
75634 Paris Cedex 13

France

email: zemor~res.enst.fr, cohenOinf.enst.fr

Abstract where lvi denotes the weight of v and

We define and estimate the threshold probability 8 W(C) = {v I supp(v) D supp(c), c E C, c 0 0}.
of a linear code, using a theorem of Margulis orig- The behaviour we focus on is that whenever C has
inally conceived for the study of the probability of a large enough minimal distance, the (non-decrea-
disconnecting a graph. We then apply this concept sing) function p '-* fc(p) jumps suddenly from al-
to the study of the erasure and Z-channels, for which most zero to almost one, around a "threshold" prob-
we propose linear coding schemes that admit simple ability 0. We will show how this fact stems from a
decoding. We show that 6 is particularly relevant theorem of Margulis, originally designed to prove a
to the erasure channel since linear codes achieve a threshold phenomenon for the probability f(p) of
vanishing error probability as long as p < 0, where disconnecting a graph, when every edge is severed
p is the probability of erasure. Binomial codes have with probability p.
highest possible 0 (and achieve capacity). As for Threshold phenomena have been studied exten-
the Z-channel, a subcapacity is derived with respect sively in the context of random graphs. We have
to the linear coding scheme. For a transition prob- tried to apply those techniques to the coding con-
ability in the range I log(3/2); 1[, we show how to text, and draw some consequences.
achieve this subcapacity. As a by-product we obtain We will first place ourselves in the context of the
improved constructions and existential results for in- erasure channel, and show that the threshold prob-
tersecting codes (linear Sperner families) which are ability is a particularly relevant parameter for mea-
used in our coding schemes. suring the efficiency of a linear code.

We will also discuss at some length an applica-
tion of the threshold phenomenon to the problem of

Summary devising efficient codes for the asymmetrical channel
We investigate and apply a seldom studied prop- (the so-called Z-channel) where every 0 can be trans-

erty of linear codes, namely the fact that they tend formed into a 1 with a given probability p, while l's
to display the following "threshold" phenomenon. are always correctly received. In this setting, decod-
Let us consider a binary linear code C, of param- ing of a received vector is unambiguous whenever
eters [n, k, d], and let us choose randomly a vector v the latter covers no codeword apart from the one
of length n such that every coordinate is given inde- that was initially sent. The idea, broadly speaking,
pendently the value "1" with probability p and the is to use linear codes with properly chosen threshold
value "0" with probability 1 - p, 0 < p < 1. Call properties: the point is, the probability that the re-
fc(p) the probability with which v "covers" some ceived vector covers some parasite codeword should
non-zero codeword of C (i.e. is such that the support be very small whenever the proportion of 0 -+ 1
supp(v) of v contains the support of some codeword faulty transitions stays under a threshold value.
c). In other words We will show why highly intersecting codes are

a good choice, provide some constructions, and dis-
fc(p) = X pivI(1 - p)--I~ i cuss their behaviour relative to the capacity of the

yE W(C) Z-channel. It will turn out that for high error prob-
abilities (e.g. 0.586 < p :_ 1) our schemes perform
quite acceptably.
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The automorphism group of Automorphism groups of the binary double-
double-error-correcting BCH codes error-correcting BCH codes

The binary double-error-correcting BCH code (cf.[4]) is
T.Berger the BCH code over GF(2) of designed distance 5 and

D~partement de Math~matiqueslegh2 -1(m>),tsdfngstis

UFR des Sciences de Limoges, 123 av. A.Thomas, length 2 ' - 1 (m > 2), its defining-set is:

87060 Limoges Cedex, France. T = {2', 2' + 2i+1 / i E {O ... , m - 1}}

For m = 3, this code is trivial: it is the repetition
Summary code of length 7. We suppose m > 3.

Let Brn denote the binary double-error-correcting
BCH code of length 2m - 1. Let a- be a permutation

Primitive cyclic codes in a bmltiplicative group of B,,I, with associated polynomial f(X). Applying the
algebra. criterion of theorem 1, for s = 1 we deduce

A primitive cyclic code over a finite field K = GF(q) is m-1 rn-i
a cyclic code of length n = qr - 1. f(X) M ai 2 ' + Z b=X2 '+2'+'

Let G* be the multiplicative group of the finite field i=0 i=0
G = GF(qm). We consider such a code as an ideal of and for s = 3, we obtain
the modular algebra M = K[G*]. An element of Al is 2
a formal sum Z aIa 3 1 .

ijE{O,. m-l}

x = x 9 (g), xg E K. + (aibZ + a2 b )X-"+'-'+-"+l
gEG * ijE{O,. rn-l}

primitive cyclic code C of defining-set + +bib• - .ib" " '+ 2-+2 +'

T C {10..., n- 1} is the set i,jEfc{O .n-il}

The permutation u is in Per(Bm) if and only if its as-
C = {x E AM / p,(x) = 0, Vs E T} sociated polynomial f(X) is a permutation polynomial

and f(X)z is a polynomial with exponents in T.
Where Ps(2•-•G- x9(g)) = 'gEG- x 9gg, Using these conditions, we deduce the following the-

the sum EEG x 9,g
5 being not a formal sum, but cal- orem:

culated in 6 F(qr). Theorem 2 Form > 4. the automorphism group of the
This definition is equivalent to the usual definition BCH code Bm is the semi-linear group of GF(2r) orer

into the algebra R= K[X]/(Xq•-i). If a is a priliitive GF(2m ). For m = 4, the automorphism group of the
root of G, then the isomorphism is: BCH code B 4 is the semi-linear group of GF(16) oier

R - M GF(4).

Ei0n-1 iXi i (Ai) Corollary 1 For m > 4, the automorphism group of
the extended binary double-error-correcting BCH code
of length 2"' is the semi-affine group of GF(2"n). For

Permutation groups of cyclic codes. m = 4, its automorphism group is the semi-affine group
of GF(16) oe'er GF(4).

The permutation group of a cyclic code C is the group

Per(C) of permutations of the support G., which lets
C globaly invariant. References

It is known (cf. [2]) that each permutation 0" E S(G)
admits a unique representation polynomial of degree less [1] F.Laubie DEfilnition intrinsdque de certains codcs cy-
than pm': cliques el de leur extension Rapport de recherche,

d6partement de Mathdrnatiques, U'niversitý de Limo-
p"-1 ges, France 1991.

f(X) = E A i~i" A, E G. and o(g) = f(g). [2] R.Lidl, H.Niederreiter Finite Fields Cambridge Uni-
i=O versity Press 1983.

Theorem 1 Let C be a primitive cyclic code, and T its [3] F.J.MacNVilliams Codes and ideals in group algc-
dlfining-set. bras R.C.Bose and T.A.Dowling eds., Combinatorial
A permutation a E S(G*), with associated polynomial Mathematics and its applications. Univ. of North
f(,Y) = EinI AiX' is a permutation of C if and only Carolina Press. Chapel Hill (1969).
if, for all s E T, the polynomial f(X)sr mod XP - X
has exponents in T, i.e. f(X)' = EjeT li Xj, for some [4] F..l.MacWilliams N.J.A.SloaneThe theory of error
pj E G. correcting codes North Holland, Amsterdam (1977).
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A BOUND ON THE ZERO-ERROR LIST CODING CAPACITY*

Erdal Arikan

Department of Electrical Engineering
Bilkent University, Ankara 06533, Turkey

For comparison, the Korner-Marton graph-entropy bound [3) states
Abstract (in the above notation) that

We present a new bound on the zero-error list coding capacity, and using R-f < in I -(x ...... X.; Y.Nz(÷,, ...... Tkn)

which, show that the list-of-3 capacity of the 4/3 channel is at most 6/19 - ,n.P' mN . ,,=.
bits, improving the best previously known bound of 3/8. The relation where the outer summation is over all possible choices of distinct
of the bound to the graph-entropy bound of Ki~rner and Marton is also codewords x_ .. ,z-. E C. Thus, the Korner-Marton bound up-
discussed. perbounds the rate R by (essentially) the average of the quantity

n,=1 I(X,. ,,, ,;YnIxi(+1) a k.... LA,,), whereas here R is bounded
by the minimum of the same quantity.

The Bound
The bound here may also be seen as a generalization of the Shannon

bound on zero-error capacity [11, [2]. Shannon's bound is obtained by
Consider a discrete niemnoryless channel K = (_,.7, P) where I denotes looking at the zero-error code through a single user channel; here we
the input alphabet, ,7 the output alphabet, and P(jIi) the probability look at the code through a multiaccess channel.
that i E -7 ib recei~ed given that i E I is transmitted. A set S C IN is
called independent if for every y E j.N

N The 4/3 Channel
IJl P(Y4.lr.) = 0.

A set C C IN is called a zero-error list-of-L code, L Ž 1, if every SCC The 4/3 channel has a four letter input and output alphabet A
with II = L + IN is canindaependent~r lset. Zero-errorif-L c apacitfe y is C 1O, l,2,3}, and the transition probabilities P(j)i) = 1/3 for al] i,j i A,

with I = L + I is an independent set. Zero-error Ust-of-L capacity is i 5- j. The bound C3 < 6/19 is obtained (after some manipulation)
defined by by applying the above theorem using the following P'. (i) For any

CL. = lira sup N log M(N, L) i, ij E A, P'(jjiii, i) = 6,. (ii) For any it, i2 , i 3 ,j E A with i2  ,

where M(N, L) is the maximum possible size for a list-of-L code oflength , 0 if j E {it, i2 , i 3 };

N. (All logarithms are to to base 2.) P'(JIi1,i2,'3) = (4- I{i1.i 2 ,i 3 )-)' otherwise.

We call a channel k-uniform if k is the smallest integer for which
Ck > 0. The new bound is as follows. References

Theorem 1 The rate R of any list-of-k code C on a k-uniform channel [I] C.E. Shannon, 'The zero error capacity of a noisy channel,' IEEE
K satisfies Trans. Inform. Theory, vol. IT-2, no. 3, pp. 8-19, 1956.

I XN [21 P. Elias, 'Zero error capacity under list decoding,' IEEE Trans.
R - ( < mi 11 min F J(Xi- X'..aYnlz(,+a).. Xn) Inform. Theory, vol. IT-34, No. 5, pp. 1070-1074,ept. 1988.

- .x - nP=i

where P' ranges through all conditional probability assignments such that [31 J. Korner and K. Marton, 'On the capacity of uniform hypergraphs,'
IEEE Trans. Inform. Theory. vol. IT-36, No.1, pp. 153-156, Jan.

whenever {i .  i i ik} is independent in K 1990.

for all j. The mutual information termn is computed using the probability
assignment

Pr{X1,, = , Y......... L,,,,= Y,, = y,,} =

Q,,[Tl,)-...Qn(,{ n,,P'(y,,Jx1_ ... ._xk.)

where Q,, is the empirical distribution of the nth coordinate of thc code-
words in C. i.e., Q,(i) equals thr fraction ofceodcwordsx E C with z,, = i.

i E 1. The number f goes to zfro as N incrcas(s for any fixed R > 0.

"*This work ha, been supported by TO(BITAK under projedt TBA(; 1053.
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APPROXIMATION THEORY OF OUTPUT STATISTICS

Te Sun Han Sergio Verdfi
Dept. Information Systems Dept. Electrical Eng.

Senshu University Princeton University
Kawasaki 214, Japan Princeton, NJ 08544

Abstract

Given a channel and an input process we study the minimum randomness of comparatively few bits will be good enough when the system is very noisy,
those input processes whose output statistics approximate the original out- because, then, the output cannot reflect any fine detail contained in the inpui
put statistics with arbitrary accuracy. We introduce the notion of resolva- distribution.
bility of a channel, defined as the number of random bits required per Although the problem of approximation of output statistics involves nc
channel use in order to generate an input that achieves arbitrarily accu- codes of any sort or the transmission/reproduction of information, imt

rate approximation of the output statistics for any given input process. We analysis and results turn out to be Shannon theoretic in nature. In fact, oa

obtain a general formula for resolvability which holds regardless of the main conclusion is that (for most channels) resolvability is equal to Shan-
channel memory structure. We show that, for most channels, resolvability non capacity.
is equ~al to Shannon capacity. More concretely we show that the resolvability of an arbitrary channel

By-products of our analysis are a general formula for the minimum is equal to the supremum of the input-output sup-information rate, and thai

achievable (fixed-length) source coding rate of any finite-alphabet source, this quantity coincides with the Shannon capacity if and only if the channel

and a strong converse of the identification coding theorem, which holds for satisfies the strong converse.
any channel that satisfies the strong converse of the channel coding In addition to the abovementioned connections with the theories oltheorenm.teaovmnioe oneunswt teteoiso
theorenm, source coding and channel coding, the approximation of output statistics ii

related to the problem of identification via channels introduced by Aliswede
and Dueck [1]. Although a completely general direct identification codin

There are situations of practical interest where a random process needs theorem is known [V], its converse had been shown only in a so-called sofh

to be generated with some specified statistics. In order to generate a ran- version in [1] and in the strong sense in [3], but always within the contexa

dom process we assume that a primary random source with an equiprobable of discrete memeoryless channels. Here, we show a general strong con-
distribution is available (e.g. a stream of independent fair coin flips). A key verse to the identification coding theorem which follows as a simple conse-
measure of the complexity of a random process is the rate at which its most quence of the achievability part of the resolvability theorem.

efficient generator requires random bits, in order to generate every sample-
path of the random process. This question becomes particularly interesting The paper also investigates the effect of replacing the worst-case cam-

when rather than requiring the exact reproduction of the desired statistics, plexity measure by the average number of random bits required for approxi-
we require an arbitrarily accurate approximation of the finite-dimensional mation. as well as the replacement of variational distance by normalized

distributions. This requires the introduction of a measure of distance divergence. In the cases considered, the foregoing conclusions remain valid.

between the desired and generated distributions: in this paper we focus most We conclude with another result within the approximation theory oi

of our attention on the variational or 1, distance. We prove that for any output statistics which formalizes a folk-theorem is channel coding: the out.

random process the minimum complexity required to approximate its statis- put distribution due to any good channel code (a code with rate close tc

tics is equal to its minimum achievable fixed-rate (noiseless) source coding capacity and vanishing error probability) must approximate the output dism.

rate. and that this rate is equal to the sup-entropy rate of the random pro- bution due to the input that maximizes mutual information, and thus

cess. The Asymptotic Equipartition Property plays no role in the proof of achieves capacity.

this result, not only because it is not powerful enough to yield an approxi- The journal version of this paper is to appear in [41.
mation result in the sense of variational distance, but because the result

holds for processes that are not necessarily ergodic or stationary. The proof
uses a new technique we refer to as repetition. References

Some practical situations such as system simulation or the remote I. R. Ahlswede and G. Dueck. "Identification via channels." IEEA

artificial generation of random processes such as speech sounds or image Trans. Information Theory,. vol. IT-35. pp. 15-29. Jan. 1989.

textures, suggest an important generalization of the foregoing setup: Given 2. S. Verdu and V. K. Wei. "Explicit Construction of Optima

an input process and a channel, we want to approximate the resulting output Constant-Weight Codes for Identification via Channels." IEEE Tram
process. However, this problem does not boil down to the previous setup Information Theory, vol. IT-39. Jan. 1993.
when the approximation has to be accomplished by generating the input.
We define the resolvability of a channel as the number of random bits per 3. T. S. Han and S. Verdu. "New Results in the Theory and Applici

input sample required to achieve arbitrarily accurate approximation of the tions of Identification via Channels," IEEE Trans. on Informatio

output statistics regardless of the actual input process. Intuitively, we can Theory, vol. IT-38, pp. 14-25. Jan. 1992.

anticipate that the resolvability of a system will depend on how "noisy" it 4. T. S. Han and S. Verdu. "Approximation Theory of Output Statni

is. A coarse approximation of the input statistics whose generation requires tics," IEEE Trans. Information Theory. vol. 39. May 1993.

Thr% work a% supprticd in part by the Office of Naval Research undet
(6ran! N1(N)14.-A-)J 1l34

153



THE SPERNER CAPACITY OF LINEAR AND NONLINEAR CODES
FOR THE CYCLIC TRIANGLE

A. R. Calderbank
R. L. Graham
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Murray Hill, NJ 07974

P. Frankl
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Shannon introduced the concept of zero-error capacity of a discrete linear codes do not achieve Sperner capacity for the cyclic triangle.
memoryless channel. The channel determines an undirected graph on We use Fourier analysis or linear programming to obtain the best

the symbol alphabet, where adjacency means that symbols cannot be upper bounds for linear codes. The bound for unrestricted codes are

confused at the receiver. The zero-error or Shannon capacity is an obtained from rank arguments, eigenvalue interlacing inequalities and
invariant of this graph. Gargano, K6rner, and Vaccaro have recently polynomial algebra.
extended the concept of Shannon capacity to directed graphs. Their The statement of the cyclic q-gon problem is very simple: what is
generalization of Shannon capacity is called Sperner capacity. We the maximum size Nq(n) of a subset S. of {0, 1, ... ,q - 1}) with the

resolve a problem posed by these authors by giving the first example property that for every pair of distinct vectors z x (z.), E - (i) e S.,
(the two orientations of the triangle) of a graph where the Sperner we have z,-yj 1( mod q) for some j? For q = 3 (the cyclic triangle),
capacity depends on the orientations of the edges. we show N3 (n) t- 2n. If however Sn is a subgroup, then we give a

Sperner capacity seems to be achieved by nonlinear codes, whereas simple proof that SnI S T .
Shannon capacity seems to be attainable by linear codes. In particular,
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SECRECY ENHANCEMENT VIA PUBLIC DISCUSSION

Alon Orlitsky* Avi Wigdersont

Abstract to transmit only one message (say from Px to Py). For
this restricted case, [2] determined the secrecy capacity

(X, Y, Z) is an ensemble of independent random triples, of a probability distribution p in term of its single-letter
each distributed according to some probability distribu- entropies. Yet interaction introduces "memory" to the
tion p(x, y, z). Two legitimate users, Px having X and problem, and similar results appear unlikely.
Py having Y, communicate in order to agree on a joint In this paper we introduce a gradation of measures
key while keeping it almost unknown to an eavesdropper ranging from the one-way capacity of p to its secrecy
PZ who knows Z. Communication is conducted over a capcity. A communication protocol is m-message if it
noiseless channel according to a predetermined proto- always calls for at most m transmitted messages. For
col. Pz hears all transmissions over the channel and example, a two-message protocol may require Px to
knows the protocol used. We show: (1) The legitimate transmit a message and then call on Py to respond.
communicators can agree on the secret if and only if We define the achievable m-message secrecy rates and
they can find one using just two messages. (2) There the m-message secrecy capacity Cm(p) of p as we did
are cases where a secret can be found, but one message before, except that the protocols allowed must be m-
does not suffice. (3) Similar results hold whether the message. In particular, Ci(p) is the one-way secrecy
legitimate communicators are required to agree on the capacity considered by [21, and C(p) = linm.oo Cm(p).
secret with probability one or just with high probability. Using communication-complexity techniques we find

"a necessary and sufficient condition for the existence of
"a secret key (i.e., C(p) > 0). We use this condition

Summary to show that C(p) > 0 implies C2 (p) > 0, hence that
secrecy can be achieved if and only if it can be achieved

The following problem was introduced by Maurer [1] using just two messages. We then show that there are
and further investigated by Ahlswede and Csiszir [2]. cases where a single message cannot achieve a secret key
It concerns two parties with some common information (Ci(p) = 0), but two or more messages can (C(p) > 0).
conversing publicly to agree on a secret key that is un- Therefore, there is a gap between one message and two
known to an eavesdropper listening to their discussion. or more. Potentially, one could use the necessary and

Let (X, Y, Z) be a sequence (Xi, Yi, Z,)'.I of inde- sufficient condition to improve the general bounds, but
pendent random triples, each distributed according to a so far we have not been able to do so.
probability distribution p(x, y, z). Two legitimate users, We also consider the unambiguous secrecy capacity of
Px having X and Py having Y, communicate over a p where Px and Py must know the key with probability
noiseless channel according to a predetermined protocol 1. Again, we show that a secret key exists if and only if
in order to agree on a joint key. An eavesdropper Pz it can be achieved with just two messages, and we give a
who knows Z and the communication protocol, and has simple necessary and sufficient condition. Additionally,
access to all the bits transmitted over the channel, tries we examine the more general case where (X, Y, Z) is
to determine the value of the key. an arbitrary triple of random variables (rather than an

The probability distribution p is said to achieve a se- ensemble). We show that when X and Y are uniformly
crecy rate s if for every c > 0 there exists n, a (pos- distributed over their support set and are independent
sibly randomized) communication protocol 4 defined of Z the (appropriately modified) capacity is between
on X and Y, and a random key K, such that: (1) I(X;Y)-logmin{H(XIY),H(YIX)} and I(X;Y).
Px and Py know the key: H(KIX,$(X,Y)) < c and
H(KIY,$(X, Y)) < c; (2) Pz does not know the key:
H(KIZ, t(X, Y)) Ž H(K) - c; (3) K has a per-letter References
entropy of at least s: !H(K) >_ s. The secrecy capacity
C(p) of p is the largest achievable secrecy rate. [1] U. Maurer. Perfect cryptographic security from par-

Determining the secrecy capacity of a given distribu- tially independent channels. In Proc. of the 23rd
tion, or even whether this capacity is positive, seems Annual ACM Symposium on Theory of Computing,
difficult and only weak general bounds are known [1]. pages 561-571, May 1991.
For that reason, [2] considered the simpler one-way ver-sion of the problem. The legitimate users are allowed [2] R. Ahlswede and I. Csisz~ir. Common randomness in

information theory and cryptography part I: Secret
*Rm. 2C-361, AT&T Bell Laboratories,600 Mountain Avenue, sharing. In Proc. of the IEEE International Sympo-

Murray Hill, NJ 07974 sium on Information Theory, June 1991.
tComputer Science Department, Hebrew University,

Jerusalem 91904, Israel
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TOWARDS COMBINING SHANNON'S THEORY ON SECRECY SYSTEMS AND THE THEORY OF
AUTHENTICATION IN THE CASE OF MULTIPLE CHANNEL USE

Ben Smeets
Department of Information Theory

Lund University, Box 118
S-221 00 Lund, Sweden

Abstract P1 , satisfies Pr Ž_ M-1/R. Moreover, the same perfor-
In this paper we consider cipher systems that provide both mance can be obtained for L channel uses using a key
secrecy and security for a given number of (subsequent) whose uncertainty satisfies H(K) X L• log2 M. U
transmissions. We show that there exists a broad class This theorem suggests that the design of systems with
of situations in which we can do better (less key require- secrecy and security would be a simple one. Unfortunately
ment) than just concatenating a perfect secrecy cipher it can be shown that it may happen that we have Ps = 1.
and an authentication code. Let us for simplicity assume that we want P1 = Ps for

Summary every transmission. We can prove the following
One of the important results in Shannons seminal pa- Theorem 2: Suppose we have an A-code that provides
per on secrecy systems is that if the cipher is a perfect perfect secrecy and Pd = P, = Ps for one transmis-
group-operation cipher, i.e., a group-operation cipher in sion. If the A-code allows for an encoding rule up-
which the keys are uniformly, independently distributed, dating scheme as discussed in [5], then we have a ci-
then the system is unconditionally perfect, (1]. The situ- pher system that provides perfect secrecy for a discrete
ation in which the eavesdropper is active was considered memoryless M-ary source, and for which Pd = Pi =
by Simmons who first to give bounds on the probability Ps is equal for L subsequent transmissions such that
of a successful imitation attack, P1 , and the probability of the key uncertainty H(K) satisfies
a successful substitution attack, Ps. The results of Sim-
mons deal with the situation in which the (legal) sender L(H(M) + 1092 (H(M) - 10o2
sends only one message. His results were improved and Ll -lg
generalized to the case of multiple use of the channel, [3],
(4]. Note that if one naively concatenates a prefect secrecy

A naive solution for obtaining security against the ac- code with the A-code we would obtain H(K) >_ LH(M)+
tive eavesdropper's actions in the multiple-use case would (L+ 1) log2 7. Note also that Theorem 3, albeit for a spe-
be to select a new key for every new transmission. It fol- cial case, in some sense combines Shannon's result on the
lows from [2] that in the case of L transmissions the total key entropy for secrecy systems and the key requirements
amount of key is bounded from below by induced by the security demands.
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Introduction x-axis. The radial-radial and angle-angle systems had reference sites at (-
.5,0) and (+.5.0). For each of these three systems, Sg was calculated as a

Positioning Systems are devices that measure the position of remote function of a, using Mathematica. This involved using a combination of
objects. Examples include radars, sonars, the Global Positioning Systems numerical and analytical integration. The result is shown in Figure I.
(GPS) 141 and vehicle tracking systems [21. A recently published
monograph I I I describes a unified approach to the analysis of positioning
systems. The major element of this approach is Shannon theory. In that
monograph, it is shown that this approach can be used to establish a
performance measure for positioning systems (based on the average
mutual information), a limit to that performance (using a generalisation of
Shannon's capacity theorem), derive general theorems about positioning
systems, calculate a source information rate for the objects being
monitored and optimise aspects of the system performance. The analysis
presented in that monograph covers both multi-link and multidimensional
[3] channels for the case of additive, white gaussian noise (AWGN). -

Although the AWGN assumption does allow insight into the functioning
of positioning systems, it does limit the applicability of the analysis.

Information theoretic analysis of conventional communications systems
also started using the AWGN assumption, however much work has been The system with the lowest value of S was the polar system. This is to
carried out to derive results for more realistic channel models. Thi3 paper be expected as the radial and angular Ao-ordinates in a radial system ame
shows how a multi-link and multidimensional positioning system can be almost independent. Indeed, if the a priori p.d.f is circular then Sg= 0 . On
partioned into its various component parts, so allowing the results from the other hand both the radial-radial and angle-angle systems are clearly

conventional communication theory to be directly applied to positioning not independent and have large values of Sg. In the case of the radial-
systems. radial system this is because the determination of the first radial

measurement constrains the second measurement to those radii which will
Analyis intersect with the circle prescribed by the first measurement. Similar

reasoning applies to the angle-angle system.
The essence of the paper is prove a theorem which establishes that the
average mutual information of a multi-link or multidimensional channel is At first sight the values of S for the radial-radial and angle-angle system
equal to the sum of the average mutual information of each individual do not seem to be large, buJ it should be remembered that as a rule of
channel minus a term which represents the dcgree of interaction between thumb, a one bit reduction in performance will be translated to a halving
the channels (the following symbols are defined in I 1) i.e. in system accuracy, so a three bit loss will cause an eight fold reduction in

accuracy. Note that both the angle-angle and radial-radial systems have
I (xl, x2;yl, y2) =I T{l;01) +I ( ,2;ý2) - I (01;0i2) .... (1) very large values of Sg when a is either small or large. This result should

be treated with caution because a large value of S means that the co-
This equation is easily generalised to more than two dimensions, though ordinates are becoming highly correlated. This means that one of the
the form of the last term changes somewhat. assumptions used in deriving the basic equation will not be satisfied.

Equation (1) holds under the condition that the noise is independent This geometric term can also contrasted with the Geometric Dilution of
between channels e.g. the noise on one link is independent of the other Precision (GDOP) for these systems. Given a property selected point at
links. It can then shown that provided the measurement error is small and which to calculate the GDOP the overall trends shown in Figure I are
the co-ordinate system is not highly correlated that the degree of confirmed. A brief example is also provided as to how a systems engineer
interaction is dependent almost entirely on the geometric nature of the might use the results of this paper in the analysis of a positionilg system.
positioning system's co-ordinate system i.e.

Overall, the paper presents a result which will allow systems engineers to
I (€1;$2} = I (E1;•2) . . . . (2) directly apply results from realistic single-link channels to the analysis of

multi-link channels used in positioning systems. As well the analysis
This means that the overall performance of a system can be estimated allows a deeper understanding of the comparative performance of
from the individual single channel performance (already well explored for different types of systems.
conventional communication systems) together with this geometric term.
This term will be denoted Sg i.e.

9III (ýI;ý2). Rfrne

Results [I] C.R. Drane. Positioning Systems - A Unified Approach. A 170
page monograph to be published by Springer Verlag in second

The paper goes on to give examples of the nature of this geometric term half of 1992.
for radial-radial, angle-angle and polar positioning systems. A radial-
radial system measures position by calculating the intersection of two 121 G.K. Hurst. Quiktrak: a new AVL system developed in Australia.
circles. These circles are often derived from ranging measurements. An Proceeding of IREECON '89, Melbourne. 10:78-80. 1989.
angle-angle system measures position by calculating the intersection of
two lines. Two direction finding stations perform this type of operation. 131 T. Kailath. On multilink and multidimensional channels. IRE
Simple radar systems operate with a polar co-ordinate system. transactions on Information Theory, IT-80:260-261. April 1962.

The geometric term, S was calculated for a radial-radial, angle-angle 14] R.J. Milken and C.J Zoller. Principles of Operation of navstar
and polar system. In eag case a rectangular a priori p.d.f of width 2a and and system characteristics. Navigation: Journal of the Institute of
height a, centred around the y-axis with the bottom edge aligned along the Navigation. 25(2):95-106. Summer 1978.
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Abstract- We examine the problem of decoding a P1 P2 P3 P4
linear block code used over a binary symmetric channel 0.1 0.2" -_ 0 4 0.0S p

when the goal is to minimize the average information bit -001
error probability. For fixed crossover probability p, the
optimal decoder can be implemented by standard array. -0.02

We present optimal strategies for choosing coset leaders Pif (P) -P

in the very quiet (p -4 0) and very noisy (p -+ 1/2) limits. 0.03

SUMMARY 
-0.04

We consider the problem of decoding a binary (n, k) linear -0.05
block code C used over a binary symmetric channel (BSC) with
error probability p < 1/2. We assume that an information vector
u is chosen at random from U, the set of all binary k-tuples, with Figure 1: PiJ((p) -p for the (15,7) BCH code. The optimal decod-

each element of U having equal probability of being chosen. The ing rule may be one of five different strategies depending on the

encoder transmits the codeword c = uG across the BSC, where value of p.

G is a generator matrix of the code. where G-` is the right inverse of G and I is the optimal coset
If the goal of the decoding is to minimize the average proba- leader, which is the element of the coset r + C that minimizes

bility of a codeword error, then the well known solution is to use
a standard array decoder with minimum weight coset leaders. In +
some applications, however, we might be more interested in min- I" 'lCtEr+C •,1 -- ,

imizing the average information bit error probability Pif, given Theorem 1 For all p E [0, p,], the following coset leader selection
by strategy minimizes Pijf:

Pi~f •E[fu + •(r)[] 1. Let t1 ,.. . t2 denote the minimum weight elements in r + C.

where 6i(r) denotes the estimate of u given the received vector r, For each such t,, compute g, := t,G- 1.
and fx[ denotes thme Hamming weight of x.The ldenodtng prleHamming teeqieh t li p. -2. Let y be a binary vector of length k. If the majority of the giThe decoding probleln in the very quiet limit p -ý 0 has been have a 1 (0) in the ith position, then set y, equal to 1 (0). If
examined before when G is systematic, for example in [3], [4]. The hv a 1 ope in the ith position. then s et eat to 1(.- no majority exists in the ith position. then repeat steps 1-2

problem of choosing an optimal generator matrix under certain for the ith position using the coset elements of next higher

constraints is discussed in [2], [5]. Here we make no particular weight.
assumptions about the optimality of G.

in general, for a particular code there will be several different 3. The optimal coset leader is I = z(r) + yG. where z(r) is the
strategies, each corresponding to the optimal decoding rule over element in r + C having all zeros in the first k positions.
some range p E [p,].•p,]. As pointed out in [1], each of these The above strategy is different from that presented in [4]. If a
strategies canl be inl)lemnented by standard array. For example,e cn coset has a unique minimum weight vector, then this vector is the
Figure 1 shows P/,f(p) -p for the (15.7) BCH code with a system- optimal coset leader when p < pl.
atic generator matrix and optimal decoding. Each 1, is a root of
a polynomial of the forum Theorem 2 Suppose that the generator matrmr is systematic. i.e.,

G = [Ik( P]. where Ik is the k x k identity matrix. The following
F P_0 straicgy minimizes Pijf in the very noisy region p E [p,,. 1/2]: If

, --- ,1 -P) the ith column of I. occurs j times in G. then decode the ith
XEC: EC!information bit by treating each of these j positions a., a repetition

wher. C'O)(C")) i th se ofcodeord tht cn betrasmited code and ignoring all other positions of the received vector.
where C•°) (C~11 ) is the set of codewords that can be transmitted

when the ith bit of u is a zero (one). Thus if no colunim of P is equal to a column of Ik. then the

After some manipulations. we find that the optimal P5.f is decoding strategy that minimizes Pi~f when p > p,, is to ignore
all parity check bits. I.e., the optimal coset leader will have all

S(1 - p) + u p _ q+uGI zeros in the first k positions. For example. in Figure 1. where a
= •k qQ nnU UEU - systematic encoding of the (15.7) BCH code was used, we see that

for p > p4 .32. we get P,,r = p.

where Q is any choice of coset representatives. For fixed p. the REFERENCES
optimal estimate of the iuformation vector is [(] P. Delsarte. IEEE 7Tans. Info. Th. 24 (1978). 70-75.

6(r) =(r + I)G-1 [2] L. A. Dunning. IEEE Trans. Info. Th. 33 (1987), 91-104.
[3] M. Elia, G. Prati. IEEE Thans. Info. Th. 31 (1985). 518-520.

[4] B. L. Montgomery, B.. K. V. Kumar. IEEE Trans. Info. Th.
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under Grant NSF-NCR-9105832 [5] G. Seguin. IEEE Trans. Info. Th. 32 (1986), 319-322.
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AbstractI

Many coded modulation constructions are obtained as some E, I I 22

restricted subset of an infinite constellation (IC) of points in the
n-dimensional Euclidean space, for example, lattice code. We and o(n) is a sequence of reals such that lim =0. Then

shall consider an IC as a code without restrictions employed for n---

the AWGN channel. We construct exponential upper and lower i: there is a sequence of infinite constellations S. , n=l,2.... (n

bounds for the decoding error probability of an IC as functions is dimension of the Eudidian space) such that average decoding
Serror probability of S satisfies the following asymptotical

of generalized SNR #=," 2 /a2, where y is the density of IC (the inequality - - lnX(S ) Z (A) + o(n),
number of points on the unit of volume) and 62 is the dispersion n
of the AWGN. The upper bound is obtained by means of a ji:forany infinite constellation S. - InIS.) -•(#) + o(n),
random coding method and it is very similar to the usual random n
coding bound for the AWGN channel. The exponents of these IL _.2me.
upper and lower bounds coincide for lower values of jL. We show iii: for any sequence of IC S,, n=1,2, ... .such that it <2ie,
also that the exponent of the random coding bound for the
ensemble of all possible IC's with the fixed density y' coincides lim MS,,) •0.5.
with the exponent for the ensemble of linear IC's - lattices. We "Go
conclude from this fact that lattices have the same meaning with Theorem 2. There is a sequence of lattices G. , n=l,2,....
respect to an AWGN channel as linear codes have with respect to (n is the dimension of the Euclidian space) such that the
a discrete symmetric channel without memory. decoding error probability X of G, satisfies the following

Summary asymptotical inequality - InnIO) LEu (;L) + o(n).

During the last years several efficient codes for a channel It is well known 141 that in the case of discrete symmetric
with additive white Gaussian noise (AWGN) were constructed by channels without memory the random coding exponents for the

means of coded modulation methods. Many •oded modulation ensemble of all codes and for the ensemble of linear codes

constellations were obtained as some restricted subset of an coincide. It follows from Theorem 2, the same fact take place

infinite constellation (IC) of points in the n-dimensional also in the AWGN channel case for codes without restrictions.
Euclidean space, for example lattice codes [11, [2]. Obviously, a The question, whether the random coding exponents for the
good code can be attained only from a good IC. Furthermore the ensemble of all codes and for the ensemble of linear codes
decoding error probability of the code is often estimated by means coincide also for any additive noise continues channel without
of the parameters of the IC from which this code is obtained, memory, remains open.

Any countable set S={s,, s 2 , ... ) of points in the n-
dimensional Euclidean space E, will be called an infinite References
constellation (IC) of length n. Let Vj(r,s) be the n-dimensional
sphere of the radius r centered at the point s. Denote
V.(r)=V,(r,O). Let M.(S,r)=ISrV,(r)l, where IAI is the [11 J.H. Conway and NJ. Slone, "Sphere Packings, Lattices and

(S,r) Groups", New Jbrk: Springer, 1988.
cardinality of the set A. The limit lim r = Y, if [21 G.D. Forney, Jr., "Coset Codes - Part 1: Introduction and

r-0. Geometrical Classification," IEEE Trans. Information
exists, is called the density of S (here IV.(r)I is the volume of Theory, vol.IT-34, no.5, pp. 1123-1151, Sept. 1988, Part H.
the sphere V. (r) ). An IC for which the density y' exists is called [3] C.E. Shannon, "Probability of error for optimal codes in a
a regular IC. We shall consider a regular IC as a code without Gaussian channel," Bell Syst. Tech. J., vol.38, pp. 611-656,

n May 1959.

restrictions for AWGN channel. The value &=y 2 /o2, where o2 [41 R.G. Gallager, Information Theory and Reliable
is a dispersion of AWGN, is called a generalized SNR. Communication," New lbrk: J. 4iey, 1968.

Using the random coding arguments [21, [3], we derive the
following theorems.

Theorem 1. Let

A ,' 8m !p,

E 1 -ln A , 41e !ýs <Sx

- - - In-

4T-ie 22' 2 .5 <4m;
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Noncoherent detection schemes are extensively used when it is dif- The Chernoff bounding technique is employed to obtain upper

ficult to establish or maintain an accurate carrier phase [1]-[2]. We bounds on the pairwise error probability and the average bit error

present a noncoherent coded system bas04 on BPSK modulated con- probability, and a simple expression for the generaliLed cut-off rate

volutional codes which bridges the performance gap with respect to co- [3]. Large deviations techniques are used to find the exponential rate

herent coded systems by making use of a noncoherent decoding metric of the error probability of the proposed system. This parameter leads

which incorporates an observation interval of several channel signals. to the definition of the equivalcnt free distance of the underlying con-

The discrete time channel model considered in this paper is givell by volutional codes of the noncoherent system. Upper bounds on the free

X," + W1 jE~ distance are provided as well.

The metric in (2) raises the problem of phase ambiguity since it

where X, = +v/--, and Y. are the transmitted and the received signals, is invariant to a 1800 rotation of an L-long subsequence. Convention-

respectively. The noise W, is a sample of an independent and identi- ally, this problem is resolved by using a reference signal and differential

cally distributed sequence of complex Gaussian random variables with encoding and decoding [1]-[2] In our approach, however, the phase am-

zero mean and variance No/2 in each dimension. The carrier phase biguity problem is resolved as an inherent part of the coding system in
0 is assumed to remain constant over L channel signals and to be a general framework of catastrophic error propagation. Nevert!eless,

uniformly distributed in the interval [-7r,r). For a rate k/n convolu- there are close relations, depending on the carrier phase model, be-

tional code, the suboptimal noncoherent branch metric calculated for tween both approaches. It is shown that for a model of carrier phase
a subsequence of L = Jn signals is given by changing arbitrarily every L channel signals, the proposed system is

equivalent to appropriate differential systems, and for a constant car-
L Y 2 rier phase, the proposed system constitutes the natural framework for

q = F YX' (2) analyzing and synthesizing standard differentially encoded systems [2].
J=1 I..

In particular, it is concluded that known optimal codes for coherent

The parameter L is referred to as the length of the observation detection, namely those codes which achieve large Hlamming distance.

interval. The metric of an entire code sequence is given by the sum of are not necessarily optimal for various diflerential systems as long as

metrics of its constituent L-long subsequences. Since L is a multiple of the observation interval is longer than two. This fact is demonstrated

n, the metric is calculated over an integral number (J) of branches in by the bounds on the pairwise and bit error probability and verified

the trellis diagram of the code. Therefore, for an arbitrary J and for by the equivalent free distance of specific codes found by a computer

a given number of states, decoding is easily ac•complished by using a search.

conventional rate j± Viterbi decoder with the same number of states

and a branch metric given by (2). Note that since the metric (2) References
is calculated separately for each subsequence without any regard to

previous subsequences, the error performance of the system would be [1] D. Divsalar and M.K. Simon. "Multiple-Symbol Differential De-

the same whether 0 changes arbitrarily once every L signals or remains tection of MPSK". IEEE Trans. on Commur;.. Vol. 38. No. 3.

constant forever. pp. 300-308. March 1990.

[2] D. Divsalar, M.K. Simon. and M. Shahshahani. "'The Perfor-

mance of Trellis-Coded MDPSK with Multiple Symbol Detec-

tion". IEEE Trns. onr Commun., Vol. 38. No. 9. pp. 1391 -1403,

September 1990.

[3) M.K. Simon. J.K. Omura, R.S. Scholtz and B.K. l~evit. Spread
Spectrum Communications. Computer Science Press. Rockville,

Ml).. 1995
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A theoretical performance analysis has been conducted for the re- Samples of our calculations are shown in Figures 1 and 2, below.

ception of noncoherent frequency shift keying (NCFSK) over a fading In Figure 1 we show how Rician fading degrades with correlated branch

channel. The receiver is a bank of energy detectors, one energy detector diversity and square-law combining. Figure 2 repeats the situation for

for each frequency in the NCFSK signal set. The tones used in this set are the Rayleigh case. The loss due to correlation is greater for Rician than

assumed to be orthogonally spaced. The key aspect of the study is that for Rayleigh. Thus, in a correlated diversity environment, performance

antenna diversity is considered and the fading on the diversity branches in Rayleigh fading can be better than in Rician fading. This can never

is assumed to be correlated. A general number of diversity branches is occur for uncorrelated fading.

considered. The signal set is ' -, 4- or 8-Ary NCFSK. The fading is In the result just discussed the correlation coefficient between diver-

assumed to be flat and to vary slowly in time. Both the Rayleigh and sity branches was the same. The weighting on branches was equal. No

Rician fading models are treated, matter what the distribution of correlation coefficients between branches,

Two diversity combining rules are considered. In square-law corn- equal weighting per diversity branch was always found to be best.

bining the outputs of the various diversity branches for each energy detec- We have also considered selection diversity combining and compared

tor are weighted and summed. In selection diversity the diversity branch it to square-law combining. It was found that selection combining is

with the largest signal-to-noise ratio is the branch chosen for NCFSK inferior to square-law combining in correlated diversity situations. A

detection, report has been written on our research and is referenced as [I] below.

We first discuss our results for square-law combining. It is well A list of previous research on correlated diversity branches is given

known that a Rayleigh random variable can be regarded as the magnitude in [I]. Finally, Mazo's matched filter lower bound [21 for two-beam,

of a complex Gaussian random variable. In our correlation matrix the frequency-selective fading involves a quadratic form. We have applied

real parts of these variables on different branches are assumed to be our diagonalization method to it and rederived Mazo's result. The

correlated. The same is true of the imaginary terms. However, the derivation is given in [1].

real and imaginary parts are always assumed to be uncorrelated. The References
detection random variable is a sum of squares of these variables. This [11 P.J. McLane and CS. Chang, "Selection and Square-Law Combin-

sum is then transformed to another sum of squares, but now the terms ing for NCFSK with Correlated Branch Diversity. Final Progress

are independent. The probability of error is then expressed as up to Report, Part If", "A Study of Space Communications Spread-

a two-dimensional integral in the transformed random variables. This Spectrum Systems", The Department of Communications. DSS Con-

diagonalization technique works with any correlation matrix, Rician or tract No. 36001-0--3505/01-SS.

Rayleigh fading, and with any practical order of diversity L. [21 J.E. Mazo, "Exact Matched Filter Bound for 2-Beam Rayleigh

Fading", IEEE Trans. on Comm., Vol. 39, pp. 1027-1030. July
The research contained herein was funded by the Department of Commu- 1991.

nications, Contract #36001-0-3505/01-SS.
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Figure 1: BER for K = 5NdB Rician and L .1. Figure 2: BER for K = 0 and L 4
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Abstract:- This paper addresses the problem of determining the of utmost importance to know me positions or errors. Therefore,
undetected error probability, P (e), for linear (n0k) block codes on calculating P (e) of a code on a channel with memory, compels one

channels with memory. In the past, P (E) was investigated mainly to take into account the underlying error mechanism present on the
l tchannel. The error mechanism is typically modelled by means ofon memoryless channels, such as the binary symmetric channel discrete Markov chains such as the Gilbert-Elliott and Fritchman

(BSC). We present two techniques for determining P e), where channel models.
both techniques employ trellis diagrams. The first technique is
based upon a trellis diagram of the states of a channel model such In the first technique developed, we construct a trellis diagram of
as the Gilbert-Elliott or Fritchman channel models. The second the states of a channel model such as the Gilbert-Elliott or
technique involves taking the trellis diagram of the syndrome Fritchman channel models. The length of the trellis is equal to the
register of a code as well as the stationary and transition length of a codeword, n. Assume that the transmitted codeword is v
probabilities of any of the aforementioned channel models into and the received word is r with the error vector being e, giving
account. Results indicate that in many cases P (e) for codes on r = v + e. Therefore, for a linear block code, whenever e is equal to

a valid codeword, r is also a valid codeword. This is exactly the
channels with memory, far exceeds that of P u(E) on memoryess process that takes place whenever an undetected error occurs. This

channels for the same code. This fact therefore makes it very technique determines the probability of e being any one of the
important to be able to calculate P (E) on channels with memory, nonzero codewords of a code by determining the probability of

) e occurrence of each codeword within a code except for the all-zero's
seeing that Pu(E) on the BSC certainly does not represent an codeword.

upperbound. We also show that the often assumed upperbound on
(n k) The second technique which we present involves the construction ofP u(E, 2- , is exceeded on channels with memory. The first a trellis diagram representing the states of the syndrome register of

technique that we present is applicable to short or low rate codes, the code. The length of the trellis is also equal to the number of bits
while the second can be used with high rate or long codes. in a codeword, n. Syndrome calculation is usually performed in

order to determine whether a received word is a codeword or not.
SUMMARY Whenever a received word is not a codeword, the syndrome

associated with it is non-zero, the syndrome being zero only if the
Until Leung & Hellman [1 proved differently, the undetected error received word is a valid codeword. This very principle is the basis
probability (P u(e)) for linear (n0) block codes was assumed to be upon which this particular technique for the determination of PU (E)

upper bounded by ,-(n-k)~ Inpapers published after this contribution is based. After construction of the trellis diagram of the syndrome

of Leung and Hellmad n 1), various classes of codes were register states, all paths leading from the all-zero state back to the

investigated with respect to probability of undetected error. This all-zero state in a number of transitions equal to code word length,
n, are retained. The rest of the paths terminating in non-zero stateswas done in order to determine which codes are proper and which after n transitions are discarded. The paths remaining in this way

are improper. Proper codes are those for which P u() is a can now be associated with all valid codewords of a code. This

monotonically increasing function in e, over 0 5 F - 0.5. Codes for reduced trellis diagram can now be used in conjunction with any
which P (,) is not a monotonic function in E over 0 !5 - -5 0.5 are binary channel model to determine P (E) for the code. The

U 14

termed improper. From the aforementioned one can gather that for advantage of this technique is that P (F) can be determined easily
proper codes P (a) is always bounded by 2iP- [1]. However, in for very long codes. It furthermore removes the need of knowing
investigations published previously, it was always assumed that the weight spectrum of the code. The limiting factor in this case is

errors occurred independently, i.e. the channel used is the Binary the length of the syndrome register.

Symmetric Channel (BSC). The first technique takes all codewords into account making it

usable with smaller and very low rate codes, this being due to theOn many real communication channels such as the switched fact that considering all codewords soon becomes very complex intelephone network, rlarger high rate codes. The second technique is usable with high
independently but in bursts [2]. The equation, rate codes, seeing that not all codewords are considered and the

n complexity in this case is linear and not exponential as in the first
technique.P )="-A'>a(1-etn'', (11

i=l

with A the weight enumerator of the (n~k) block code, only holds

for the determination of P (F) on channels without memory, i.e. theIi

BSC [3]. 111 S.K Leung-Yan-Cheong and M.E. Hellman, "Concerning a
Bound on Undetected Error Probability." IEEE Tranv.

With this paper we intend presenting techniques aimed at InfOrm. Theory, vol IT-22, pp. 235-237. Mar. 1976.
determining P "(r) for linear cyclic block codes on channels [21 L.N. Kanal and A.R.K. Sastry. "Models for Channels with
modelled by the well-known Fritchman and Gilbert-Elliott channel Memory and their Applications to Error Control," IEEE
models 12]. Procccdipuzs. Vol. 66, pp. 724-744, July 1978.

131 S. Lin and DJ. Costello, Errir C(ontrol Coding.
When determining P (wI for codes on channels with memory., it is Fundamentals and Applications. Englewood Cliffs. NJ:

u Prentice-Hall, Inc.. 1983.
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SIMPLIFIED RECEPTION OF CONVOLUTIONALLY ENCODED CPM SIGNALS

Ryszard Bobrowski, Witold Holubowicz

Franco-Polish School
of New Information and Communication Technologies

ul. P. Mansfelda 4. 60-854 Poznah, Poland

In this paper, we study the simplified For example, Fig. 2 shows two systems
reception of convolutionally encoded CPM that may be compared. In both cases the number
signals. Our receiver is of the Viterbi type, of receiver states is the same. System B, even
but the number of receiver states is smaller though employing a suboptimum receiver, would
than that of the optimum one. We use the often outperform the system A in terms of
concept of reduced state sequence estimation error performance. Hence, under these new
(RSSE), originally introduced by Eyuboglu et constraints, the optimization moves, to a
al. for the reception of signals in the ISI large extent, to the transmitter side. In most
environment, cases examined by us, the most efficient

solutions were found not to be based on the
Summary optimum receiver but rather on the RSSE

receiver with the reduction factor F=2.
The block diagram of the system

considered is shown in Fig. 1, where G is a
convolutional encoder, M a finite state References
sequential machine that models a CPM modulator
and V is a receiver of the Viterbi type, but [11 M.V. Eyuboglu, S. U. Qureshl. "Reduced-State
the number of receiver states is smaller than Sequence Estimation with set partitioning and
that of the optimum one. In the receiver we Decision Feedback, "IEEE Tran. on Commun., vol.
use the concept of reduced state sequence COM-36, pp. 13-20, Jan. 1988
estimation (RSSE), originally introduced by
Eyuboglu at al. for the reception of signals 121 A. Svensson, "Reduced State Sequence Detection of
in the ISI environment (1). The idea of Partial Response CPw", submitted to IEE
Eyuboglu has been then used by Svensson (2] Proceedings, Part I
and Huber [3] for the reception of uncoded CPM (31 J. Huber, W. L. Liu, "An Alternative Approach to
signals. In this paper we apply this concept Reduced Complexity CPM-Receivers", IEEE JSAC, vol.
to the reception of convolutionally encoded SAC-7, pp. 1437-1449, Dec. 1989.
CPM signals. The receiver operates on the
trellis which is reduced as compared to the (4] W. Holubowicz, R. Bobrowski, "Simple Receivers for
combined trellis of the encoder and the Convoluttonally Encoded Continuous Frequency
modulator. In our paper, following the results Modulated Signals", presented on 9-th
of our earlier research [4,5], the International Conference on Digital Satellite
unsimplified trellis for coded modulation has Communication, Copenhagen, Denmark, 18-20 May,
usually fewer states than the product of the 1992
number of modulator states and the number of (S] F. Morales-Moreno, W. Holubowicz, S. Pasupathy.
encoder states. The states of the unsimplified "Optimization of convolutionally encoded TFM
trellis are grouped into, so called, signals via matched encoding", accepted for
superstates. The channel in our paper is publication In the IEEE Trans. on Commun.
assumed to be an ideal Gaussian one.

First of all, we show that the RSSE
approach is applicable to the convolutionally
encoded CPM signals. Then, the asymptotic --------------
error performance of selected coded CPM a SO) " ,rt)
schemes is estimated by means of equivalent , --- iV .
Euclidean distance calculated from a ,-,
simplified trellis. Numerical results are -----------------------
presented for TFM and MSK signals combined -ni

with rate-i/2 short constraint length Fig. 1. Block diagram of convolulionaly encoded CdP communicati sysiew
convolutional codes. The results are also
compared with computer simulation. The concept
of matched convolutional encoding combined SySmA
with the simplified reception allowed us to
find schemes which, for the same receiver _o~uol CPN
complexity and bandwidth, outperform the
schemes found so far by values of up to 1.2 4 idB. so-2 Sv4 ,' 4

Finally, we perform a code-receiver

opimization procedure over the set of coded Sytm B
schemes with optimum and suboptimum receivers
lowest error probability, regardless of ..........--

whether the receiver turns out to be optimum md lmo,

or not. In that respect we introduce the
notion of the, so called "optimum transmitter" Sr 4 SM.4 SVmdI-
which is our search objecttive instead of the Fig1..Comp.soowcoromunicaJsysw,,L
traditionally used "optimum receiver". 163



A Markov Analysis of Digital PLL Based MPSK Demodulators

Michael P. Fitz,* School of Electrical Engineering, Purdue University
West Lafayette, IN 47907-1285, (317)-494-0592, email: mpfitz@ecn.purdue.edu

This paper presents a statistical characterization of a uniformly The acquisition performance is also easily characterized. This is
sampled, first-order, decision-directed (DD), digitally implemented, accomplished using the traditional absorbing boundary/state
phase-locked loop (DPLL) for MPSK modulations. This architecture techniques in Markov analysis. As expected, as K--0 the
is built in an extremely simple fashion and has near ideal coherent performance predicted by the discrete time analysis matches that
performance at moderate to high SNR. The phase detector (PD) predicted by the diffusion approximation 141. Figure 2 shows the
presented in this paper has an ideal sawtooth form (ST-PD), but the evolution of the phase error process during acquisition for a loop for
analysis is easily modified to obtain results for the generalized an unmodulated input signal. Note that t is the time normalized by
Costas loops, the Mth power loop [31, or other loops for modulated the loop bandwidth and the initial phase error was set to be qWo=18 0 )
signals. Figure 1 shows the analytical phase domain model for the which corresponds to the unstable attractor or the hangup point [1].
decision-directed loop (note: 0< K 51 is the loop gain). A major difference between the DPLL and the analog PLL

DD -- n DDK acquisition performance is the effect of the hangup anomaly.
/ Processing y +I

a .t=O.14 ...... .... .......l 0 ...... .. ...... .
- t--0=.43.2 . ..... ............ .. ................. .. . ..........,

Figure 1. Phase domain demodulator model. 1. -- G -Steady'-stat ..e-..

A discrete time Markov chain characterizes the DPLL and the
associated PD. The equation describing the loop operation is

a s s o i a t d P D T h e q u t i o d e c r i b n g h e l o p pe r a i o n i s .8 : ... . . . . .. ... .......... . ... ............... ........ ..... ........... .-.... ... ........ .. ..... ...... . . .. ... ........

Eq. (1) is a nonlinear equation since the phase additions and
subtractions are modulo-2nt operations. Assuming the input phase is 0 - - -5 0 go 35 t8o

a white random process (Nyquist prefiltering) then 6. is a first-order qp, degrees
discrete-time Markov random process. The Chapman-Kolmogorov Figure 2. The phase error pdf with an unmodulated input signal
equation and an initial distribution function are sufficient to produce during acquisition. "0=180 1, K=0.25, ST-PD, and SNRL=6dB.
a complete statistical description of the loop operation. Finally, the cycle slipping performance of the DPLL based

A comparison of this Markov analysis with the traditional demodulator is examined. Again, absorbing boundary techniques
diffusion approximation is instructive. Traditionally the analysis of and some well known Markov process results (5] permit the
continuous time loops assume a narrow loop bandwidth and claimed characterization of the moments of the time to slip. Figure 3
that a diffusion approximation is valid [2, 3]. This discrete time presents the numerical results of a mean time to slip analysis for
analysis does not require a diffusion approximation and provides QPSK modulation.
some advantages in analyzing synchronization systems. The
advantages of this analytical technique are that no approximations 10"
are required and fast time variations of the phase error (e.g., wide a
bandwidth systems) can be analyzed. Table I summarizes the
differences in the two analytical techniques.104 B K.2

Diffusion Approximation Markov Chain
0

Continuous time model Discrete time model . 0 .o.
Fokker-Planck equation Chapman-KolmogoroV

FP coefficients determined by State taio ....

the phase detector determined by a
characteristics transformation of random

variables on the input noise _,_,_,_,__,_,_

Valid for small loop Valid for all loop bandwidths -4 0 Eb/N0 dB4 8
bandwidths in comparison to

the inp~ut noise bandwidth I Figure 14. The mean time to cycle slip for the first-order DPLL for
Valid for any prefilter Input must be delta-correlated QPSK modulation versus loop SNR. Sawtooth PD.

,Nyquist prefiltering References
Not valid for time-varying Can examine time-varying 11) F.M. Gardner, "Hangup in Phase-Lock Loops," IEEE Trans.

ain Ip gain Commun., vol. COM-25, October 1977, pp. 1210-1214.
Not valid for looking at Can examine symbol-to- 121 H.J. Kushner, "Diffusion Approximation to Output Processes

symbol-to-symbol symbol phase error of Nonlinear Systems with Wide-Band Inputs and
phase error dependencies dependencies Applications," IEEE Trans. Inform. Theory, vol. IT-26.

Table 1. Comparison of the diffusion approximation and the November 1980. to. 715-725.
Markov chain model. 131 W.C. Lindsey and M.K. Simon, Telecommunications Systems

Steady-state performance is easily characterized with traditional Engineering, Prentice-Hall, Englewood Cliffs, NJ, 1973.
Markov techniques. The chain is easily shown to be positive 141 H. Meyr and L. Popken, "Phase Acquisition Statistics for
recurrent and asymptotically ergodic. An eigen-decomposition is Phase-Locked Loops," IEEE Trans. Commun., vol. COM-28,
used to evaluate the steady-state density function and the resulting August 1980, pp. 1365-1372.
bit error probability. 151 H.M. Taylor and S. Karlin, An Introduction to Stochastic

* This work partially supported National Science Foundation unde Grant NCR- Modeling, Academic Press, Inc., Orlando, FL. 1984.
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On the Applicability of the Fokker-Planck Method

in Telecommunications
(Summary)

L. Popken*

In the theoretical fields of telecommunications it can be observed question whether the sample paths are continuous or discontinuous is
that all too often the Fokker-PLanck (F-P) method is applied with- not relevant anymore. For deriving the pdf of the actual process the
out paying (sufficient) attention to the physical foundations and to the sample trajectories of the approximating Markov process are certainly
conditions for the method's actual applicability. not required to be continuous, although the physical process has almost

A well-justified system analysis approach can be found by taking surely continuous sample trajectories. This concept of actual process
the actual equations, that describe the physical system in question, as versus Markou process has been developed by Stratonovich in [21 which,
a starting point after which one can think up approximations. Often however, has often been quite severely misinterpreted also in telecom-
researchers in technical literature attempt to formulate these approxi- munications literature.
mations as if they were fundamental system descriptions. This, then, For physical processes, Stratonovich has developed the pdf p= as
leads to approaches like the F-P equation being applied to processes solution of the kinetic equation
that do not really satisfy the conditions for the applicability of the F-P ap, 0 1method. -- E=- [K,(z)p.(z)J (5)

Continuous range Markov processes [1] contain a subclass of pro- 8 = s..

cesses which in terms of the evolution of their pdfpr(z, t) are described where the individual intensity coefficients K,(z) must be developed
by the F-P equation by separate expansions. In fact, for the pdf p. a systematic two-

dimensional expansion is required, i.e. the primary expansion w.r.t.

- [K1(z)p] + K2(Z)p] (1) z and the secondary expansion per intensity coefficient KX(z) which is
2 [()represented by its terms K,, 1, Ki,2, Ks,3 ,.. ,i = 1, 2, 3,..., [3].

with two functions K1 (z), K2(z) where K 2(z) > 0. This subclass of If the physical process which drives a system, has a correlation time

processes is defined by three conditions of which two are given by "r, much shorter than the system time constant T0 , i.e. r. < r0, and
if the observation time interval t - to is much longer than ro, then the

im (A(t)) -- K1 (z) (2) intensity coefficients K,(z) can be approximated by their correspond-
At-0 At ing first expansion terms, i.e. Ki(z) ;t Ki.(z), i = 1,2,3,...; the

((AXt)) 2 ) ( Ki(z), i = 2, 3 ., become determined by the correlation functions of
lim A t(2(2) (3) the actual wide-band driving process. This procedure is formally equiv-•a-o At

= z(t + At) - a(t); the alent to the case of a mathematical, white driving process implying a
wherageis the talen o with anyed tim The t hird cond) oMarkov system process, Although the actual system process has almost

surely continuous sample trajectories, it can in terms of its pdf formal-

ly be replaced, in general, by a discontinuous Markov process, (2].
lim ((Aa(t)YJ - 0 j - 3,4,... It is the fundamental problem in several publications in the telecom-

At-0 at munications area that Stratonoich's work [2i is misinterpreted such as
was later replaced by the Lindeberg condition r. < ro together with (t - to) > ro would be sufficient conditions for

replacing the actual system process by a continuous Markov process to
Prob. {Iz(t + At) - z(t)f > 6} = O(At) (4) which then the F-P equation is applied, irrespective of the higher order

for any 6 > 0, [1]. correlation functions of the (non-Gaussian) noise.

The validity of the F-P equation is equivalent to the three conditions The F-P equation (I) can provide correct results, in particular if it is

(2) to (4) being true for the process z(t). applied to linear approximations; in thesc cases we restrict the system

A major question arises in so far whether Markov processes with analysis to those features (such as low order moments of the system
continuorusesample pars actuallyxin st inrwheaitye r p l processes w process) which coincide with the linear noise approximation. However,continuous sample paths actually exist in reality. For physical process- it is incorrect, as highlighted in [1), to consider the approach seriously

es the Lindeberg condition (4) is at best satisfied only approximately, beyond that, for instance to conclude the pdf

[1]. Therefore, the second order differential operator in the F-P equa-

tion is not a mathematical identity but an approximation only. In order p=(Z) = cost K. [ 2--- z (6)
to justify this approximation, a systematic expansion is required which, Kz(r) [ K2 (-')
except for special cases, shows the F-P equation to be, in general, in- which is the formal solution of the r-P equation (I).
consistent because it includes terms of the order of magnitude as those
terms which are neglected by omitting higher order derivatives. Ad hoc
prescriptions for cutting off higher moments of the fluctuations seem References
often to be implied by (numerical) needs rather than by logic.

Markov processes with continuous sample paths do exist mathemat- [1] N.G. van Ka'pen, "The diffusion approximation for Markov proc
ically and can be useful in describing reality, provided that underlying cesses," in 'Therodynamic. and Kinetics of Biological Processesconitinsareproento be adequately satisfied for the actual system by L. Lamprecht, and Z.l. Zotin, Eds. Berlin: Walter de Gruyter
conditions are proven 1983; (and references therein).
in question.
In reality there is no such thing as a (continuous) Markov process. How- [2] R.L. Stratonovich, 'Topics in the Theory of Random Noise,'Vol. I
ever, there may be driving processes with memory times so short that, New York: Gordon and Breach, 1963.
on the time scale of interest, it is appropriate to consider the systemprocess as well approximated by a Markov process. in this case, the [3] L. Popken, "On the applicability of the Fokker-Planck method in

telecommunications," International Symposium on Informatios
European Space Resenrch and Technology Centre, ESA/ESTEC, RF Systems Theory and its Applications ISITA, Singapore, 16-20 Nov. 1992.

Division, XRT, Kepleruian 1, P.O. Box 299, 2200 AG Nootedwijk, The Netherlands.
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THE SYNCHRONIZATION GAME
PN Code Acquisition in presence of a White Noise,

Average Power Constrained, Random, Symmetric Two-State Jammer

Jorge M. N. Pereira*
Communication Science Institute

EEB 500, University of Southern California
Los Angeles, CA 90089-2565

Abstract The theory is then applied to a White Noise Two-

The first, although restricted, solution of the Serial- State Jammer which randomly alternates betwen two

Search PN Code Acquisition problem in presence of equally likely jamming levels in order to satisfy an

Slowly Time-Varying Fading Channels is herein pre- average power constraint. In this case, no approxi-

sented, providing a determinant performance mea- mation is involved, since the channel is intrinsecally

sure for Spread Spectrum Systems under these con- discrete.

ditions. As a case study, a white noise, average power The results seem to indicate that at high SNRs,
constrained, random, symmetric two-state Jammer is the On-Off Jammer, alternating periods of radio si-
analyzed, and the corresponding minimax threshold lence what periods of total jamming (i.e., reserving
is determined. all the available power for the jamming ocasions), is

the worst possible in what refers to acquisition. For
Summary low SNRs a more elaborate Jammer, alternating be-
The solution of the PN Code Acquisition problem tween the On-Off mode and the Continuous mode
in presence of Time-Varying Fading Channels is one (i.e., jamming at the average power), is the worst
of the most important open problems in the area of possible. The receiver, by appropriately setting its
Communications, especially in light of the present threshold, can now play the minimax synchroniza-
trend towards mobility. tion game.

The first, although restricted, solution of the Serial-
Search PN Code Acquisition problem in presence of References
Slowly Time-Varying Fading Channels which can be
discretely approximated is herein presented, thus pro- [1] D.C. Cox, "Universal Digital Portable Radio
viding a much needed performance measure for Spread Communications", Proceedings of the IEEE, Apr
Spectrum Systems under these taxing conditions. 87

Two distinct approaches led to the exact solu- [2] J.M. Pereira, "Study of the effects of Fading in
tion of the approximated (i.e., discretized) problem. CDMA Code Acquisition in the Personal Coin-
One of them, original and making full use of symbolic munication Services Environment", Internal
computational capabilities now available, was found Report, Communication Sciences Institute, Uni-
to be particularly advantageous for large uncertainty versity of Southern California, Jan 91
regions (i.e., large number of states in the state tran-
sition diagram). A new, quite good approximate so- [3] A. Polydoros, On the Synchronization Aspects of
lution, requiring even (much) less computations, was Direct-Sequence Spread Spectrum Systems, Ph.D.

also found. Thesis, University of Southern California, Aug 82

"This work was partially supported by NSF PYIA grant [4] A. Polydoros, C.L. Weber, "A Unified Approach
NCR-8552527, and by grants from Funda•do Calouste Gul- to Serial Search Code Acquisition", IEEE Trans.
benkian, and Funda•do Luso-Americana parr o Desenvoivi-
mento, under sponsorship of the Instituto Nacional de Inves-
tiga~do Cientifica. The author is on leave from the Centro
de Andlise e Processamento de Sinais, Departamento de En- [5] P.M. Hopkins. "A Unified Analysis of Pseudo-
genharia Electrot~cnica & Computadores, Instituto Superior Noise Synchronization by Envelope Correlation",
Ticnico, 1096 LISBOA CODEX, PORTUGAL. IEEE Trans. on Comm., Aug 77
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PERFORMANCE ANALYSIS OF MPPM

IN NOISY PHOTON COUNTING CHANNEL

Tomoaki Ohtsuki, Iwao Sasase, and Shinsaku Mori

Department of Electrical Engineering, Keio University
3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223, Japan

characteristics are selected fromJ= ')s bo.Thrfete

Recently, there has been considerable interest in multi-pulse pulse c) symbols. Therefore the
sition modulation (MPPM), because MPPM reduces the transmission transition probability q is bounded by the above equation. Using the

bandw hto about half that of pulse position modulati )union bound on the irst-event error probability, it can be shown thatbandwidth(PPM) . the bit error probability Pb for a rate R = 1/n convolutional code is
In (21, the cutoff rate and the capacity of MPPM in noiseless photon bounded by PA < E- i-... WAP 2(h) where W, is the number of bit
counting channel are derived and MPPM is shown to outperform PPM
in terms of both cutoff rate and capacity. The optical channel is often errors contributed by the incorrect paths which are at distance h from
modeled by noiseless photon counting channel, but noise due to back- the correct path, and d1, is the minimum free distance of the code.
ground and detector dark currents exists on the practical optical channel. For the BSC, the pairwise error probability P2(h) is upper bounded by
However, the performance such as symbol error rate and bit error rate of P2 (h) < {21q(1 - q)11

1
2}1&. Figure 2 shows the bit error probability of

MPPM in noisy photon counting channel has not been analyzed yet. In the proposed system with R = 1/2 and constraint length k convolutional
this paper, we analyze the performance of MPPM in noisy photon count- codes where PA is approximated by the error-event probability. It is found
ing channel and propose interleaved convolutional coded MPPM system that the proposed system can greatly reduce the average transmitter
in order to reduce the average transmitter power. It is shown that the power compared with uncoded MPPM in noisy and noiseless cases. It
proposed system can reduce the average transmitter power compared is also found that the system with larger constraint length k has better
with uncoded MPPM. performance because of its higher error correction ability. For example,

In MPPM, the laser is pulsed in p slots in one signal block consisting the proposed system with k7 reduces signal energy p to achieve P5
of M slots with duration r, and J=(') pulse patterns can be formed 10-9 over uncoded MPPM form 12.0 to 4.2 in the noisy case with A.r =

o sr)1.0 and from 8.3 to 2.3 in the noiseless case with A,,r = 0.0. Therefore
by combining the positions of optical pulses. The optical channel is well the proposed system is effective to reduce the average transmitter power.
modeled by Poisson statistics, under which the output of the channel is
a doubly stochastic Poisson process with intensity A,(t)+.%. where A.(t) References
is the mean rate in photons per second due to the signal impinging on
the photodetector and A. is the noise intensity due to background and [1] H. Sugiyama and K. Nosu, "MPPM : A method for improving the band-
detector dark currents, utilization efficiency in optical PPM," J. Lightase Techsol., Vol. LT-7,

First we derive the probability of symbol error of MPPM in noisy no. 3, pp.46 5-472 , Mar. 1989.
photon counting channel. The probability of symbol error is given by [2] T. Ohtsuki, H. Yashima, I. Sasuse, and S. Mori, "Cutoff rate and capacity

of MPPM in noiseless photon counting channel," IEEE Pacific Rim Coal.,
P(e) = J EP(e/m) (1) Victoria, Canada, May. 1991.

where P(e/i) is the probability of symbol error when the symbol i is sent. ...., X 0.0
Assuming that in the case of equal symbol counts between the correct ', 1 .-. 0
symbol and some other symbol a wrong decision is made, we have t0' ,8.,",

P(eli)<_5 ,•U (N,<_5N jll.:< P ,(N,<_ V,/,I. (2) t o' (., p

'ii. iO , (16.2) MPPM
where the second inequality is justified by the union bound. And we " 0'
h ave 10

Pr(N, < N,/i] = Pr[N: < N] (3)

where Nj and < N are independent Poisson random variables with 10'
means dii(A. + A,)r and djAaTr, respectively, and dij is the distance
between symbol i and symbol j. The distance d,j is defined as d = p- v o 0 '
where v is the number of overlapped pulses between symboli anid symbol

i. Vt follows that 10' 24,3 MPPM

Pr[Ni <_ N,/i] = Q, (V2 A.r, ,2d,(A,. + ,4.)r] (J) (3.4 MPP

where Qi(o,f1) is Marcum's Q-function. Eq. (4) can be simplified by 10
using a Chernoff bound as 0 2 4 6 8 10 12 14 16

Pr[N, _< N,] = exp[-d,,( ,/r.. +\..). - •/•7)2] (5) 4 [photons/nat]

Combining Eqs. (1), (2), (4) and (6), we obtain Fig.1. BER for MPPM as a function of p photons/nat.

P(e) < i xp[-d,(\,/(.\. -+A).), - ~/7'. (6) 10'
i=I •i(16.2) M PPM

Defining p as the number of signal photons per information nat, we have 10, - A = 1.0
Air = pRIn(J) where R is the code rate. Next we show the bit error .... ..
probability of MPPM in noisy photon counting channel. By using theprobability of symbol error, the bit error probability P8 is approximately
bounded by P& < [2 L-,/( 2 L - 1)]P(e) where L is the maximum inte- ii.o

ito' -ger satisfying L < log12 ('). Figure I shows the bit error probability of uncod
MPPM in noisy photon counting channel as a function of signal energy 0. to' 4-5
u in photons/nat. The probability of pulse occurrence is selected to be 10
same %mong all schemes. It is found that increasing m and p improves 2.3
the performance of MPPM. Similar trends are obtained for the noiseless LU 0ol

case with A.,r=0.0, because MPPM can form more symbols than PPM
at the same probability of pulse occurrence. 0o'

In order to reduce the average transmitter power, we propose in-
terleaved convolutional coded MPPM system in noisy photon counting ,
channel. Each block of L input bits is fed into L parallel encoders. The
enoded bits are properly interleaved and each of L bits is sent with (m, p) 0
MPPM. On the decoding side, L parallel Viterbi decoding are employed 0 2 4 6 a 10 12
and the symbol is hard-demodulated with deciding p slots in order of
maximum counts in each frame. In this case, we model (m, p) MPPM li [pbotons/nat]
channel as a parallel combination of binary symmetric channel (BSC)
with transition probabilities q and 1 -q given by q _< [2L-i/(2L - 1)JP(e). Fig.2. BER for interleaved convolutional coded MPPM as a
In binary using case, 2L symbols which have the best distance function of constraint length k and p photons/nat.
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POWER MOMENTS OF EXPONENTIAL FUNCTIONALS
OF BROWNIAN MOTION

Yeheskel E. Dallal and Shlomo Shamai (Shitz)

Department of Electrical Engineering

Technion-Israel Institute of Technology, Haifa 32000, Israel

The distribution law of the Brownian Motion exponential func- The computational complexity of c(m, n) is of an exponential order

tional: in k rather than a factorial order characterizing previously reported

methods. We address also the efficient derivation of Eek given the set

e= exp (jv/2Wt] dt( , of the preceding moments {E' k1 motivated by the fact that power

moment statistical characterization often requires the availability of a
where {W1 , t E fl +lis a standard Brownian Motion, which mod- [ K

whee (t. E + i a tanardBronia Moion whch od- finite set of consecutive moments Ke [2],(3]. It is shown that
els the laser's phase noise, plays a key role in many of the recently f tEelJ k=0

proposed heterodyne lightwave communication systems. The exact Eek is readily given as the convolution of the preceding moments with

derivation of these statistics appears, however, a formidable mathe- a set of known casual functions.

matical task [I]. Invoking a signal flow graph formulation and com-

binatorial arguments, leads to a simple and computationally efficient References
closed form formula for the k'th power moment Iek induced by the

unknown distribution law. These results are useful in bounding the [1] G.J. Foschini and G. Vannuci, "Characterizing filtered lightwaves

performance of a variety of lightwave communications systems oper- corrupted by phase noise," IEEE Trans. on Inform. Theory.

ating in presence of phase noise [2],[3]. Vol. 34, No. 6. pp. 1437-1448, Nov. 1988.

The expression for Ee k is given in terms of a [2] Y.E. Dallal and S. Shamai (Shitz), "An upper bound on the

((k + 1)2 - 1/2(k + 1)k)-fold summation error probability of quadratic-detection in noisy phase chan-

nels," IEEE Trans. on Commun., Vol. 39, No. 11, pp. 1h65-1650,

(k! )
2 

k_ c(- , n) 0ý k Nov. 1991.1E iv E Y_ n!
m=O n=O [3] Y.E. Dallal and S. Shamai (Shitz), "Performance bounds for non-

where c(m, n) is a rational coefficient given by coherent detection under Brownian phase noise," IEEE Trans.
on Inform. Theory, Vol. 38, No. 2, pp. 362-379, March 1992.
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Sumrnary code. A two-codebook [5] 64-dimensional PQ using a 2D trellis code at ra
For high quantization rates, Lookabaugh and Gray have demonstrated that 3 bits/sample yields 0.04 - 0.06 dB performance improvement. This illu
the advantages of optimum vector quantization over optimum scalar quan- trates the advantage of applying codebooks with variable density. Compan
tization can he separated into the space filling advantage, the shape advan- to the predictive trellis coded quantizer (PTCQ) [4], for the same numb
tage, and the memory advantage [1]. Eyubo~lu and Forney have proposed of trellis states (4,8,16 and 32), the 64-dimensional PQ (with 100 sampl,
a lattice-based VQ in which the codebook consists of all the lattice points delay) performs 0.5-1.5 dB better than PTCQ (with 1000 samples dela,
that lie inside a suitably chosen support region (2]. They showed, for mem- for rate 3 bits/sample. For rate 2 bits/sample, the performances are aboi
oryless sources, there are two significant gains - the boundary gain and the same.
the granular gain - that lattice-based vector quantizers realize over uni-
form scalar quantizers. For memoryless sources, the scalar-vector quantizer In
of Laroia and Farvardin [3] can asymptotically (in block-length) realize the
optimal boundary gain. It however realizes no granular gain. The trellis
coded quantizer of Marcellin and Fischer [4], on the other hand, can realize
a significant portion of the total granular gain, but makes no explicit at- Cum
tempt to capitalize on the boundary gain. Recently, Laroia and Farvardin
have combined the above two ideas and proposed a fixed-rate trellis-based ;An o• An- Be VQ
scalar-vector quantizer (TB-SVQ) [5], which realizes both boundary and
granular gains.

The TB-SVQ is the dual of optimally-shaped trellis-coded constella-
tion for transmission over memoryless channels [6]. Laroia, Tretter and
Farvardin have recently proposed a precoding scheme [7] that solves the W An-3m- Qa

problem realizing both shaping and coding gains for transmission over in- Figure 1: Block diagram of the precoded quantizer.
tersymbol interference channels. In this paper, we combine the TB-SVQ
idea of [5] and the precoding idea of [7] to develop a quantization scheme
for correlated sources. Trellis State

We assume the source {X,} is the output of a linear pth-order au- m r 1D 2D D(R)

toregressive (AR) filter H(z) driven by a stationary memoryless innovation 1 4 8 16 32 4 1 8 16 32 1

process {W.) where H(z) = 1/(1-F,?=1 piz-'). We proposeaquantization ,2 16.76 16.53 16.72 16.8916.99 17.36 17.48 17.54117.60 119.25

scheme whose block diagram is shown in Fig. 1. This quantizer - referred 32 3 23.02 23.6123.71 23.77 23.84 23.75 23.83 23.8623.9025.27
to as the precoded quantizer (PQ), motivated by the aforementioned precod- 4 28.68 29.49 29.56 29.61 29.65 29.53 29.60 29.64 29.67 31.29

ing scheme, combines the precoder (to remove the source correlation) and - 2 16.88 16.65 16.81 16.91 17.07 17.63 17.72 17.78117.84

the TB-SVQ (to achieve both boundary and granular gains). 64 3 23.26 23.86 23.95 24.01 24.08 24.04 24.10 24.14124.18
The trellis code and SVQ share the common underlying scalar alphabet _4:2.9 5 9.829.93 2999'3003 29.79 29.85 29.89 29.91

Q = {...,-, -/3, 0,/63,3, .. }. The source sequence {X,} is first mapped Table 1: Performance (SNR in dB) of the PQ for an AR(1) Gausi
to the coset trellis sequence {A.), which serves as a candidate quantization
sequence. To check if a block of samples of {A.) is inside the codebook, Markov source (p, = 0.9).
{Au) is decorrelated to {Bý + Q.) where {B,) is a valid trellis sequence
(congruent to {A.,)) and {Qn } is some noise sequence that is confined to the References
Voronoi region of the coset lattice of the trellis code. The coset quantizer
removes {Q,} and produces {B.}. For high-rate quantization, {A.) is [1] T. Lookabaugh and R. Gray, "High-resolution quantization theory an
a good approximation to {X,} and the energy of {Qýj can be ignored, the vector quantizer advantage," IEEE Trans. Inform. Theory, vol IFl
therefore {B. } is a good approximation to IW 5 }. A TB-SVQ designed for 35, pp. 1020-1033, September 1989.
(W.) is used here for encoding (B.). The SVQ encoder takes a block of
samples from {B,.} and decides if the vector lies inside the codebook (defined [2] V. Eyuwoilu and G. D. Forney, Jr., "Lattice and trellis quantizatic
in the innovation domain). If it does, the TB-SVQ encoding algorithm is with lattice- and trellis-bounded codebooks - Part I High-rate theo
used to encode the vector. If not, the vector {X,} is gradually moved for memoryless sources," Sabmiuted to IEEE Trans. Inform. Theor

closer to the codebook boundary by considering the geometric shape of December 1990.

the boundary induced by the distribution of {W.). This is repeated until [3] R. Laroia and N. Farvardin, "A structured fixed-rate vector quantis.
the corresponding block of (B.) is inside the codebook. In the decoder, derived from a variable-length scalar quantizer - Part l:Memoryle
assuming no channel errors occur in the channel, the output of the TB- sources," IEEE Trans. Inform. Theory, to appear.
SVQ decoder is (B,)]. The precoding scheme of (7] is used here to generate [4] M. Marcellin and T. Fischer, "Trellis coded quantization of memor
the quantization sequence (A,). less and Gauss-Markov sources," IEEE Trols. Commas., vol. COM-3

The shape of the codebook is defined in the innovation domain. The cor-
responding codebook shape in the source domain is not necessarily optimal.
This is due to the occurrence of the overhead noise {Q,,). This is analogous [5] R. Laroia and N. Farvardin, "Trellis-based scalar-vector quantization fi
to the increase in the transmitted power for the precoding scheme described memoryless sources," Sabmitted to IEEE Trans. Inform. Theory, Jul
in [7]. Reducing the energy of IQ,) should improve the performance of the 1992.
PQ. This can be done by using higher dimensional trellis codes. [6] R. Laroia, "On optimal shaping of multidimensional constellations -

The performance of PQ for quantizing Gauss-Markov sources was ob- an alternative approach to lattice-bounded (Voronoi) constellations
tained via simulations using 100 sequences of 32,000 samples each. The Submitted to IEEE Trans. Inform. Theory, November 1991.
trellis decoding delay is 100 samples. Table I summarizes the perfor- [7] R. Laroia, S. Tretter, and N. Farvardin, "A simple and effective precom
mance (SNR in dB) of the PQ for encoding an AR(l) Gauss-Markov source ing scheme for noise whitening on intersymbol interference channels
(p, = 0.9) for dimensions 32 and 64 at rates 2,3 and 4 bits/sample. As ex- IEEE Trans. Comman., to appear.
pected, the PQ using 2D trellis rode performs better than using I1) trellis

tThis work was supported in part by National Science Foundation grants NSFD

MIP-91-09109 and CD-88-03012.
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Suppose we wish to estimate a random vector Y from a ran- Y (rather than to X) by a table lookup with a codebook of dimen-
dom vector X with an estimator h (-) that is constrained to take on sion m. In the special case where X is a subsampled version of Y,
a finite set of N values. For the mean squared error criterion, the the decoder can perform optimal interpolation of Y from a digital
optimal nonlinear estimator h (x) is given by the cascade of the representation of X. Until now, NLIVQ was based on an optimal
optimal unconstrained estimator g (x) = E [Y I X = x ] followed decoder for a given VQ encoder. Here we see that NLIVQ can be
by the optimal vector quantizer for the random vector g (X). The improved by jointly optimizing the encoder (which digitizes X) and
vectors X and Y may have different dimensions. We view h (x) As the decoder. This follows as an immediate application of the prob-
a generalized vector quantizer which optimally generates a quan- lem of optimal nonlinear estimation with finite range, posed in the
tized approximation to Y from observation of X. The special case first paragraph above. The performance achievable with NLIVQ is
where X = Y + W and W is independent additive noise was studied thereby improved and the applicability and utility of NLIVQ is
by Wolf and Ziv [1] and Ephraim and Gray [2]. Sakrison [3] con- correspondingly enhanced.
sidered the more general formulation of source encoding in the
presence of a random disturbance. References

Since h (x) has finite range, its domain can be partitioned into
N sets, Si, each the pre-image of a range value, where N is the 1. J.K. Wolf and J. Ziv, "Transmission of noisy information to a noisy
size of the range set. It is readily shown that receiver with minimum distortion," IEEE Trans. on Inform. Theory,

(a) the optimal range values Yiy) for a given partition are given vol. 16. 406-411, July 1970.

by yi = E [g (X) IXE S], and 2. Y. Ephraim and R.M. Gray, "A unified approach for encoding dean
and noisy sources by means of waveform and autoregressive model

(b) the optimal partition regions given the range values are: vector quantization," IEEE Trans. Inform. Theory, vol. 34, pp. 826-
Si = {x : IIg(x)-yi II < IIg(x)-yj II for all j} ignoring 834, July 1988.
boundary values. 3. D.J. Sakrison, "Source encoding in the presence of random distur-

In practice, design of h (x) can be based on a large set of empirical bance," IEEE Trans. Inform. Theory, vol. 32, pp. 165-167, Jan.
data pairs (X, Y) as a statistical specification of the random vec- 1968.
tors. In general, the domain regions Si are neither convex nor con- 4. A- Gersho, "Optimal Nonlinear Interpolative Vector Quantization."
nected sets. Thus, conventional vector quantizer design methods IEEE Trans. Commun.. vol. 38, no. 9. pp. 1285-1287, September.
are inadequate. The optimal h (x) must therefore be implemented 1990.
as a pattern classifier (an encoder) that maps the input X to an 5. Y.S. Ho and A. Gersho, "A Variable Rate Image Coding Scheme
index i followed by a decoder, a table-lookup operation with i as Using Vector Quantization and Clustering Interpolaion," Conf
input. Record, IEEE Global Commun. Conf., pp. 898-902, November

The above formulation and resulting design methodology 1989.

offers a notable improvement to a useful paradigm in vector quant- 6. S. Gupta and A. Gersho, "Feature Predictive Vector Quantization of
ization (VQ), called nonlinear interpolative vector quantization Multispectral Images," IEEE Trans. Geoscience Electronics, vol. 30.
(NLIVQ). The basic theory of NLIVQ was introduced in [4] and May 1992.

has found several applications, including multiresolution image 7. S. Wang. E. Paksoy, and A. Gersho. "Performance of Nonlinear
compression [5], multispectral image compression [61, nonlinear Prediction of Speech," Proc. Int. Conf Spoken Language Process-
prediction of speech [7], wideband audio compression [8], and ing. Kobe, Japan, November 1990, pp. 29-32.

enhanced decoding of standard transform coded images [9]. In 8. W.Y. Chan and A. Gersho, "Constrained-Storage Vector Quantiza-
NLIVQ, a signal vector Y of dimension m is mapped by a feature tion in High Fidelity Audio Transform Coding." Proc. IEEE Int.
extractor into a vector X of dimension k (usually k < m) which is Conf. Acoust., Speech, Signal Processing. Toronto. Canada pp.
then VQ encoded, producing an index (channel symbol) I; unlike 3597-3600, May 1991.

ordinary VQ, the decoder directly reconstructs an approximation to 9. S.W. Wu and A. Gersho. "Enhancement of Transform Coding by
Nonlinear Interpolation". 1991 SPIE Conf Visual Commun. Imag

f wee, work *a uzponed by te Ni.abcu science Fowidabon. do UC Miro PMVM. Rockwell Processing, Boston, pp. 487-498, November, 1991.
brmiic.,. Hughl Akcat. Emsrn Kodak. Camprosson Labs. and Fujitu Labs.
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1. INTRODUCTION (ii) Robustness against channel-errors.
Vector Quantization (VQ) is an important method for source coding Eq. (1) can be expressed as

and signal compression [I]. VQ is, however, not without problems, e.g.
robustness and complexity. Structured VQ [2] and channel optimized c=' i*u +Jc, , (5)
VQ [3] are areas of current research, aimed to overcome some of these ,-' •=i
problems. In this paper, we introduce a new flexible concept of VQ that
is robust both in terms of training databases and channel errors. The where uJ is column j of T. We define the weights of the bits as the
method can also be used to achieve reduced storage requirements and length of the corresponding vector u, in (5). Robustness against
search complexity. channel-errors requires that neighboring reconstruction vectors c have

small Hamming distances in the information part of the corresponding
2. THE VECTOR QUANTIZER code-vectors b. A second major result in this paper is that good

Consider a VQ constrained by the following linear mapping neighboring properties in the VQ are obtained by assuring small weights
in the redundant part of the code. The information part shall have high

c = T.b + m (1) and fairly uniform weights. The result is a VQ with inherent robustness
against channel errors.

where c is the reconstruction vector of dimension D generated by a (iii) Fast and Robust training.
code-vector b. Let the code-vector stem from a binary systematic block- The initialization of the matrix T is an important issue for
code convergence of iterations and channel-error robustness. We have devised

• T several efficient techniques for initialization based on assigning lowb = (i ...... ,.... c, (2) weights to the redundant bits. Note, moreover, that during the iterations,
where the k binary elements i, are information bits and the the c s are r the proposed algorithm takes second-order effects into account in each
redundant modulo-2 sums (parity bits) of the information bits. fhus, b adjustment of the VQ by solving for eq. (4). By using few redundant
is a code-vector in a (k+rk) linear block-code 14]. The 2* different bits, the number of parameters to adjust is low and, hence, robustness
code-vectors generate an equal number of reconstruction vectors. We against variability in training databases is ensured.
emphasize that only the information bits have to be transmitted in an
application, the redundant bits are introduced to control the degrees of 4. RESULTS
freedom in the mapping. Figure I below shows reconstruction vectors with associated Voronoi-

To achieve a suitable representation for signal-vector generation regions and a plot with vectors at Hamming-distance one connected for
purposes, binary 0 is represented by +1 and binary I is represented by two 2-dimensional cases designed by the proposed method.
-l in b. Hence, the points b constitute the ordered subset of the comers
of a k+r dimensional cube, as specified by the block-code. The VoronoiRegions Hamming-lneighbors VoronoiRegions Hamming-Ineighbors
projection matrix T is of dimension Dx(k+r) and the D-dimensional . "
vector m represents the mean-value of the source. For a given source to 7\//
quantize, both the projection, T, and the block-code must be selected. •
For a given block-code, an optimization involves the Dx(k+r+l)o. I .,//

parameters of T and in.
In order to compute an optimized mapping for an arbitrary source,

we use an iterative training technique with a database of representative 3 information bits and I parity bit 4 information bits and 4 parinty bits.
source vectors, x. We adopt the squared Euclidean distance as distortion Figure i. Illustration of results for a 2-dimensional memor), ss Gaussian
measure and restrict the discussion to zero-mean sources (m-0). The source. Left part: Linear mapping of (4.3) block-code. Right part: Linear
measure to be minimized is then mapping of a (8.4) block-code.

a = E~iIx - T b(xi (3) Table I and 2 below illustrate some results, in terms of Signal to-
Noise ratios, obtained for a memoryless Gaussian source and a Gauss-

where b(x) denotes the code-vector used to generate the reconstruction Markov source with correlation 0.5.
vector of a certain source vector x. Minimizing this with respect to T
gives an expression for the rows t, of T Table 1. Memoryless Gauss source. Table 2. Gauss-Markov source 0.5.

Efb(x).bT(x)I.t,=E[x,.b(x)] j=l.....D (4) D k r SNR D k r SNR 0 k r SNR 0 k r SNR

where x, is component j of x. We are now able to devise an block- 2 3 0 6.92 3 3 0 4.40 2 3 0 7.56 3 3 0 5.48
iterative algorithm for computation of the mapping: 1 6.96 3 4.48 1 7.64 1 5.49

(i) Initialize the matrix T. 4 6.96 4 4.48 4 7.66 4 5.49
(ii) Find the nearest reconstruction vector for each vector x of a 4 0 9.57 4 4 0 4.39 4 0 10.06 4 4 0 5.65

training database (i.e. b(x)). Compute the correlations in eq. (4) 2 9.60 2 4.51 2 10.27 2 5.69
for each row j. 11 9.68 11 4.60 11 10.32 11 5.69

(iii) Solve eq. (4) for the D rows of T. Evaluate the distortion aT. The results are given in dB and are obtained as the mean-value of
(iv) Repeat from (ii) until end of training, evaluation over 3 independent data-bases, each of size 500 000 vectors.

3. PROPERTIES
This way of representing a Vector Quantizer has a number of [. R EREnCVtdesirable properties. [I] A. Gersho and R. M. Gray. Vector Quantization and Signal

Compression, Kluwer Academic Publishers, Boston 1992.
(i) Few parity bits are needed. [2] T. R. Fischer, M. W. Marcellin and M. Wang, "Trellis-Coded Vector

By using every available parity bit, r = 2' - k - I, there are Dx 2' free Quantization", IEEE Trans. inf. Theory. Vol. 37, no 6. November 1991.
parameters in T and m, i.e. we are able to generate an arbitrary set of 13] N. Farvardin. "A Study of Vector Quantization for Noisy Channels".
reconstruction vectors. This gives an unconstrained VQ. For a given IEEE Trans. Inf. Theory. Vol. 36. no 4. July 1990.
application, we can choose any number of parity bits between this [4] R. E. Blahut, Theory and Practice of Error Control Codes. Addison-
maximum and zero. A main result of this paper is that by using only a Wesley, Reading 1983.
few parity hits, or even none, one obtains a robust result close to the [51 Y. Linde, A. Buzo and R. Gray, "An Algorithm for Vector Quantizer
unconstrained case. Design," IEEE Trans. Comm.. Vol. COM-28, January 1980.
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Tree-structured vector quantization (TSVQ) is an im- To generalize the method to trees of any depth. at each
portant alternative to full-search vector quantization since step, we fix all nodes of the tree but one and seek to mini-
it reduces the encoding search complexity from O(N) to mize the risk associated with this node. Given the updated
O(log(N)), where N is the decoder codebook size, while in- node, we can then optimize its descendant leaf codevectors
curring some additional distortion. Typically, the methods as the centroids of their respective partitions. This process is
for designing trees are greedy, growing the trees outward from repeated over all nodes of the tree. In principle, if the risk is
the root, node-by-node, by minimizing a suitable cost func- minimized at each node, the node updates are non-increasing
tion at each node. The optimization at each non-leaf node in the distortion of the tree and the method can he iterated
does not, in general, reflect the node's eventual role as a dis- until convergence. In our simulations, we applied the crude
criminant function, partitioning the input space in order to approximation of updating node representatives as centroids
minimize the distortion incurred at the descendent leaves. In of the data "owned" in a nearest neighbor sense by their de-
the splitting algorithm [1], for example, the test vectors at a scendants at the leaves. This low-complexity version of our
non-leaf node are chosen to minimize the distortion incurred method does not guarantee a descent, though in our simula-
at the given node, instead of minimizing the distortion at the tions it does improve upon the splitting solution. We tested
leaves. The resulting tree may be improved simply by mod- Gaussian and Gauss-Markov sources with vector dimensions
ifying individual nodes of the tree in order to achieve better from four to eight and tree depths from five to ten. Typi-
agreement with nearest neighbor classification at the leaves. cally, our method gained 20-30 percent of the performance

As an example, consider the TSVQ solutions of Fig- gap between TSVQ via splitting and full-search VQ via the
ure 1. The sub-optimal solution of Figure la was achieved LBG method. We expect that more improvement should be

possible with the use of a better linear discriminant.
n IV A shortcoming of the approach described above is the

dependence on the tree initialization. For complex data dis-
tributions, the problem of local minimum traps can become
severe, and prompts us to seek a method which is insensi-

IV _ __tive to initialization, and which can avoid some local min-
:In ima. Motivated bv the deterministic annealing method for

unstructured vector quantization and clustering [4]. we have
derived a related approach for the hierarchically structured

.t clustering problem. For the structured problem. we view
M __ _ _ the hierarchical partItion;ng requirement as prior knowledge.

(a) (b) and, accordingly, invoke the principal of minimum cross en-
Figure 1. Binary Tree-structured VQ. tropy. The resulting method has been tested on challenging

problems involving normal mixtures, and has been found to
by the splitting algorithm, despite a split at the highest level obtain significant improvement over both the splitting algo-
which minimized the node's distortion. To improve the split- rithm, and. for some examples. the K-means clustering algo-
ting solution, given fixed leaves, the highest level boundary rithm.

should be chosen to minimize the distortion at the leaves.
Finding the optimal boundary is equivalent to obtaining a REFERENCES
minimum risk linear discriminant. Several methods from the
pattern recognition field are applicable [2]. For the example [I] A. Buzo, A. G. Jr.. R. Gray, and J. Markel. "Speech cod-
of Figure 1. it suffices to choose the boundary in order to ing based on vector quantization," IEEE Transactions on
improve the agreement with nearest neighbor ownership at Acoustics, Speech, andSignal Processing, vol. 28. pp. 562-
the leaves. This can be accomplished by choosing the highest 574, 1980.
level representatives to be the centroids of data "owned" in a
nearest neighbor sense by the representatives's descendants [21 R. 0. Duda and P. E. Hart, Pattern classification and
at the leaves. Then, recalculating the leaf centroids yields scene analysis. New York. NY: Wiley-lnterscience. 1974.
the global minimum solution of Figure lb. [3] K. Rose, E. Gurewitz. and G. C. Fox. "Vector quantiza-

"*Supported by the Engineering Fondation with the cooperation of tion by deterministic annealing." IEEE Transactions on
IEEE, grant RI-A-92-12 Information Theory, vol. 38. pp. 1249-1258, 1992.
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1.2

Abstract

We address progressive transmission of full search im- 1A Y
age vector quantization. We build a progressive trans-
mission tree to define binary mergings of codewords for
successively smaller sized codebooks. The tree design
methods we apply are the generalized Lloyd algorithm 0.9,.

splitting algorithm, minimum cost perfect matching, and 0.9
a method of principal eigenvectors. Z0.s -

D~,h L- :rSVQ
Vector quantization (VQ) [1] is a lossy compression technique .,sh.Da .te GLACe-

that has been used extensively for image compression. Progres- 0.5 - GIAA
sive image transmission allows an image being transmitted to

be recognized early at the receiver; this saves bandwidth if the
wrong image is being sent. We present three new methods for
the selection of codeword indexes which allow for direct progres- Figure 1: The normalized MSE distortion at each bit rate for
sive transmission of images compressed with full search VQ. In intermediate codebooks
all cases, we fit a tree of intermediate codewords to a full search
VQ codebook and use the tree indexes as the codeword indexes, a bottom-up method, our third approach is a top-down method

A full search progressive transmission tree allows full search which seeks to minimize the distortion at lower bit rates. In this
VQ to be sent progressively. It is a balanced tree whose terminal case, we start with the centroid of the codebook and successively
nodes or leaves are labeled by codewords generated by a code- divide the codewords in half. The problem reduces to find an
book design technique and whose internal nodes are labeled by optimal partition to separate the size N codebook into two size
intermediate codewords derived from the leaf codewords. The T subcodebooks to maximize the decreased distortion between
tree is used to reassign the original indexes of the leaf codewords the centroid of the size N codebook and the two centroids of the
to new indexes that are compatible with progressive transmis- size 1 codebooks. Unfortunately, there are C(N, L) possible
sion. With each bit, the receiver displays the intermediate code- ways to choose tile partition and solving this problem becomes
word located at the internal riode being visited in the tree. impractical for moderate N. Our heuristic places a hyperplane

We use region-merging to build the progressive transmis- perpendicular to the principal eigenvector of the training set to
sion tree and determine the intermediate codewords. A region- divide the codewords in half. Some codewords near the hyper-
merging tree is formed by merging Voronoi regions of the original plane are exchanged to maximize the decreased distortion. The
codebook in pairs to form larger encoding regions. tree is built from the top down by repeatedly solving this opti-

Ordered VQ codebooks provide a simple method to build- mization problem.
ing the region-merging tree. In an ordered VQ codebook, the Figure 1 is the normalized MSE at each bit rate for intermedi-
codewords with neighboring indexes are also neighbors in the in- ate codebooks for the test medical images. The GLA followed by
put space. The region-merging tree is built by simply merging one-step optimal MCPM (GLA/MCPM) slightly outperformed
together regions with neighboring codeword indexes. We found the GLA at most bit rates with a maximum improvement of 0.44
that the generalized Lloyd splitting algorithm (GLA) gives code- dB. We feel that the simplicity of the GLA and the only slight
books that are reasonably well ordered, difference in performance makes the GLA more attractive than

Another method of forming a region-merging tree is minimum GLA/MCPM. In the same Figure, GLA/EIGEN which repre-
cost perfect matching (MCPM) from optimization theory [2]. In sents the principal eigenvector method, outperforms even TSVQ
MCPM we have a complete graph of nodes and a cost associated at most bit rates and of course gives lower distortion at the final
with matching each different pair of nodes. The cost of the bit rate.
overall matching is the total sum of the costs of matching each
graph node pair. To construct the region-merging tree, we choose References
the graph nodes to be the Voronoi regions defined by the original
codebook and the cost to be the increase in distortion due to (1] R. M. Gray. Vector quantization. IEEE ASSP Magazine
merging two Voronoi regions together. The tree is built from the 1:4-29, April 1984.
bottom up by repeatedly solving the MCPM problem. Running
MCPM to find the matching with minimum cost assures that the [21 E. L. Lawler. Combinatorial Optimization: Networks an,
increase in distortion at the next level of the tree is minimized. Matroids. Holt, Rinehart and Winston, New York, 1976.

For progressive transmission, the image quality at lower rates
is more important than at high rates. Unlike MCPM which is
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Generalised Theta Functions,
for

Lattice Vector Quantization 3 Generalized Theta Function
Let

Patrick Sol6, OA(q) - qll11.
CNRS, 13S, = (2)

250, rue A. Einstein, 4EA

06 560 Valbonne, France When p = 2 (2) is just the classical theta function [1] and
when p = 1 the Nu function of [4, 5). When A is obtained

Abstract: Generalized theta functions of lattices for from a binary code C' by construction A, we have
metrics of LP type are introduced and computed when Op.A(q) = Wc(0,.2z(q),8p,2z+1(q)), (3)
a coding-theoretic construction of type A,B, or C of the
lattice used for VQ exists. Upper bounds of the saddle where Wc is the weight enumerator of C.
point type and geometric lower bounds on certain sums of
their coefficients are derived and applied to the estimation
of the size of the codebook consisting of all points of the 4 Saddle Point Approximation
lattice within a sphere of given radius for the concerned
metric. Let g(s) = OP,A(e-), for s > 0.

Key words:Lattices, Vector Quantization, Theta Func- Theorem I
tion, Binary Codes, Saddle Point Approximation, Voronoi A
Diagram Sp(n, i)) !

where So is the unique nonegatave real solution of

1 Problem and Motivation m5
9(s) = e-'g'(s).

If the saddle point approximation applies chen this bound
When quantifying a multidimensional source with given is O(RHS of (1)).
pdf, the asymptotic equipartition principle of informa-
tion theory tells us that the samples of the source will
concentrate on or about the equiprobable surface. In the 5 Voronoi Covering Bound
case of a Gaussian law, these surfaces are usual euclidean
spheres. If a lattice A is used for quantizing the source Partitioning the sphere 5p(n, ra) into Voronoi domains of
with a sphere-shaped codehook then estimating the num- Pattio e phere it (ntain) into rono omais
ber of points inside the sphere is essential for determining the Lattice points it contains we see that RIIS of (I) is

always a lower bound for every m.the transmission rate.

We consider the case of equiprobable surfaces that are
spheres for the LP metric of the type 6 Acknowledgement

Sp(n,in) = {x E R"')lx(lp <__ m)n, We thank M. Barlaud, D. Gardy, A.M. Odlyzko, N.J.A.

Sloane for helpful discussions.

where IIzl(P 1xl z,. When the source is Laplacian

p = 1, and Si(n, m) is a so-called pyramid (or hyperoc-
tahedra). This case has practical applications in image References
processing [4].

[1] J.11. Conway, N.J.A. Sloane "Sphere Packings, Lat-
tices and Groups" Springer Verlag (1990).

2 High Rate Approximation 121 J. E. Mazo and A. M. Odlyzko, "Lattice Point in
High Dimensional Spheres", Mh. Math. 110, 47-61

Gauss' counting principle says that the number of points (1990)
with integer coordinates in a convex body is well ap- [31 ND. Elkics, AM. Odlyzko, iA. Rush." On the
proximated by its volume. This was proved to fail for packing densities of superballs and other bodies."
S2(n, Vy') and large n in [2]. If, however, n,p are fixed Inventiones Math. 105 (1991) 613-640.
and i is large this is a mere application of Riemann sunts.
If a lattice A is used with fundamental volume(=volume [4] M. Barlaud, P. Sole, M. Antonini, P. Mathieu, T.
of its Voronoi cell) vol(A) this says that Gaidon, "Pyramidal Lattice Vector Quan.tization

for multiscale image coding", submitted to IEEE
vol(S(n, i)) ()trans. on Image Processing.iSp(n, in)f'A , vol(A) (I) [51 P. So1t6, "Counting Lattice Points in Pyramids",

submitted to the proceedings of Formal Power
Explicit formulas for rol(Spln, )) can be found in [3]. Series and Algebraic Combinatorics, Montreal,

Canada, June 1992.
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Vector Quantization Codebooks from the Nordstrom-Robinson
Code and Berlekamp's Negacyclic Codes

Peter F. Swaszek
Department of Electrical Enginecring

University of Rhode Island
Kingston, RI 02881

Introduction
As an example, consider the Nordstrom-Robinson 115,256.5] code

Assume a dimension n random vector source X. A rate r vector quan. sa xmlcnie h orsrm oisn152.lcd

tizer is a mapping of X onto one of 2' = N representation vectors. [2]. An algebraic decoding algorithm [3] results in all regions having

The VQ is defined by these reconstruction codevectors, *,, and their the same probability of occurence (i.e. each M, = 128). The resultingThe Q i deine bythee rcontrucioncodvecors :t, ad teir performance is USE =I - 0.S5.ti9, slightly better thea scaler quanti-

associated quantization regions, Qj. Consider the performance inea- rrmanc ( USE = I - 0.5339). Although one could consder variations

sure of mean squared error per dimension. For minimum USE ea'h of this code (ext~ending to dimension 16 or shortening to 14, 13, and

codevector should be the centroid of its corresponding region. Fur- 12) the original dimension o vernsion ha best USE performance.

ther, if the codevectors are the centroids, then the MSE expression

reduces to the difference between the input and output variances. For
the discussions below assume that X has independent elements whose A Negacyclic Code Example
marginal density functions are unit variance, symmetric, and have

equal first absolute moment E{lzjI} = -. The first step in implementing the syndrome-based VQs consists of

Some recent work [4, 5] constructed VQ codebooks from the code- mapping the source vector onto a discrete sequence suitable for al.
words of binary linear block codes. Rather than a full-search im- gebraic decoding. Our approach in the binary code case was to pair

plemeutation we considered a syndrome-based mapping. Specifically, each element of the source vector with a separate codeword position.

taking the dual of antipodal modulation and syndrome decoding of an thresholding the source value (at zero) to produce a binary value. Thi.

(n, k) code, we considered the following rate k/n VQ implementation: worked since Hamming distance and Euclidean distance are directly

hard quantize each element of x to one bit (with threshold zero); com- related for binary sequences. To extend to q-ary codes (q > 2), two

pute the syndrome of the resulting binary sequence and "correct" the mappings which come to mind are scalar quantization of each source

error; use the k information bits of this codeword as the VQ index; value to q levels (as in PAM) and partitioning of the bivariate plane

reconstruct k based upon the k information bits. With this format into q equi-angular regions (as in PSK). Although Hamming distance

each quantization region was the union of 2'-t orthants; the VQ re- does not directly reflect the Euclidean relationship of points in such

construction vector was the centroid of its quantization region. For the constellations, the Lee metric does. Since the match is better for the

assumed source the complete symmetry of the problem resulted in all PSK constellation, we pursue that mapping below.

regions being identical; hence, solving for Q, and *1 (corresponding to Our example assumes an iid Gaussian source and the q = 5 (12.8)

the all zero codeword) was sufficient to describe performance. Letting negacyclic code from [1, p. 2 09] (r = (log3 58)/24 = 0.774 bits/dim).

el = [aIi....et.n], i = 1,2 .... 2'- = M, be the coset leaders of the To map the source onto the 522 5-ary sequences, we take vectors

code, the n elements of *1 and the reulting MSE were of length 24, breaking them into 12 pairs. Each pair uniquely de-
fines a phase angle in polar coordinates; uniform quantization of the

7 (M ) 1_ _ angle specifies the 5-ary symbol. For syndrome decoding there are

x = n 5 = 625 cosets which include the no error pattern, the 24 distance
one errors (a single -1), the 288 distance two errors (a single ±2

For comparison, time-shared scalar quantization (zero or one bit quan- or two +1s), and 313 cosets corresponding to Lee metric equal to
tization per element) has MSE = 1 - r-,2. 3. For minimum MSE encoding we choose these remaining error

vectors of the form ±1,-I,±1. In the centroid computation, each

Nonlinear Codes quantization region is the union of 625 dimension 24 cones. Complet-
ing the computation (again, noting the symmetry of the problem),

An [n, N, d) nonlinear code consists of N codewords of length n with the centroid of Q1, corresponding to the all-zero codeword, is *I =

minimum Hamming spacing d. Being nonlinear, the simplicity of syn- [447a, 0, 507a, 0,543a,0, 536a, 0,544a,0, 547a,0, 548a,0, 545a, 0551a, 0,

drome decoding and the complete symmetry of the Q, are lost. Frbm 551a,0,558a,0,552a,0] where a = (sin f)/125V'l. The overall MSE is

the perspective of examining a nonlinear code as a possible VQ code- 0.4935, again slightly better than scalar quantization (MSE = 0.5073).

book, this forces us to describe each region Q, individually, comput-
ing its probability of occurence and centroid. Let cj be a typical References
codeword and did(., .) be Hamming distance. Implementing the VQ
by hard quantizing the input and minimizing the Hamming distance [1] E. R. Berlekamp, Algebraic Coding Theory, New York: McGraw-

to a codeword, mini dH(c j(. + sgn(x))), then each Q, is again the Hill, 1968.

union of orthants Qi = if--' Q_,l where the number of orthants, Mj 12] A. W. Nordstrom & J. P. Robinson, "An optimum nonlinear

for the j-th region (= M, = 2'), depends upon the detail of the code," Information and Control, vol. 11, pp.613-616, Nov.-Dec.

encoder implementation. Paralleling the analysis above for the linear 1967.

code case, the i-th coordinate of the centroid of the j-th region and (3] J. P. Robinson, "Analysis of Nordstrom's optimum quadratic

the overall MSE are code," Proc. Hawaii Int'l. Conf. System Sciences, pp.1 5 7 -160,"
1968.

""M' 2 , - M_ M SE' [41 P. F. Swaszek, "Vector quantization based on block and spherical
jOj,, - ; USE = 1- n 2" codes," Proc. Conf. Information Science S Sstem., pp.5 70-575,

/= ifil Mar. 1991.

where Oj,t, depends upon the orientation of the i-th coordinate of the [5] P. F. Swaszek, "Syndrome-based VQ codebooks," to appear in the
l-th orthant of Qi with respect to the i-th element of ce (unity if they Proc. DIMACS/IEEE Workshop on Coding and Quantiztion,

match, z',ro i "vh -i00". Oct. 1992.
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VECTOR QUANTIZERS TRAINED ON SMALL TRAINING SETS

David Cohn Eve A. Riskin Richard Ladner
Brain & Cognitive Sci. Electrical Engineering Computer Sci. & Eng.
Mass. Inst. of Technology Univ. of Washington Univ. of Washington
Cambridge, MA 02139 Seattle, WA 98195 Seattle, WA 98195

Abstract :00

We examine how the performance of a memoryless vector
quantizer (VQ) changes as a function of its training set size. By
relating the training distortion of such a codebook to its test
(true) distortion, we demonstrate that one may obtain "good"
codebooks at a fraction of the computational cost by training on 'A,

a small random subset of the blocks in the target image. A Aaasiknswmgwh 00 .rw
- befit fit to: M.{mP)

Background A ouwpgo .spiam•oni.fi-- - bo fi. to: (U-ioY{WU-1(0)',m•

For a system with a fixed number of degrees of freedom, one ,_I
may bound the difference between the error of that system on """t'..,q set size

an arbitrary distribution (a test set) and its performance on a Figure 2: (Test - train) distortion is described by a simple func-
subset of that distribution (the training set). Roughly, with fixed tion of the training set size.
confidence, this difference is bounded by

d I The codehook is then ui-d to quantize imiage Z, dnd the resulting
(test - trainI < 0( of log of test distortion is measured. As predicted by theory, the test and

training distortions followed a simple relationship (Fig. 2):
where m is the size of the training set and d is the Vapnik- ti
Chervonenkis (VC) dimension of the system, a measure of its (test - train) = [replacement]
number of degrees of freedom [I]. Empirically, it has been oh- Mr + a3
served that for sonme learning systems, the expected value of this (test - train) = [no replacement].
difference varies as O(d/rn). By bounding the difference between M - I +

test and training errors, one ran bound the difference between Parameter a is the learning complexity of the image for the
the test error and the -optimal" error the test error if the given codebook size, and $ is an offset factor, which, for the most
system had been trained on an infinite amount of data. part, we may ignore. We found that a varied very little between

natural images, but depended almost primarily on N. For nor-
"malized mean-squared distortion of 8-bit grayscale images, we
found a "typical" learning complexity of

o(N) = 0.363N° 
0

"Let us say that we want our codebook's distortion to be
a ... within 3% of its asymptotic distortion. If N = 512 vectors,

a• .50. Solving (test - train) = 0.03 2 0/m for in gives
Som = 1672 blocks. This indicates that if we train our 512-vector

codebook on 1672 blocks drawn at random from an image (or set
-. of images), we can expect that the codebook's performance on

that entire image will be within 3% of the performance that we
Figure 1: Test and training distortion of codebooks trained on would get if we were to train the codebook on the entire image
small subsets of blo. ks drawn at random from a target image. (or set of images), regardless of how large the image (set) is!

These results are for a particular implementation of GLA,

Application to Vector Quantization (VQ) and the exact dependence of a on N will vary with different im-
We have extended this theory to relate to the training of plementations and different input domains. We have obtained

vector quantizer codebooks. We have also conducted empiri- slightly different results using simulated annealing to design code-
cal studies which have determined the effective VC dimension books. Still, for given training regimen. it is straightforward for
of VQ codebooks. Our results quantitatively show that a VQ users to determine the typical learning complexities of their par-
codebook trained on a small random subset of vectors from a ticular problems, and then use these values to select appropri-
target image performs almost as well at quantizing that image ately small training set sizes.
as a codebook trained on the entire image. hut at a fraction of
the computational cost [2] (Fig. I). Some empirical results are [1] V. Vapnik,E.sttmation of drpendrncies based on empirical

outlined below, date, Springer-Verlag. New York, 1982.

Given an image Z composed of 1 k-dimensional blocks, we [2] D. A. Cohn. "Separating formal bounds from practical per-
wish to design a k-dimensional codebook with N codewords. We formance in learning systems." Ph.D. dissertation, Univ.

extract m k-dimensional blocks at random from Z (with or with- Washington Computer Science & Eng., 1992.
out replacement), and use this training set Z" as input to the (3] Y. Linde, A. Bugo, and R. M. Gray "An algorithm for

GLA codebook design algorithm [31. The distortion that the re- vector quantizer design," in IEEE Transactions on Corn-

suiting codebook imposes on Z'" is our training distortion. muncations, 28:84 9.5, 1980.
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The Dynamics of Group Codes:

Syndromes, Normal Codes, and Canonical Observers

G. David Forney, Jr. Mitchell D. Trott

Motorola Codex MIT

Mansfield, MA 02048 Cambridge, MA 02139

A group code C is a subgroup of a direct product sequence space The parallel transition subgroup [l,,Z (*I&.,] of a normal code
G', where G is a group and I E Z is an index set. In other words, must include the commutator subgroup of C, so Cirri must include
a codeword c E C is a sequence c = {ci E G : k E I) of elements of the conmmutator subgroup of Ah = {c5 : c E CI'. When the output
G. Though G may in general be nonabelian, we refer to the group sequence space is nonabelian, therefore, there exist nontrivial parallel
operation of G as a "sum" and its identity element as 0. The group transition subgroups; these impose upper bounds on the minunium
property of C thus ensures that the componentwise sum of any two distance of C.
codewords is another codeword.

A code is it-observable if, given any two code sequences c, c' E C
For the purposes of this abstract, we assume that I = Z, so that that agree on a length-p interval [k, k + i), the sequence c" defined

codewords are bi-infinite sequences, and that C is time-invariant, so by
that shifts of codewords are codewords. These two assumptions serve c, [ ci if i < k,
primarily to simplify notation. We also require the technical condi- i =• ifi>k
tion that C be a closed set in the topology of pointwise convergence, is a code sequence in C. In other words, if two code sequences agree

Lt•Cj tleiuote the set of sequences of C that are zero outside the on an interval of width at least p, then the past of one can he con-
subset J C Z. So, for example, Cl,,,) denotes the set of sequences catenated with the future of the other. The least such it is the
that are possibly nonzero only on the interval In, n). The set C. is observability inder of C. A 0-observable system is meor-.-leu.
a normal subgroup of C. In [11 it was shown that any group code C A syndrome former for a code C C GZ is an input/stateoutput
has a well-defined state group E = C/(C(-.,k)CSr.n)) at each time A syntrom with inputsspareSwhose

d a Z, and that C has a canonical state/output realization whoseS1
state space at each time k is a t,. The canonical realization identifies output sequence is 0 if and only if the input sequence is in C. A

each code sequence c with a unique state sequence (r(c), so that one syndrome former has memory m if the output si at any time k E nmay efe unnbiuouly o te sate A~c ofa squece E at can be expressed as a function of the previous m and the current
may refer unambiguously to the state o'&(c) of a sequence c E C at inputs, chi.,. ... I ch.
each time k. The canonical realization is minimal.

It was further shown that a mninimal feedforward encoder for C We show that the a syndrome former for a code with observability

can be constructed in controller canonical form from elementary con- index p must have memory m > i. We also show that a syndrome

stituents of the state group -2k, called "granules." The controller former must contain an underlying state-output realization of C; the

canonical form describes code sequences as combinations of finite- syndrome former is minimal if and only if this underlying realization
length generator sequences. is minimal. As group codes have essentially unique minimal realisa-

tions, the state spaces of a minimal syndrome former are essentially

In this paper we give a dual construction based on a state observer unique and correspond to the state spaces Em, of C. A minimal smvn-
that recovers the state of a code sequence c E C at time k from a coset drome former must therefore track the state sequence of C: syndrome
decomposition of recent outputs cs-r,...,ch-1. The state observer formers are inherently state observers.
is used to construct a syndrome former and a minimal encoder in Given a i-observable group code C, we show how to construct a
observer canonical form that describes code sequences in terms of"parity checks" that must be satisfied. minimal syndrome former for C with memory it. The construction

"pariy chcks"thatmustbe stisfed.is based on a decomposition of the state group into duaLgemzes/e

A syndrome map for a group code C is a function f: Gz -4 S

whose kernel f-'(0) is C, where the syndrome set S = f(GZ) is a r[k,,,+,) = cz-Ik'k+j)/(cz-(t-I"A+j)cz-[k'k+,,)"
set that contains the element 0. If f is a syndrome map for C, then At each time k the state group Em has a coset decomposition into
a sequence c E GZ is a codeword of C if and only if f(c) = 0. dual granules

p-1

A syndrome map f: GZ -. GZ//C for a group code C may be Em, - ® H rli,i+j)
constructed by setting f(g) gC for g E GZ, where the syndrome ,=o i4Ejh-jl,&
set S is the set GCZ//C of left cosets of C in G7 and the "identity" such that the value of a granule r1ij+j) depends only on outputs
coset C of GZ1"/C is identified as the element 0 of S. This map is a C-l- ,...,ck-.l An observer constructed from this decompositin is
homomorphism if C is a normal subgroup of GZ; then the syndrome necessarily feedforward with memory p.
set is the quotient group GZ/C. More generally, there exists a homo-
morphism f: GZ - S with kernel C, i.e., a homomorphic syndrome From this system one may construct a minimal syndrome former,
map, if and only if C is a normal subgroup of GZ. a minimal feedforward inverter, and a minimal encoder in observer

canonical form.
We are thus motivated to investigate group codes that are normal

subgroups of their parent sequence space, which we call "normal References
codes." All abelian codes are normal. More generally, we show that
C' is normal if and only if C has abelian dynamics, i.e., if and only it] G. D. Forney, Jr. and M. D. Trott, "The dynamics of group codes:
if its state group E, = C/(C(-rnm)C[m,,o)) is abellan at each time State spaces, tri41is diagrams and ranntcal encoders." Submitted
k E Z. to IEEE T7nsmctions on Information Theory, Februarw 1902.
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Realizing Trellis Codes as Isometry Codes

Mitchell D. Trott
MIT

Cambridge, MA 02139

An isometr 0 of n-dimensional Euclidean space R" is a bijection of isometries of R' that generates the partition and is isomorphic to
R -. R' that preserves Euclidean distance. An isometry code (Z 2 )*"

C is a subgroup of a direct product GZ, where G is a group of As a second example, we show that Wel's nonlinear eight-state
Isometries of R". In other words, a codeword c E C is a sequence trellis code, specified in the CCITT V.32 standard, also has a repre-
• = lce E G : k E 1) of issometries of R". A codeword is therefore an sentatinn as an isometry code. Ignoring the edge effects of the finite
isometry of inanite-dimensional Euclidean space (Rn)Z. Isometry signal set, the V.32 code is therefore geometrically uniform. The
codes ae a type of group system, and can be analysed using the signal set for the V.32 trellis code is a translate of the 8-way lattice
theory developed in [2). partition RZ

2 /4Z 2 . Isometries of R' are denoted as follows: t(.,) is

Many useful trellis codes may be described as the orbit Cc of a translation by (a, b), re is rotation by 9 degrees clockwise about the

sequence a E (R")z under an isometry code C. Certain aspects of origin, v, is reflection across the line {(0, i) : y E R}, v2 is reflection
isometry codes are studied, under different terminology, by Forney [1] across the line {(- y, y) : 6 E R), and 1 is the identity isometry.
and Loeliger 13). Trellis codes generated by isometry codes are ge- The V.32 trellis code is then described as the orbit of the sequence

omstrlcally uniform; thus, when used for data transmission over an - = I.... (0, 1), (0,1),...) under the isometry code C generated by
additive white Gaussian noise channel with maximum likelihood de- the time shifts of the sequences

coding, the probability of error is independent of the transmitted
codeword. This property greatly simplifies performance analysis. g1  = (...,1,l, t(2J), t(S,2)r'le, 1,1,...),

We develop a method for realizing trellis codes as isometry codes.

First, the states of a minimal trellis for the code are assigned a group This description may be converted into a trellis diagram by re-
structure that is "consistent" with the trellis branches and labels. placing isonetries by their permutation actions on the cells of the
The Euclidean subset label on each trellis branch is then replaced pacition erics by This pertation code cefis ove
with a coset of isometries that generates the Euclidean subset from partition RZ2/4Z2. This converts the isometry code C, defined overan infinite isometry alphabet, into a code C' defined over a finite
a distinguished initial point r E R". The resulting trellis defines an alphabet of permutations. The methods developed In [2] may then
Isometry code that, when applied to the initial sequence a = { be applied.
a : k E Z), yields the original trellis code.

The state group of the V.32 isometry code is nonabelian, and isInisomorphic to the dihedral group D4. Each of the 32 trellis branches
responding geometrically uniform trellis code. We assume that the isoarsic a distinct go p .E of the areoly 8rtition
signal set S C R" of the trellis code is partitioned into n cells (sub- is assigned a distinct coset of isometries, yet there are only 8 partitionsets 5,... S,~, ad tat an Cu avethesam minmaltrelis cells. The map from isometries to partition cells is therefore many-
diagram. Let E he the state group of C, and let the branch groupis to-one-a property peculiar to isometry codes with nonabelian statebe the set of all state pairs ( of, C,) 6 E x e that are connected by a groups. The isometry code contains the constant rotation sequences

trellis branch. Assume without loss of generality that So is the cell t atio, roa , l ,...), which is a sufficient condition for 90-degree ro-
"assigned to the branch from the identity state to the identity state,
and define B, to he the set of branches labeled with the partition cell As a final example, we show that the (16,8,6) binary nonlinear
Ss. Nordstrom-Robinson code may be represented as a block isometry

We show that the Euclidean and isometry labelings of the mini- code over a group of rotations of R2 , or equivalently as a ring code

mal trellis ae related as follows: first, Bo is a subgroup of the branch over (Z 4 )8. The binary code is embedded in R16 by interpreting

group B, and the set B, of branches labeled with partition cell Si is a codewords as vertices of a 16-cube.

left coset of BO in B. Second, for any branch b E B, ifbBi = Bi then
the coaet of isometries assigned to branch b sends cell Si to S. These References
two conditions completely characterize the possible state groups and
isometry labelings consistent with a particular Euclidean trellis. [1] C. D. Forney, Jr., "Geometrically uniform codes," IEEE Trans-

The first of these conditions is satisfied by any trellis code de- actions on Information Theory, vol. IT-37, no. 5, pp. 1241-1260,
scribed as the combination of a binary linear convolutional code and 1991.
a mapping from coded bits to partition cells. The second condition,
however, holds only If *!•- mwpping from bits to cells respects the [2] G. D. Forney, Jr. and M.D. Tfrott, "The dynamics of group codes:
symmetries of the partition. State spaces, trellis diagrams and canonical encoders." Submitted

to IEEE Transactions on Information Theory, February 1992.
For example, we show that a particular sixteen-state Wel code,

defined over an 8-way partition of the integer lattice Z4, has a rep- [31 H.-A. Loeliger, "Signal sets matched to groups," IEEE Trinsac-
resentation as an isometry code. The code Is defined by a rate-2/3 tion, on Information Theory, vol. IT-37, no. 6, pp. 1675-1682,
binary linear convolutional code followed by an unusual mapping 1991.
from coded bits to partition cells. We show that this mapping sat-
Isfies the conditions presented above by finding a group of 8 cosets
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Summary - Any discrete subset of an Corollary 2: Let S be a signal set in RN and
RN,where N is any positive integer, is called a assume that SpanS = RN. Then any symmetry
signal set. A signal set may be finite or infinite. A of S can be extended uniquely to an isometry of
bijective map from RN to itself, which preserves RN.
Euclidean distance, is called an isometry of RN. Theorem 3: Let S be a signal set in RN. Then
The set of all isometries of RN which leaves a S is a geometrically uniform signal set if and only
signal set S C RN invariant forms a group with if S can be matched to a group.
respect to the composition, called the symme- Corollary 4: Let S be a signal set matched to
try group of S and denoted by r(s). In 1991 a group G. Assume that S span RN. Then G is
G.D.Forney [11 introduced geometrically uniform homomorphic to a transitive subgroup of r(s).
signal sets.
Definition 1: A signal set S is said to be geo-
metrically uniform if r(S) acts transitively on s. References
In the same year H.-A. Loeliger [31 introduced [1] G.D.Forney, Geometrically uniform codes,
signal sets matched to groups.Definition 2: A signal set S is said to be IEEE Transactions on Information Theory,Defiitin 2 A sgna se S i sad t be IT-37(1991), 1241-1260.
matched to a group G if there is a surjective map
p from G to S such that, for all g and g' in G [2] W.Ledermann and S. Vajda (ed.), Handbook

of Applicable Mathematics, Vol. V; Combina-
d(p(g),p(g') = d(p(g-•g'),p(e)), (1) torics and Geometry, Wiley, 1985.

where d denotes the Euclidean distance and e de- [3] H.-A. Loeliger, Signal sets matched to groups,
notesIEEE Transactions on Information Theory,
The purpose of this note is to show that these IT ransaction oInrminTey
two concepts coincide. The case when the signal IT-37(1991), 1675-1682.
set is finite was proved by Loeliger [3].
A bijective map f from a signal set S to itself is
called an isometry of S, if for all s and s' in S,

d(f(s),f(s')) = d(s,s'). (2)

Lemma 1: Any symmetry of a signal set S C
RN can be extended to an isometry of RN.
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Euclidean-Space Coding Theorems
for Linear Codes and Mod-p Lattices

Hans-Andrea Loeliger
ISY / Information Theory

Linkoping University
S-58183 Linkbping, Sweden

All known existence proofs for capacity- word. Application of this result to the Gaus-
achieving codes whose algebraic structure is sian channel with p-level amplitude modula-
at least a group rely on averaging arguments tion implies, in the limit for p --+ oo, the cod-
for linear codes over finite fields - except, ing theorem for the corresponding mod-p lat-
seemingly, de Buda's proof [1] for lattice tice codes. (Such a limit p --* oo is also part of
codes. De Buda's starting point is, instead, the standard proof of the Minkowski-Hlawka
the Minkowski-Hlawka theorem from geomet- theorem and thus implicitly contained in de
ric number theory. We remove this anomaly Buda's proof.)
by showing that the standard proof of that An unsatisfactory point of our proof - as
theorem has a natural interpretation as an av- well as of de Buda's, even in its corrected ver-
eraging argument for linar codes in the follow- sion [2] - is that the upper bound on error
ing setup. probability holds only for the average over all

We consider the discrete-time Gaussian codewords of the code; if the code is 'cleaned'
channel with p-level amplitude modulation, p be deleting weak codewords, then its alge-
prime, and hard-decision 'mod-p demodula- braic structure is destroyed. We thus conclude
tion', i.e., the received signal is reduced mod-p by emphasizing that there is no proof known
and quantized to the nearest integer. (The ap- that reasonably shaped lattice codes without
proach can be extended to soft-decision, how- weak codewords can achieve the capacity of
ever.) We thus have created a channel with the Gaussian channel at any finite SNR.
mod-p additive noise, for which linear codes
over GF(p) are the natural choice. Moreover, References
existence results for linear codes imply corre-
sponding results for the associated mod-p lat- [1] R. de Buda, 'Some optimal codes have
tices, as is demonstrated by some examples. structure', IEEE J. Select. Areas Comm.,
In particular, the Minkowski-Hlawka theorem vol. 7, pp. 893-899, Aug. 1989.
is shown to follow from a Gilbert-Varshamov- 12J T. Linder, Ch. Schlegel, and K. Zeger,
type argum ent for linear codes. 'C om men ts on Some O tl C od haveHaving thus seen that the first step of de 'Comments on "Some Optimal Codes have

Havig tus een hatthefirs stp o deStructure"', submitted to IEEE TRuns. In-
Buda's proof can be derived with averaging Sure' su t o T I
arguments for linear codes, it is natural to ask forh. Theory.
whether an alternative, more direct, existence
proof for good lattice codes can be based on
such arguments, which we show is indeed pos-
sible.

It is shown that spherically shaped cosets
of linear codes over GF(p) achieve the capac-
ity of almost every channel w'th p inputs,
each associated with a certain cost, under
a constraint on the total cost of each code-
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Analysis of Block Codes Designed over the Real-Field

PETER MASSEY and PETER MATHYS
Dept. of Electrical and Computer Engineering

University of Colorado
Boulder, CO 80309

Abstract

Error-correcting channel codes designed over the real-field are Some applications require that the important performance crite-
advantageous over finite-field codes in certain cases. The Real-field don be the probability that impulsive errors be correctly detected.
codes are sensitive to small deviations from the ideal continuous val- We define an impulsive error as any channel noise with amplitude
ues as well as to large errors which are desired to be removed. The greater than some multiple of the background noise standard devia-
former caused by things like finite precision, receiver noise, or chan- tion, Oo,,. The optimal estimators for the error-location patterns 4j
nel noise. A special channel model is used which includes both back- are the MAP decision rules in the codeword space and the syndrome
ground and Impulsive noises. Real-fidld codes can "correct" up to subspace which are given by:
(N - K - 1) impulsive errors per word if the ratio of noise powers
(a.1/1&) in large enough. max,_ : = ,_[ (_)Pr1• = i]] (4)

Summary rmar,. [pi_€ (A)] = max,_ [p = ((9PrT[ =A4] (5)

Several interesting trends can be observed in the performance of
The Background and Impulsive Noise (BIN) channel has additive the real-codes when constant energy codes are compared at differ-

white Gaussian background noise which affects every vector compo- ent rates. Larger ratios (a,/o) of impulse-variance to background-

nent while another independent Gaussian noise is switched-on with variance improves the error location estimation. The syndrome MAP,
"a probabilistic switch. The BIN channel has a larger capacity for estimator can "correct" up to (N - K - 1) errors in a word if the ra-
"a continuous Gaussian input than for a finite-alphabet input, thus tio (or2 /n2n) is large enough. Short codelengths can "correct" some
motivating the use of Real-codes on this channel. Large alphabet of the (N - K) patterns. The idea of "correct" means to exactly
inputs approach the capacity of the continuous input channel. Block estimate impulsive errors when no background noise is present, or
channel coding is accomplished by a linear transformation on the in- with a high probability of being within some Oa'n of the impulsive
formation symbols, £ = Gp, where Euclidian distance is preserved amplitudes when background noise is present. The optimal MAP
by requiring GTG = I. estimator can "correct" more than the MAP,, up to N impulsive

The optimal minimum mean-squared-error estimator (MMSEE) errors in a word, but this amount decreases as the input power in-
is the best decoding algorithm when the decoded MSE is to be min- creases until an infinite input power equates it to the performance of
imized. It has the form: the MAP. estimator. It should be noted that long codelengths can

Ex(i) ) (p3) Pr4s = (1) make the percentage of words with (N - K - 1) or fewer impulsive

fs E: [g](~ P= '(1) errors as close to 100% as desired.
E= = = 0 P3,( i (2)i]

M"• ftmol r CIQ•. --.* somds .& sI.,u d-mft

E(. u= g =,.=41] (2) -------.-.- ...... -.....
-- - -- - ----

Sis the input vector; y is the output vector; ..

I is the impulsive error location pattern (ie. 1= (0,1,0,1,0)) . . A .............

Unfortunately, it requires an exhaustive search over all 2 N possible
impulsive-error location patterns, 4. A lower bound shows that the
best decoding MSE per component cannot be much smaller that the 7'

white Gaussian background noise variance. The ratio ( 2 /a2) of '::.

impulsive-error variance to background noise variance is critical to
the performance of the decoding. Larger ratios of (a'2/1a') permit a e
decoding MSE which is closer to the background noise level. 1v 0

Using a parity-check matrix, NT, which is orthogonal to the gen- 1o 30.o 104 104 IV0 IV IV, IV

erator matrix G, eliminates the need for knowledge of the source, of b M v-m-

but at the expense of increased MSE. The optimal MMSEEz for the
syndrome subspace L is difficult to derive analytically. The estima- In many applications only very small decoding errors are consid-

tor is developed by using a form similar to the MMSEE, but which ered correct, while any larger errors are all considered just as bad.

uses an indirect estimate of the source word. Instead of using the MMSEE decoders, an alternative is to use the

Largest Density (LD or LD.) decoder which first selects the error-
:1 A lt) ,(• Pr[J =A4 location pattern 4i which corresponds to the largest conditional a

• Pg=.(• Pr[& =(3) posteriori density (MAP or MAP,). Then it uses the correspondingA Wconditional estimate f(i) or i W)to estimate the source word. The
Again, a lower bound can be derived which shows that no decod- LD decoders will have a higher MSE, but they will have a higher
ing which uses this syndrome method can have a MSE less than the percentage of decoded words with very small errors. If the error-
background noise variance. It also predicts the MSE for each possi- location pattern estimate is correct, then the error is essentially the
ble error-pattern. The MSE increases with the number of estimated background noise. If the pattern estimate is wrong, then the error
errors. The MSE performance of generator-parity check matrix pairs is very large. Thus the decoding error can be made to be near the
can be quantified. This decoding algorithm also requires an exhaus- background variance for words with (N - K - 1) or fewer impulsive
tive search of the 2 X possible Impulsive-error location patterns, errors if the ratio (a,2/cr.) is large enough.
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On Minimality Conditions for Linear Systems

and Convolutional Codes

Hans-Andrea Loeliger Thomas Mittelholzer
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Link6ping University ETH-Zentrum
S-58183 Linkoping, Sweden CH-8092 Zuirich, Switzerland

The recent generalizations of convolutional 3. There exists a nonnegative integer L such
codes to rings [1], [2] and groups [3], [4] have that any length-L path segment is uniquely
redirected some attention to the old topic of determined by its label sequence.
characterizing minimal and catastrophic en- Most other published minimality conditions
coders and how these notions are related to for convolutional encoders can easily be de-
the minimality concept for linear systems. We rived from these conditions.
address these questions in a universal-algebra If the branches are labeled with input-out-
framework that treats codes over groups, rings, put pairs rather than with output symbols
and fields in a unified way. only, then the above conditions characterize

Any standard description of a convolutional the minimality with respect to the transfer
encoder leads to a state-transition diagram function, which is the traditional viewpoint in
(or 'transition graph' [4]) whose branches B system theory [5], and the standard minimal-
form a subspace of S x Y x S, where S is the ity condition for realizations of linear trans-
state space and Y is the code symbol (encoder fer functions - minimal *ý controllable and
output) by which the branch is labeled. (For observable - is an easy consequence of the
convolutional codes over groups, the branches theorem.
form a subgroup of the direct product S x Y x
S, where S and Y are groups.)

A branch (s, 0, s') E B is called left-neutral References
(right-neutral) if s = 0 (s' = 0); it is two-sided
neutral if it is part of a zero loop. It will be (1] R. B. Filho et al., 'Systematic linear codes

assumed that the state space (state group) S over a ring for encoded phase modulation',

satisfies the so called descending-chain con- Int. Symp. on Inform. and Coding Theory,

dition, which is a generalization of finite di- Campinas-SP-Brasil, 1987.

mensionality to modules and groups. (This [2] J. L. Massey, T. Mittelholzer, 'Convolu-
condition is always satisfied for finite S). tional codes over rings', Proc. 4th Swedish-

Soviet Int. Workaop on Inform. Th.,
Theorem: Each of the following conditions is Gotland, Sweden, pp. 14-18, Aug. 27-
equivalent to the minimality of the transition Sept. 1, 1989.
graph: [3] G. D. Forney, Jr., and M. D. Trott,

'The dynamics of linear codes over groups:
1. No state other than the zero state is the state spaces, trellis diagrams and canoni-

ending or starting state of a semi-infinite cal encoders', submitted to IEEE 7Thns.
path all of whose labels are zero. Inform. Theory.

2. The set of left-neutral branches, the set [4] H.-A. Loeligr and T. Mittelholzer, 'Con-
of right-neutral branches, and the set volutional codes over groups', submitted
of two-sided neutral branches all consist to IEEE 7Vns. Inform. Theory.
only of the zero-branch. [5] T. Kailath, Linear Systems, Prentice-Hall,

1980.
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MULTILEVEL CODES FOR UNEQUAL ERROR PROTECTION
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Murray Hill, NJ 07974

N. Seshadri
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Murray Hill, NJ 07974

In many speech and image coding schemes, some of the coded bits coded, using most of the available redundancy, to specify a sequence
am extremely sensitive to channel errors while some others exhibit very of subsets. The partitioning and code construction is done to max-
little sensitivity. In order to make the best use of channel redundancy, imize the minimum Euclidean distance between two different valid
unequal error protection (UEP) codes are needed. In a bandlimited subset sequences. This leads to novel ways of partitioning the signal
environment, such coding and the modulation should be integrated, constellations into subsets. Finally, the less important data selects a
In this work, we propose two combined UEP coding and modulation sequence of signal points to be transmitted from the subsets. A side
schemes. benefit of the proposed set partitioning procedure is a reduction in the

The first method multiplexes different coded signal constellations, number of nearest neighbors, sometimes even over the uncoded signal
with each coded constellation providing a different level of error pro- constellation.
tection. The novelty here is that a codeword specifies the multiplexing Many of the codes we have designed provided virtually error free
rule and the choice of the codeword from a fixed codebook is used to transmission (greater than 6 dB coding gain) for some fraction(for ex-
convey additional important information. The decoder determines the ample, 25%) of the data while providing a coding gain of I to 2 dB
multiplexing rule before decoding the rest of the data. for the remaining data with respect to uncoded transmission. The two

The second method is based on partitioning a signal constellation methods can also be combined to realize new coded signal constella-
into disjoint subsets, where the most important data sequence is en- tions for unequal error protection.
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QPSK MODULATION CODES FOR UNEQUAL ERROR PROTECTION1

Robert H. Morelos-Zaragoza and S. Lin

Department of Electrical Engineering
University of Hawaii at Manoa
Honolulu, Hawaii 96822 USA

SUMMARY signal set, together with (2n,k) binary LUEP codes,
with separation vectors = ($1. 52), to obtain (n,k)

Unequal error protection (UEP) codes [1] find LUEP QPSK modulation codes which have squared
applications in broadcast channels, as well as in Euclidean separation S = (251, 252). Some of the
some digital communication systems, where resulting LUEP QPSK block modulation codes have
messages have different degrees of importance. In the same MSED as that of optimal QPSK block
this paper, we propose to use binary linear UEP modulation codes of the same rate and length [2-3].
(LUEP) codes, in combination with a QPSK signal These LUEP QPSK modulation codes offer, in
set and Gray mapping, to obtain new efficient block addition, a larger MSED between code sequences
OPSK modulation codes with unequal squared associated *with most Important message bits,as
Euclidean distances. We present several examples shown in Table 1, where * indicates LUEP QPSK
of QPSK block modulation codes that have the same modulation codes based on the lulu+vl-construction.
minimum squared Euclidean distance (MSED) as thebestQPS blok mdulaioncode ofthe ame GI and G2 in Table 1 are asymptotic coding gainsbest Q PSK block m odulation codes of the sam e co r s nd g th c mp e ts f t e sq a d
length and rate. In the proposed new constructions corresponding the components of the squared
of QPSK block modulation codes, even-length binary Euclidean separation, for the most and least
LUEP codes are used. It Is shown that good LUEP significant message parts, respectively. R denotes
QPSK block modulation codes are obtained by the code rate in bits per dimension. It should be
combining shorter - simpler to encode and decode - noted that all the optimal QPSK modulation codesbinary linear codes using the well known lutu+vl- found by Sayegh (2-31, of lengths 5 to 10, can be
construction or the so-called construction X. Both obtained based on the lulu+vl-construction and Grayconstructions have the advantage of yielding mapped QPSK signal sets. All these codes are inoptimal or near optimal binary LUEP codes of short fact LUEP QPSK modulation codes, and this appearsotoml modnearate lgth l uingavry simpl conestituert to be the first time that this has been pointed out.to moderate lengths, using very simple constituent
codes, and may be used as component codes in the Table 1: Some LUEP OPSK block modulation codes
proposed constructions of QPSK modulation codes.
In addition, LUEP codes lend themselves quite 2n k ki k2 81 82 R GI G2
naturally multi-stage decodings [4], using the 10 5 1 4 5 4 1/2 3.98 3.01 *
decodings of component codes. In this paper, we 10 7 1 6 4 2 7/10 3.65 0.64
present a new suboptimal two-stage soft-decision 12 6 1 5 6 4 1/2 4.77 3.01"
decoding of binary LUEP codes and apply it to the 12 6 2 4 5 4 1/2 3.98 3.01
proposed constructions of LUEP QPSK block 14 7 1 6 7 4 1/2 5.44 3.01"
modulation codes. 14 7 4 3 5 4 1/2 4.07 3.01

Main References
Constructions via Gray mappingManRfrce [1] B. Masnick and J. Wolf, "On Unear Unequal Error

In a OPSK signal constellation with Gray mapping Protection Codes," IEEE Transactions on Info.
between labels and signal points, the squared Theory, Vol. IT-13, No. 4, pp. 600-607, July 1987.
Euclidean distance between signal points is twice [21 S.L. Sayegh, "'A Class of Optimum Block Codes in
the Hamming distance between their corresponding Signal Space," IEEE Transactions on
labels. We say that this QPSK signal constellation Communications, Vol. COM-34, No. 10, pp. 1043-
forms a second-order Hamming space. Our proposed 1045, October 1986.
new construction consists of a Gray mapping [31 S.L. Sayegh, Private communication (tables of
between two-bit blocks and signal points in a OPSK codes from reference [2]), 1992.

[4] H. Imal and S. Hirakawa, -A New Multilevel
Coding Method Using Error Correcting Codes," IEEE
Transactions on Info. Theory, Vol. IT-23, No. 3, pp.

1 This work was supported In part by NSF under 371-377, May 1977.
Grant NCR-88813480 and by NASA under Grant
NAG 5-931.
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Jump-Diffusion Processes for Unknown Model Order Estimation Problems

Michael I. Miller \'ali Ainit LUIf Grenander
Department of Electrical Engineering Department of Statistics Division of Applied Matheniatics[

Washington University University of Chicago Brownt Univ'ersirv
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A new class of random sampling algorithms is presented (or Theorem 2 Let X(t) be the Mfarkor process satisfying T"heorym
the solution of estimation problems over hypothesis spares e 1. along with the 4assu'nptson that the Euclidean spaces err con.
which are countable unions. of Euclideans spares of varying di- nected under the jumps, ue. Vk. k'. 3j(k. A') < oic sequence of
mension: r =u"1fR'6 with model k of dimension sit, The e's jurripzs carrying the pr-ocess ftrom *"I to W-.
tijuation problem is to choose paramneters in f given some data. I'rn p is the unique mrsitnant measure of the jump-diffusion
Tlhe existence of a distribution y on the parameter space e is PrOcesA X(t), and the asSociated Chain X(iZ%). A 0 coniverges
assumed relating the parameters to the data, with p taken as a its total rar,,itaon norm Ito p the invariant measture:
convex combination of pt-s each a distribution on subspace WI .
The Bavesian conditional mean estimate's of the parameters are for all z E f' I'm 11P, A("s) E -!X(0) = ) -P(,))l 0 (4)
Kvinerated by constructing a Miarkov process sampling su.

The Ntarkov process X(t) is said to satisfy jump-diffusion We emphasize that the aforementioned results have been gen.
dynamics through e in the sense that (i) on random exponential eralizeli to unions of manifolds such as the nie-dimensional Torus

tiime's the process jumps from one of the countably infinite %et [2j, T'i motivation for introducing jump-diffusions ari*,s in oh-
of pat~es in W"',k = 1,.2.... to another. and (ii) between jumps jert recognition [1. 3. 41 in which the different continuous and dis-
it satisfies stochastic differential equations aver the respective crele components of the discovery of both the shape and number
spaces. We have proven 11, 21 that as long as the diffusion% of hjbects in a scene are accommodated. Given a fixed number
have drifts which sinake the p4, measures invariant within each of objects. call it k. the problem is to reshape via group trans,
subspace, and that the distribution is on IF is invariant for the lorinations such as scale, rotation and translation- the k objects
jumip process, then p is the invariant measure of the proces%. to fit the acquired data. For this the model k consistinit of nt&
This coupled with the assiiiiptioiis that it is pctssible to get from parameteirs is fixed, with the hymothesnis generation a continuous
one- space to another with a finite number of jumps; allows proof diffusion through sc-ale- rotation- translation parameter space R"
of Harris res-curence and uniqueness of the invariant measure. following Langevin's stochastic elufferential equation The sec-
Frorin this it follows that ergodic averages generated from the Ond part of the sampling proce--. .he jump process hypothes izes
p)rocess converge to their expectations. and that the transkition new objects and remoelis objects. with a jump carresponding to
distribution of the process converges in variational norm to the a transition from one continuum (model-order) to another.
invariant ireasure.

These results ate.- '.inmarized via the following two hrrhsirms R frne
taken from fIII We assume that each of the distribution sk Reeene

on R~ hve ensiieswit re~ectto ~ dmeniona l~be[u 1 U. Grrnander and M. I. Miller. Representations of knowledge
measre o th (;ib's ormL 7 ..... in complex syste-m. Journal of the Royal Statistical Society.

Theorem I Le! the jump diffusion process X(t) hare the prop. in review February 1992.
erties that [)Y mt .Geadr n .. Mle.Egdcpoete

fa) the diffustion X(t) wcithin any qubspare r'* 0at4isf.Ie the of Y Aump-iffuio proaerse. A nnd l of. Millel.erdc Proprities
sloc~l~ic iffrental quaionsubmitted December 1992.

dX (1) 7 -'E,,fXt()ldt + dWl,. (t)1 ) f3] Ml.1 Miller. D. Maffitt. J. Shrauner. B. Roysam, and

with~i ). (*) nd 1,,E W thestae. rodent nd tanard U. Grenatider. AutomnatedA segmentation cf biological shapes
rector Xri t) Viand moio. c- spctihry ustathe. gradient an. snat. in electron nucroscopic autoradiogtaphy. Proceedings of the
isfing Bipowhitn montionui. andciel.wt hegain V()s Turenty-Fifth Annual Conference on Information Scoctnces;

(b) the jump inten~sities q(.r.dy).qtz) defined in the 24andard anSstm.pgs674219.
way [4) A. Srivastava. MlI. Miller. and U'. Grenander. Jump-diffusion

Prf{Y(t + () E dylNIX =t ) - ld(r wiocesmes for object tracking and direction finding. In Pro-
q(x, dy) = lim (2) ,eedingis of the 2.9th -Inn1a1141 llerton Conference on Commu-

and q(z) = 1 ,q(z, dy) both bounded continuvotv functions sat. necation. Control and C~omputing, pages .563 570. Urbana,
i~qii nChampaign. 1991. University of Illinois-

q(x)pfdr) =jq(y. dz)p(dy). ()

Then p is an int'ariant measure11T Of X(t).

*Stipported. hy NSF VVIA E(T-A.M5I$. ARO DAAL0It 46-K-01tt0. ARO P.29349.-tA SDI. 0%'R .59922
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The Optimal Error Exponent for Markov Order Estimation
Lorenzo Finesso, Chuang-Chun Liu, and Prakash Narayan

1. Introduction
A wide variety of approathes 11],[3-51 have been developed P(Q) ? (n + m)' in P(j)]exp4-(n - ko)D(QIIP)1,

over the years to estimate the order u: a Markov chain. How- @EX60
ever, as stated in Merhav et &1 [3], only recently has attention P(Q) < r'6 exp{-(n - ko)D(QI'P)}o
been focused on estimators with optimhlity properties beyond
consistency. Our results aje in the spirit of 13) and piovide, 3. Main Results
under more general conditions, a complete characterization of Theorem I below specifies the rates of decay to zero of
the error exponents and consistency properties of a class of the probabilities of underestimation and overestimation for the
order estimators. following estimator.

Let {X.,n > 1) be a stochastic process with values in Given z", E X",n > k. i,(zx) = k iff:
X =1. r) and let P be the probability measure on X(
induced by {X.[ The measure P is Markov of ordur k iff: () D(QIIP') > Em VP' E P,, 1 < I < k - 1

= P(z.Iz:._) for n > k, where k is the small- (ii) D(QIIP) <e. fm some P E Pk
eat constant for which the equality above holds. Let 'P be
the set of all stationary ergodic Markov measures on Xý of where e. := (rko'+I + 6)lo and 6 > 0 is a constant that will
order k. We observe the process {XI.} of unknown measure be specified later. If neither conditiou above is satisfied, set

P .E U- Ip where ko is a known constant and wish to esti- k.(X,') = ko.
mate its order. We focus on estimators which satisfy a general- Theorem 1
ized Neyran-Pearson criterion of optimality. Specifically, the Fix 6 > 0,-r > 0. Fix P E Pk for some 1 < k < k0 .
optimal order estimator minimizes the probability of underes-
timationamongallestimatorswhoeeprobabilityofoverestima- ( i) P(k,( Y')> k) 5 rk'n-6 n > N(6,-, ko)
tion lies below a prespecified level. Our main result identifies
the best exponent of decay of the probability of underestima- (") P(k.(X') < k) _
tion. We further construct an estimator which achieves the exp{-(n - ko) mmin D(P&'IIP) - 3,]} n >_ N(6,v, ko)
best exponent.

2. Prpliminaries where D(P,, IP) := np .,, D(P'IIP). o
Given .- sequence r" in X",n > ko, we define its ko-th Remarks

order Markov ;,-te as the empirical distribution on ,*0 x X 1. Any choice of 6 > I yields strong consistency for our
given by Q := {q..;a E Xko,a E X) where: estimator, i.e.. ki(X,') -- k P-a.s. Clearly the overestimation

qse := -i-.- = s,+h.-i X, =a) probability can be reduced by choosing a larger value of 6 but
t I only at the expense of a larger sample size N(6,y, ko) in (ii).

Let q: q... We define the conditional entropy of Q to 2. Observe that D( P5 ,IP) in (ii) is strictly positive since
be: the closure of Pk, does not intersect VP for k' < k.

H(Q) := - q.. log I" Theorem 2 below establishes that the rate of decay in The-
korem I (ii) cannot be bettered.

with the convention that q../q. = 0 if q* = 0. For P E U:,Of, ot t
we define the conditional divergence of Q and P as: Theorem 2

Let 0 < a < 1 be given. Let k,(Xr) be any estimator
D(Q:IP) := log V such that for each P E Pk,1 < k < ko : P(k.(X') > k) <

for n > N(o, ko, P). Then for any -y > 0 it holds that:Note that if P E 7P5 for some k _< k0,P(als) ",|1 depend only Pk(' iŽep-n-k)mn. 5 .iD s I)-'i

on the latest k components of s E Xko. P(k.(X") < k) _ exp{-(n - ko)[mink,<k-I D(Pk, [P) - -r]}
Let Q be the set of all sequences in X" with (common) for n > N(a,'-,ko,P).

ko-th order Markor- type Q. The following bounds have been
proved in Gutman [2): References

Lemma 1 [11 I. Banawa and B. Prakasa Rao, Statistical Inference for
Stochastic Processes, Academic Press, 1980.IQI > nr-°(n + 1)-(r"6+I)exp{(n - ko)H(Q)),and (2] M. Gutman, Asymptotically Optimal Classification for

IQ[ _< r"O exp{(n - ko)H(Q)). Multiple Tests with Empirically Observed Statistics," IEEE
Moreover, for P E Pk, I < k < k0 , the following large deviation Trans. on Inform. Theory, JT-S5, pp. 401-408, 1989.
'stimates hold: [31 N. Merhav, M. Gutman, and J. Ziv, "On the estimation

of the order of a Markov chain and uniersal data com-
pression," IEEE Trans. on Inform. Theory, IT-35, pp.

Tho uwd mm wppen.•,b the ahi tw for. Sy sptwi RfteM at tM Un .. ut of 1014-1019, Sept. 1989.
Mwommd Callo. P". wWw NSF Gm oIR-M-0010S. [4] J. Rissanen, "Complexity of strings in class of Ma:kov
L. Fimw. i wth LADSEB-CNR. Pad.v. I.auI m.. at prow" on lea" of ab..wA at ti, sources," IEEE Trans. Inform. Theory, IT-32, pp. 526-
Imtiteut for Systans ARmwch, Unimfty of Mwarila. Colle Par. MD 20742. USA. 532, 1986.
c-c. Liu ,w, mu Caoten, ,Peose. Mw. 12W2. USA. [51 H. Tong, "Determination of the order of a Markov chain
P. NHwrf.. awth the Eleat•ta EnCWing Dofmmt ad the eut.tut • fo svtwm, by Akaike's information criterion," J. Appi. Prob., vol.
Reard,. Un,,a of Myla• , CoNee Par. MO 20742,. USA 12, pp. 488-497, 1975.
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On the Convergence of the EM Algorithm

A.O. Hero
Dept. of Electrical Engineering and Computer Science

The University of Michigan, Ann Arbor, MI 48109-2122

ABSTRACT In the sequel IZ+ will be identified as a set of initial points P
for which the EM algorithm is guaranteed to converge which is

The EM algorithm is a popular iterative method for finding the identified with a region of convergence in the following theorem.

maximum likelihood estimate when the likelihood function is ei- Theorem 1 Assme: ,) the MLE, D -a'grax L(9), occurs a

ther non-analytical or its functional form is too difficult to max- The or of the met sae6a; L(9) ocr in

imize directly. In this paper we analyze the convergence proper-

ties of the EM algorithm. By representing the E step in a Taylor are twice continuously differentiable in 0 and 1. For 0* an initial

series with remainder we obtain a derivation of region of conver- point let denote the sequence of values produced &y the

gence and asymptotic convergence rates for a specified complete EM alsorithm. Then:

data space. These results can help one tailor the choice of com- I. if9 E R+ the EM sequence converges to 9,

plete data space so as to achieve an optimal tradeoff between ease
of implementation and rapid convergence of the EM algorithm. 2. and the asymptotic convergence rate is linear with root con-

vergence factor p(I - Q-'L) = p(QD).

I. Main Results Theorem I is proven via a simple application of Taylor's Theo-
rem with remainder. While Theorem 1 requires stronger assump-

Let 9 denote a point in parameter space 0 C 11' which paramr tions (differentiability of L and D) than the convergence results
eterizes the density f(y- O) of the set of observations Y. Now stated in [81, our proof is more elementary and we come up with
define a hypothetical data set X with density g(x; 9) which is re- a region of convergence R+ for {9e}k>o. One can apply the re-

lated to the actual data Y in the sense that the conditional distri- suits of Theorem I to compare different choices of complete data
bution dP(ylx; 9) is functionally independent of 0. Equivalently in terms of radius of convergence and and speed of convergence.
Y can be interpreted as the output of a 0-independent commu- REFERENCES
nications channel C with input X. X is called the complete data
and Y is called the incomplete data. The EM algorithm has been ý1j A. P. 13*mpste, N. M. Laird, and D. B. Rubin, 'Maximum
widely applied to iteratively approximate the maximum likeli- likelihood from incomplete data via the EM algorithm," J.

hood estimate 9 = argax, m In Jf(Y;9) [i, 7, 4, 5, 2, 6]. For an Royal Statislical Society, Ser. B, vol. 39, pp. 1-38, 1977.
initial point 90 the EM algorithm produces a sequence of points
{(P}I- via a recursion whose form is equivalent to 13]: 12] M. Feder, A. Oppenheim, and E. Weinstein, "Maximum like-

EM Algorithm: lihood noise cancelation using the EM algorithm," IEEE
Trans. Acovst., Speech, and Sig. Proc., vol. 37, no. 2, pp.

I'- = argmaxQ(O;t'), i = 1,2,... (1) 204-216, Feb. 1989.

where Q(9; i) is the difference between the incomplete data like- [3] A. 0. Hero and J. A. Fessler, 'Convergence properties of

lihood function L(O) = In f(y;0) and the Kullback-Lieber infor. the EM algorithm," Technical Report in prep., Comm. and

mation divergence: Sig. Proc. Lab. (CSPL), Dept. EECS, University of Michigan,
Ann Arbor.

Q(O; 0) It L(O) - D(6111), 141 K. Lange and R. Carson, "EM reconstruction algorithms for

emission and transmission tomography," J. Comp. Assisted

Tomography, vol. 8, no. 2, pp. 306-316, April 1984.

D(0j#) 'L= Jog (x•yA g(xly; i)dx. (2) 15] M. 1. Miller and D. L. Snyder, 'The role of likelihood and en-
g~x1y, ) tropy in incomplete-data problems: applications to estimat-

ing point-process intensities and Toeplitz constrained covari-

For any non-negative definite symmetric matrix A define the ances," IEEE Pryceedings, vol. 75, no. 7, pp. 892-907, July

spectral radius p(A) as the maximum eigenvalue of A. For D E e 1987.

define the Hessian matrices: [6) M. Segal, E. Weinstein, and B. Musicus, 'Estimate-maximise
q _ _oalgorithms for multichannel time delay and signal estima-
D V-_D(9; ) tion," IEEE 7Tans. Acoust., Speech, and Sig. Proc., vol. 39,

V -- no. 1, pp. 1-16, Jan. 1991.

L - -V 2 L(9). [7) L. A. Shepp and Y. Vardi, "Maximum likelihood recon-

Define I+ C 0 as the largest open ball with center I such that struction for emission tomography," IEEE Trans. on Medical

for each I E R+: Imaging, vol. MI-I, No. 2, pp. 113-122, Oct. 1982.

- '(1- t)V +D(t +(I-t)tl+ (I -t)i)dt>0. V (3) [81 C. F. J. Wu, 'On the convergence properties of the EM al-

a gorithm," Annals of Statistics, vol. 11, pp. 95-103, 1983.
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Necessary and Sufficient Conditions of Channel Identifiability Based on

Second-Order Cyclostationary Statistics

Lmg Tong ceanghan Xu Thmas Kaibh*

Dep of Elecal" & Compuer Eng. DqX of Ebectrical & Computer Eng. lnfonnamio Systems Labormory

West Virginia University The University of Texas at Austin Stmaford University

WV 26506-6101 Austin, IX 78712 Stanfaxd, CA 94% 5

1 Introduction 3 A Necessary and Sufficient Condi-

Consider the following communication model tion in Time Domain

A time-domain necessary and sufficient condition of channel iden-
(t) = sth(t - kT) + 1(t) (1) tifiability is obtained by using a vector representation of the base-

band model
where h(.) is the channel impulse response; {sa1} and T are the x(n) = [z(nT)z(nT + 1)... z(nT + T - 1)1t. (4)
information symbol sequence and symbol interval, respectively.
The "blind" identification problem addressed in this paper is the We then have, from the channel model,
identifiability of a possibly nonmini,•,,m phase channel h(-) given x(n) = • sjh,_A + n., (5)
only the observation process x(.).
The following assumptions are imposed to the above model: where
(1) {st} is an i.i.d. sequence. hk = [h(kT)h(kT + 1)... h(kT + T - 1)1', (6)
(2) The symbol interval T is an integer.
(3) The channel has a finite impulse response. (4) The noise pro- = [n(kTfn(kT + .... n(kT + T - 1)]'. (7)
cess is uncorrelated with {sa} with known second-order statistics. With the above formulation, we have the following theorem.

Theorem 2 The channel impuLse response can be determined
uniquely up to a constant if and only if there exists an integer

2 A Necessary and Sufficient Condi- d such that maix H(V has a full column rank, wher

tion in Frequency Domain o hh ...h hL 0 0...
0 ho h. .. .. . 0 8

H~d) (8)
Under the assumed condition, the observation process z(.) is a • "
cycloctationary vrocess. Different from the stationary case, the 0 ... 0 h0  h ... hL

second-order statistics contain the phase information of the chan- d

nel. The identification of H(z) is approached by identifying its
aeosfrom those of {Iih)(s)), where {lI~)(s)) is obtained from The proof of the above theorem establishes the connection be-

observation spectra. The relation between I)) and H(s) tween the rank condition and the condition involving the location
the oeaon )() aof the zeros. The sufficient part of this theorem is equivalent to
is given by the one 11.

1'(6)(z) = H(s)H*(ei&V ),k = 1,2,- -. (2)

The problem of channel identification is then equivalent to iden- References
tifying H(z) by r(5)(,).
The following theorem provides a necessary and sufficient condi- [11 L. Tong, G. Xu, and T. Kailath. "Blind identification and
tion for the channel identifiability, equalization based on second-Order statistics: A time domain

Theorem 1 H(z) is uniquely determined (identifiable) by {('(0)(s)) approach'. Submitted to IEEE Trans. Information Theory.

up to a constant if and only if H(s) does not have uniformly
- spaced zeros. More over, if the channel is identifiable,

Z(H(s)) n flZ(r')(z)), (3)
h ACKNOWLEDGEMENT

whr Z(H(s)) stans for- the set of se,,os of H(s).
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ENTROPY AND THE CONSISTENT ESTIMATION
OF JOINT DISTRIBUTIONS

Katalin Marton Paul C. Shields
Mathematics Institute University of TlIdo and

Hungarian Academy of Sciences E6tv6s Loriid University

The kth-order joint distribution for an ergodic finite- Shields which used the d-distance rather than the varia-
alphabet process can be estimated from a sample path of tional distance.
length n by sliding a window of length k along the sam- Extensions and applications of these results will also be
ple path and counting frequencies of k-blocks. If k is fixed discussed.
the procedure is consistent in that the resulting empirical Acknowledgements. The authors were partially sup-
k-block distribution will almost surely converge to the true ported by the Hungarian National Foundation for Scien-
distribution of k blocks as n --# no, a fact guaranteed by tific Research Grant OTKA 1906 and by NSF grant DMS-
the ergodic theorem. The consistency of such estimates 9024240.
is important when using training sequences, that is, finite
san-ple paths, to design engineering systems. The empiri-
cal k-block distribution for a training sequence is used as
the basis for design, after which the system is run on other,
independently drawn sample paths. There are some situa-
tions, such as data compression, where it is good to make
the block length as long as possible. Thus it would be de-
sirable to have consistency results for the case when the
block length function k = k(n) grows as rapidly as pos-
sible, as a function of sample path length n. This is the
problem addressed in this paper.

A sequence {k(n)} will be said to be admissible for
a given ergodic process p if the variational distance be-
tween the true distribution and the empirical distribution
of k(n)-blocks converges almost surely to 0 as n --* o. Ev-
ery ergodic process has an admissible sequence such that
lim, k(n) = oo, by the ergodic theorem, and, for any se-
quence k(n) --+ oo there is an ergodic measure for which
f k(n)} is not admissible.

Entropy plays a role in this problem, because if k(n) >
(1 + e)(logn)/H, then the empirical k-block distribution
cannot be close to the true distribution, for, by the en-
tropy theorem, most of the probability is concentrated on
a set of k-blocks of cardinality 2'(H+'/2). Thus the interest-
ing question is whether there are any processes for which
consistent estimation is possible if k(n) - (1 - c(log n)/H.
It is shown in this paper that the answer is yes for the
class of Markov processes as well as for somewhat larger
classes, such as the class of finite state processes, and in
a slightly weaker form for the class of processes for which
past and future become asymptotically independent in the
weak Bernoulli sense. The proofs depend on an extension
of the Sanov-Hoeffding large deviations bound, together
with an inequality due to Pinsker.

For the class of functions of Markov chains, this work
sharpens prior results obtained for more general classes
of processes by Ornstein and Weiss and by Ornstein and
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A New Bound on the Estimation of the
Probability Density Function Using Spectral

Analysis

Marco S. Akncar t

Univeusidade Federal da Paraiba
Departamento de Engenharia Eletrica

Av. Aprigio Veloco, 882
58.100 Campina Grande PB Bruil

Abstract where Q(s) is the w-hctioa. dA by

A new upper bound is introduced On the Wet 6o of the probe-
bility density function through spectral asnlysis. The upper bound is Q(,)- (5)
shown to decrease steadly as the modulating index is increased, feo the
Gaussian cae. The above expraeson is a very tight bound and shows the error dependency

Summaryon the modulating index P. The efficiency of the estimation used in assuredbecause the variance goes to sero. The estimatioa always gets better as the

Estimation of the probability density function (pdf) of stochastic process is modulating index is increased, which implies a decrease in freqeency or an
commonly based on a time series approach [1]. This is done by measurement increase in the power of the signal [8]. This also implies the consistency of the
of the time spent by the signal between two specified levels or through a method. All the relevant information is available for the estimation, giving
pulse counting process, for discrete signals. This usually leads to biased and suficiency to the estimator.
inconsistent estimates, and to mean square errors that depend on the pdf A digital computer implementation of the method was performed through
itself [2]. it is a common practice to assume the stationarity and ergodicity contract No. C.NE.085.16 with EMBRATEL, and has been tested in practice
of the random process into analysis [3]. with good results (9].

The main purpose of this paper is to present a new bound on the estima-
tion of the probability density function of random signals, using Woodward's
theorem, correlation techniques and spectral analysis [4] [5]. The proposed References
method is based on the spectral analysis of the random process.

Woodward's theorem asserts that the spectrum of a high-index frequency [1] G. Miraky. Radioelectro•uc McasuremeatL Mir Publishers, Moscow, 1978.

modulated waveform can be approximated by the probability distribution of [2] M. B. Priestley. Spectral Anaslyis ad Time Series. Academic Press,
its instantaneous frequency deviation [5]. A new proof of the theorem was London, 1981.
developed previously, which gave the following result for the power spectrum
density (PSD) of the modulated signal [6]. [3) M. SDhwarts cad L. Shaw. Miaw P-cisl : lr SpecTayoAna9i7,

Defection, and Betimaton McGraw-Hill, Tokyo, 1975.

As(wu) = +-[pM + p)+a(
5

'w)]. (1) [4] N. M. Blackmun and G. A. McAlpine. "The Spectrum of a 11igb-Inde
2D D D FM Waveform: Woodward's Theorem Revisited'. IHER TVa*sctoa- on

where the constant parameters A, w, and D represent respectively the carrier communucations Tecksology, 17(2), April 1969.
amplitude, frequency (rd/a) and frequency deviation index. The signal whose
pdf (pM(m))one intends to analyse is represented by re(), here considered (5] P. M. Woodward. •The Spectrum of Random Frequency Modulation'.
s nero mean random stationary process, limited in frequency to wm. The Memo. 666, Telecommunications Research Establishment, Great Malvern,
phase of the carrier # is random, uniformly distributed in the range (0, 2r) England, December 1952.
and statistically independent of re(t). [6] Marelo S. Alea and Benedito G. Aguiar Neto. 'Esthngo da

The diference between the estimate of the PSD function and the actual De6sidade de Probabairdade AtravB i dG. Aniarse Espectmral. Ia AFesq 4
PSD is the estimation error Es. An upper bound for this error is evaluated Demade deProbde Atravds daA es 1spect-10.. in Peak,
below and is shown to decrease with the an increase in the modulation index SmpdBat Baleiv do Telecomann , page 10.3.1-10.3.1, So Paulo,•. The approximation error is given byBm,19.

[7] A. Papoulis. Probability, Rea4lom Variables nad Stochastic Processes.
Es(O) = Ss(n') - Ss() (2) McGraw-Hil, Tokyo, 1981.

where S(w) represents the actual spectrum and As(w) stands for the approx- [8] Marcelo S. Alener. -Measurement of the Probability Density Functioa
imation. of Communication Signalsw. In Proceedints f the E• B tm -

Considering the limiting case (r = w/PwU = lI/PIN), an upper bound tiou and Meaaremeat Technology Coalevrwce - IMTC'80, pages 5134-16,
on the normalised error can be determined. Substituting the expressions for Washington, D. C., April 1989.
SS(w) and .Ss(w) into equation 2, evaluating the expectancies at w. = 0 and
using the following inequality [7] [9] Maredo S. Alencar. 'Estima•o da Densidade Espectral de Potincia do

Sistemsa FDM-FM da EMBRATEL'. In Ansia do Simpdic Irceileire
1

E[(v'(t))'] _> E[(u( + r) - V(O))] de Te/ecomuaucaes, pages 297-300, Campins Grande, Bras, Seterabto

?> !72 E1(,W)) (3) 1988.

leads to

"This work w" pemtily supported by CNPq end ZMBRATEL.
tThs a.tber is crrely with the Deperta-St of aIetriel and Computer Baginoeerla

Univweity of W•atrloo, Ceeda.
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A Cramer-Rao Type Lower Bound for Estimators Satisfying a
Bias Constraint*

Alfred Hero

In this paper we give a Cramer-Rao (CR) type lower bound on esti-
mator covariance which applies to any estimator whose bias gradient lies
within a user specified ellipsoidal region of parameter space. In addition
to providing a useful lower bound which is insensitive to small unknown
estimator biases, the rate of change of the new bound provides a quantita-
tive bias "sensitivity index" for the conventional bias-dependent CR bound.
We give an analytical form for this sensitivity index which indicates that
small estimator biases can make the new bound significantly less than the
unbiased version of the CR bound when there exist important but difficult-
to-estimate nuisance parameters. This implies that the application of the
CR bound is unreliable for this situation due to severe bias sensitivity. As a
practical illustration of these results, we consider the problem of estimating
elements of the 2 x 2 covariance matrix associated with a pair of indepen-
dent, identically distributed, zero-mean Gaussian random sequences.

Reference

A. 0. Hero, "A Cramer-Rao type lower bound for essentially unbiased pa-
rameter estimation," MIT Lincoln Laboratory, Lexington, Mass., Technical
Rep. 890, (3 January 1992). DTIC AD-A246666.

* This work was supported by M.I.T. Lincoln Laboratory under Air Force
Contract F19628-90-C-0002. Dr. Hero is with the Department of Electrical
Engineering and Computer Science, University of Michigan, Ann Arbor, MI
48109-2122.
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NON-LINEAR, NON-BINARY CYCLIC GROUP CODES
G. Solomon

Los Angeles, CA

Restrict Pa(x) for all codewords a to a (m - 1) order sub-

Abstract group of GF(2') by stipulating that Tr P(x) = 0 for x EGF(2').

New cyclic group codes of length 2' -1 over (m - j)-bit (P(x) as writtten here is generic for all PWx)). The codes thus

symbols are introduced. These codes may be systematically generated are cyclic group codes over (m - 1)-bit symbols and

encoded and decoded algebraically. The code rates are very are systematically encodable for codes meeting the conditions

close to RS codes and are much better than BCH codes (a for- in the main theorem.
mer alternative). The (m -j)-binary tuples are identified with Examples:
a sub-group of the binary m-tuples which represent the field
GF(2"'). Encoding is systematic and involves a two stage pro- 1. Take the RS code A of dimension 5 over GF(2"), a e
cedure, the usual linear feedback register (using the division or A, a = (ai), ai = Pa(/3)- The polynomials P.(x) are of

check polynomial), and a small table look up. For low rates, a degree 4 with Tr Po(x) = 0, for all x E GF(2"'). For a

second shift register encoding operation may be invoked. De- general P(x), dropping the subscript a, P(x) = A + Bj. +

coding uses the Reed-Solomon error correcting procedures for Cx2 +Dx ) +gx 4 ; A, B, C , D, E =GF(2). The onditions

the m-tuple alphabet, i.e., the field elements GF(2"V). that Tr P5(x) 0 gives Tr A = 0, B4 +C2 +E = 0, D = 0.
This code has binary dimension (m - 1) + 2m.

SUMMARY For m = 3, we get binary dimension 8 or dimension 4 over
Group codes of lengths up to 2 b over binary (m - 1) tu- 2-tuples. i.e., a (7, 4; 3) code over binary doubles. This is

pies are first introduced and are shown to be cyclic and then a reduction from the (7, 5; 3) RS code over binary triples!
systematically encodable. These (m - 1)-tuples are identified There exist no integer dimension over (m - 1)-tuples for
with an additive subgroup of the field GF(2m'). These codes are
not linear. That is, a codeword does not admit multiplication
by a GF(2"m) field element to yield another codeword. 2. Take a RS code of dimension 11 over GF(16) but choose

Consider the field GF(2") along with a primitive element 6 as your Mattson-Solomon (M-S) set the polynomials P(x)

which generates the n = (2' - 1) roots of unity. In addition, of degree 11, setting the constant term equal to zero.
/3 is chosen with the following properties: 1) m odd: Tr/3' = 0

for 1 < i < m - 1, where Tr denotes the linear field operator P(x) = XZl,= cax'; Tr P(x) = 0 leads to

trace. Tr/3 = #+/3
2 +/4+...+/ $'--. SoTr/3E GF(2), Tr 4+4c2+c+ Cs =0

/32 = Tr/3, Tr cx2 = Tr V/c-x, for c,x E GF(2'). 2) m even: c+C9+c9 =0
TrO = 0 for 0 < i < m - I except for a single odd integer p, cs + c + c20 + 480 = 0

p < m, and Tr •P=1. c 12+c 7 =0

The following are polynomials for #3 which satisfy the con- The number of binary dimensions is 12 + 8 + 6 + 4

ditions 1) and 2) above for 3 < m < 12. 30 which is dimension 10 over binary triples. Thus the

m Polynomial for /3 explanation (15, 11; 5) RS code over GF(16) is transformed into the

3 3 explanationnon-systematic (15, 10; 5) code over trace zero elements
4 3 1 0 (x3 +x+-1) of GF(16).

4 410

5 530 3. Similarly the RS (15, 7; 9) code over GF(16) using polyno-
6 6 1 0 (Tr/3s = 1) mials of degree 6 from 0 to 6, under analogous techniques,
7 7 30 gives the relations Tr co = 0; c+c +4 c4 = 0; c.+4 =
8 84320 (Tr 0- = 1) 0; cs = 0.

9 950 Binary dimension count is 3 + 8 + 4 = 15. This yields a
10 10 3 0 (15, 5; 9) code over triples.
I11 1190
12 1264 1 0 (Tr /al = 1) Compare this to

Codes of length greater than 4096 are rarely invoked in e (15, 5; 11) RS over 4-tuples,

present day block coding techniques. Do these properties ex-
tend beyond m = 12? 9 (15, 5; 7) BCH over GF(8) and GF(2).

An element c EGF(2') may be represented by c = of' ca1es
One may identify Tr c by its binary representation (c4); 0 5< (15, 4; 10) BCH over GF(4). (doubles).
i < m - I and single out co for m odd, and cp for m even. These non-systematic codes are cyclic. The extension to

Thus the binary value Tr c is determined by only the trace one (m - j)-bit symbols and the systematic construction of these

position (0 or p) in its binary m-bit representation. Choose an codes can be found in "Nonlinear, Nonbinary Cyclic Codes" by

(n, k; d) Reed-Solomon code over GF(2') so that the code- G. Solomon NAiA Code 310-10-63-53-00 TDA Progress Report

words are values of sets of polynomials P(x) with coefficients 42-108 Jet Propulsion Laboratory October-December 1991.

in GF(2') of fixed highest degree (n - d) or (n - d - 1). A " w w e dy u hei cn-

codeword a = (aj) is represented by the values of a polynomial 'This work wa. performed by the author while acting as a consultant to
thatwd a = (a ) 0 re e by the as othe Jet Propulsion Laboratory, California Institute of Technology, under

Pa(x) so that aj = p,(fj), 0 <_ j <5 n - 1. contract to the National Aeronautics and Space Administration
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Classification of Cosets
of the Reed-Mufler Code R(m - 3,m)

Xianq-dong Hou
Department of Mathematics and Statitics

Wright State University
Dayton, Ohio 45435

The covering radius of the (m - 3)rd order Reed-Muller code
R(m - 3,m) of length 2'- has been known. This talk aims at
a complete classification and further properties of the cosets of
R(m - 3,m).

The general afsine group GA(m, 2) is an automorphism group
of R(m-3,m), and is the full automorphism group when m > 4.
Hence GA(m,2) acts on the set C of all co~ets of R(m - 3,m).
The cosets of even weight in C correspond to m x m symmetric
matrices over GF(2), and their GL(m, 2) orbits correspond to
the congruence classes of m x m matrices over GF(2). The same
thing happens with respect to the cosets of odd weight in C.
Using the well-known classification of symmetric matrices over
GF(2) under congruence, we get the calssification of C under
the action of GL(m, 2). The classification of C under the action
of GA(m,2) follows immediately. Representatives and sizes of
the GA(m, 2)-orbits in C are given. The minimal weights of the
cosets in C are determined.

We also identify all the orphan cosets of R(m - 3,m). It
turns out that all the orphans of R(m - 3, m) are 0-covered, ie.,
for any orphan C of R(m - 3,m) and any coordinate position,
there is a coset leader of C whose coordinate at the given position
is 0. This implies that R(m - 3,m) is normal.

Finally, we turn to the weight distributions of the cosets in
C. For any C E GF(2)2", we derive a general recursive formula
for computing the weight distribution of C. The recursion starts
at the minimal weight p of C. When wo > p is not far away
from 1, the formula gives the number of vectors of weight w in C
rather easily in terms of certain functions IAC(C)I of C. IAC(C)I
is difficult to compute for general C. However, when C is one of
those representatives of the GA(m, 2)-orbits in C, we are able to
give explicit formulas for IA(C)I.
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IDEMPOTENTS AND MINIMUM WEIGHTS OF

PRIME POWER LENGTH CYCLIC CODES

OVER ARBITRARY FIELDS

Vanessa Job, Marymount University, Arlington, VA 22207

Let p be a prime and let q be a prime power relatively

prime to p. Let z be the greatest integer such that p'1(qt - 1)

where t is the order of q modulo p. Assume that p and q

have been chosen so that z = 1. (Note that is very unusual

to have z > 1.) We give a characterization of idempotents

of length p-+' cyclic codes over GF(q) in terms of the idem-

potents of length p cyclic codes over GF(q). We define two

classes of length p"+l cyclic codes, the repeated p codes and

the expanded p' codes, which are derived from length p and

p"' cyclic codes, respectively, and give the idempotents of these

codes in terms of the idempotents of the codes from which they

were derived. We also give the weight enumerators of codes in

these classes as a function of the weight enumerators of the

codes from which they were derived. Finally, we show that

every length p"'+! code can be uniquely expressed as a sum

of a repeated p code C, and an expanded pm code C2 and

show that the sum must have minimum weight less than or

equal to min(p'di,d 2) where di is the minimum weight of of

the length p code from which C, was derived and d2 is the

minimum weight of the length pm code from which C2 was

derived. Using these results, we give an algorithm for con-

structing idempotents for prime power length duadic, triadic,

and polyadic codes, generalizations of quadratic residue codes

to nonprime lengths n and dimensions other (n - 1)/2 and

(n + 1)/2. We show that the minimum weight of prime power

length polyadic codes is unlikely to be greatest possible, distin-

guishing them from polyadic codes of square free length, which

frequently have greatest possible or greatest possible known

minimum weight for codes of their length and dimension.
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Constructing Reed-Muller Codes from
Reed-Solomon Codes over GF(q)

Frank R. Kschischang

1 Summary By the basic properties of the multilevel construction, C has min-

imum distance d = min(dh,2d 2). Clearly this is the well-known
The [q, k] extended Reed-Solomon codes over GF(q) are nested, (UIU + V) construction [4].
that is, Similarly, the first three rows of Pascal's triangle, reduced

[q, q] D [q, q - 1] D ... D [q, 1] D [q, 0] = {0}. modulo 3, form a universal generator matrix for a family of nested
ternary MDS codes of block length 3. Applying the basic multi-

This means that the [q, k - 11 code is a subgroup of the [q, k] code level construction method results in a ternary "(U[2U + VIU +
and hence the [q, k] code may be partitioned into the q cosets of V + W)" code construction method [5], in which C = U ® 121 +
the [q, k - 1] code. This code, in turn, may be partitioned into the V ® 110 + W ® 100.
q cosets of the [q, k - 2] code, etc., thus forming the set partition This construction is easily extended to GF(p) for any prime
chain [q,q]/[q,q - 1]/ ... /[q, l]/[q,O]. Since these codes are all p. Massey et al. have shown in [6] that the first p rows of Pascal's
maximum distance separable or MDS (the minimum Hamming triangle reduced modulo p form a universal generator matrix for a
distance of the [q, k] code is q - k + 1), the intrasubset distances family of nested MDS codes of block length p over GF(p). Thus,
form the sequence { 1,2, 3,... , q, 0o0, where oo is used to denote the basic multilevel construction method may be applied to this
the intrasubset distance of a set with one element (a singleton). case.

Let g1 be a nonzero codeword in the [q, 1] code. Then gi is a For arbitrary fields GF(q), we construct q-ary "Reed-Muller"
generator for the code. Let 92 be a nonzero codeword in the [q, 2] codes as follows. Beginning with the bi-infinite partition chain
code that is not in the [q, 1] code, i.e., an element of the relative
complement of [q, I] in [q,2]. Then {gl,g2} generates the [q,2] ... /[1,1]/[,, I]/[,, I]/[,,0]/[l,0]/[1,01/...
code. Proceeding in this way we can obtain a universal generator we apply the multilevel construction technique taking as compo-
matrix nent codes every sequence of q consecutive codes in the partition

g5 Ichain. From this we obtain the bi-infinite partition chain
G =... I[q, q]!iq,qlliq, q- I]/' .. l[q, I]lfq, 0]1[q, O0l'"

91 We then apply the multilevel construction technique to this chain

the last k rows of which generate the [q, k] code. of codes, resulting in a chain of codes of block length q'. This
The basic multiltvel (sometimes called generalized concate- process may be repeated indefinitely, resulting in a family of block

nated or hierarchical) code construction technique (see, c g., [1,2]) codes having block lengths ,hat are integer powers of q.
is based on precisely the type of set partitioning described above. In our work we derive formulas for the dimension and mini-
The construction combines q component codes of block length n to mum distance of these codes, investigate their duality properties,
obtain (in this case) a code of length nq. Although not necessary and show that these codes are natural analogs of the binary Reed-
for the construction, we consider here only linear codes. Denoting Muller codes.
the parameters of the component codes by In, kid., [n, k2, d2],

[... in, k5, d,], the multilevel construction combines these codes to
obtain an References

[nq, ki + k2 + "- + k5,d = min(dr,2d2,3d3 _. .qdq)]. [1] V. A. Zinoviev, "Generalized cascade codes," Probi. Peredach.
Inform., vol. 12, pp. 2-9, 1976.

code. Wu and Costello used this construction method in [3] to
obtain new codes over GF(q). In "code formula" form. we have 121 E. Biglieri and A. Spalvieri, "Generalized concatenation: A tu-

torial," in Coded Modulation and Bandwidth-Efficient Trans-
C = [n, ki,du] 0gq + [n,k 2 ,d2] ®g,-i + + [n,k,,dq] g, mission (E. Biglieri and M. Luise, eds.), pp. 27-39, Elsevier
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For example, when q = 2, we take g, = 11 and 92 = 01. [31 J. Wu and D. J. Costello, Jr., "New multilevel codes over
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[n,ki,dI and U = [n,k 2,d 2] to obtain 939, May 1992.

C= [n, k,,dj ®& 01 + In, k,,d2 -. [4] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-
Correcting Codes. New York: North-Holland, 1977.
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ON THE APPARENT DUALITY OF THE KERDOCK AND PREPARATA CODES

ROGER HAMMONS AND P. VIJAY KUMAR

ABSTRACT. The Kerdock and Preparata codes are something CONV*X ROOTS
of an enigma in coding theory since they are both Hamming COMA of Unity au!"
distance invariant and have weight enumerators that are dual Sq"uenwce• 0[ -C
under the MacWilliams transform just as if they were dual Famiy
linear codes. In this paper, we explain. by constructing in / WI
a natural way a Preparata-like code 7L from the Kerdock
code K, why the existence of a distance-invariant code with
weight distribution that is the McWilliams transform of that
of the Kerdock code is only to be expected The construction GWaI
involves quaternary codes over the ring Z4 of integers mod-
ulo 4. We exhibit a quaternary code 4 and its quaternary K Q
dual Q(- which, under the Gray map, give rise to the Ker- CW M A
dock code K and Preparata-like code i.L, respectively. The TmvMo[MvCLWoIUmS ONWY
code 7PL is identical in weight and distance distribution to TAlMIONIT DUNlS
the Preparata code The linearity of Q and Q±- ensures thatX and V•L are distance invariant, while their duality as qua- &W A
ternary codes guarantees that K and PiL have dual weight P PL -OBBB0
distributions.

FIGURE 1. QUATERNARY CONNECTIONS
SUMMARY

Recently, a family of nearly optimal four-phase sequences of
period N = 2' - 1, r odd, with alphabet 11,j,-1,-j}, .1 =

_1/-_-, was discovered first by Sol6 [1i and later independently codes have similar finite field transform descriptions, they are
by Bozta4, Hammons, and Kumar [2). After replacing each in general not the same.
complex fourth root-of-unity j' by its exponent a E 40,1,2,3), Interestingly, at length 16, the Preparata and Preparata-
this family may be viewed as a linear quaternary code over like codes do coincide. In fact, the Kerdock code, the ex-
the ring Z 4 of integers modulo 4. Since the family has low tended Preparata code, and the Preparata-like code all coincide
correlation values, it also possesses large minimum Euclidean with the Nordstrom-Robinson code X116. Thus, the Nordstrom-
distance and thus the potential for excellent error-correcting Robinson code can be generalized in one way to get the ex-
capability, tended Preparata codes, in another way to get the Kerdock

An analysis [2] of the correlation properties of the four-phase codes, and in yet another way to get the Preparata-like codes!
sequences led us to consider the 2-adic (i.e., base 2) expansions From the standpoint of decoding, it is not necessary to dis-
of the quaternary codewords. Interestingly, these bore a strik- tinguish between the binary codes and their quaternary par-
ing resemblance to the original expression [3] for the nonlinear ents. An important advantage in working in the Z 4-domain,
binary Kerdock code. A second connection with the Kerdock where the codes are linear, is that it is meaningful to speak of
code arose during attempts to construct good binary codes from syndromes. Moreover, the codes Q and Q± are Z 4 -analogs of
the four-phase sequence family using the Gray map. This was a the binary first-order Reed-Muller code RM(1, r) and its dual
logical step to pursue as the Gray map translates a quaternary RM(r - 2, r). This connection makes decoding of the Kerdock
code with large minimum Euclidean distance into a binary code and Preparata codes, at least conceptually, easier.
of twice the length having large minimum Hamming distance.
The codes that resulted were nonlinear and had the same pa- REFERENCES
rameters as shortened versions of the Kerdock code.In exploring these connections, it was discovered that the [1] P. Sole, A Quarternari, Cyclic Code and a Family of Quad-

In eploingthee conecion, i wa disoveed hattheriphase Sequences with Low Correlation Properties, Lecture
original quaternary code could be enlarged in a natural way, as Notes in Somuen ciec Low Coreat , rorisLcu
shown in Figure 1, to a linear quaternary code Q whose image
under the Gray map is precisely the Kerdock code. It was only [21S. Bozta§, R. Hammons, and P. V. Kumar, 4-phase Se-
natural to consider whether the interesting link between the q2] cs wit h r O tm m Correlationumro pert e IE -Kerdock code and a linear quaternary code could also be used quences with Near Optimum Correlation Properties, IEEE

Kodadain ryodeok ano PepTransactions on Information Theory 38 no. 3 (May 1992),
to explain the apparent duality of the Kerdock and Preparata 1101-1113.
codes.

The new perspective does indeed provide an explanation, al-
though not the one that might first be suspected. We show C3] A. M. Kerdock, A Class of Low-Rate Nonlinear Binar(
that the binary images 9(C) and 9(C') under the Gray map of Codes, Information and Control 20 (1972), 182-187.
a linear quaternary code C and its Z 4-dual are always Hamming
distance invariant. Furthermore, these binary codes have the R. Hammons is with Hughes Aircraft Company, 8433 Fallbrook Avenue.
property that their weight distributions are always dual under Canoga Park, CA 91304-0445. P. V. Kumar is with the Communication
the MacWilliams transform. As a consequence, the Kerdock Sciences Institute, EE - Systems, University of Southern California, Los
code possesses a natural "quaternary-dual" code PL -= (Q') Angeles, CA 90089-2565.
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Normal and Abnormal Codes

Tuvi ETZION* GADI GREENBERGt IIRO S. HONKALAt

Lot of research in the area of covering radius is on By Theorem 2 and the results of Vleduts and Sko-
the normality of codes. The main reason is that by robogatov [6] we have
using the amalgamated direct sum [1] construction Theorem 4. For each t there exists an mo such
one can generate from normal codes sparse covering that for all m >= m0 there exist abnormal (2 ' -
codes with larger covering radius. An (n, d)R code C 1, 2t)2t and (2m, 2t + 1)2t + 1 codes.
is a code of length n, covering radius at most R, and By applying Construction C on the extended Ham-
minimum distance at least d. An interesting question ming code, the punctured Preparata code, and the
in this context is to determine which codes are nor- Preparata code, we obtain that there exists an no
mal and which codes are abnormal. One important such that for each n >= no, there exist abnormal
factor is the ratio between the covering radius of the (2", 3)2, (22n - 1, 4)3, and (2 n, 5)4 codes, respec-
code and its minimum distance. van Wee [5] proved tively. One consequence is that it would be difficult
that all (n, 2R)R codes and all (n, 2R+ 1)R codes are to extend Theorem 1.
normal. Hou [3] proved that all linear quasi-perfect
codes are normal. These results are strengthen with
the following theorem. References

Theorem 1. If C is an (n, 2R - 1)R code, where [11 G. D. COHEN, A. C. LOBSTEIN, AND N. J. A.
R does not divide n, then C is normal and all its SLOANE, Further results on the covering radius
coordinates are acceptable. ofcodes, IEEE Trans. on Inform. Theory, IT-32

All the abnormal codes which are known [2],[4],[5] (1986) 680-694.
have minimum distance 1. Three constructions (A, [2] L S. HONKALA AND H. 0. HAMALAINEN,
B, and C) for generation of abnormal codes are given. [2] f. S. HONaAy AND H. 0 H A er,
The constructions that we use are modifications of the ing radius 1, IEEE Trans. on Infcodr. Theory,
constructions of Frankl [4] and van Wee [5]. The con-
structions differ in the structure of the codes which IT-37, (1991) 372-375.
they use. [3] X. Hou, Binary linear quasi-perfect codes are

By applications of Construction A we show that normal, IEEE Trans. on Inform. Theory, IT-37,
for most lengths there exists abnormal (n, R)R codes, (1991) 378-379.
R <= 6. [4] K. E. KILBY AND N. J. A. SLOANE, On the

Theorem 2. By applying Construction B on an covering radius problem dor code IL Codes of
(n, d)R code we obtain an abnormal (n, d - 1)R + 1 low dimension; normal and abnormal codes,
code. SIAM J. Algebraic Discrete Methods, 8 (1987)

Theorem 3. For each R >= 1, there exists an no 619-627.
such that for each n >= no there exists an (n, M, R-
1)R code. [5] G. J. M. VAN WEE, More binary covering codes

are normal, IEEE Trans. on Inform. Theory, IT-
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TCH: A NEW FAMILY OF CYCLIC CODES LENGTH 2m
(t) F. A. B. CERCAS * (t) M. TOMLINSON (t) A. A. ALBUQUERQUE

(t) Instituto Superior Ticnico, DEEC, Av. Rovisco Pais, 1096 Lisboa Codex, PORTUGAL

(t) University of Plymouth, Satellite Centre, Plymouth PL4 8AA, ENGLAND

SUMMARY
A new class of block codes length 2", named TCH (Tomlinson, for any given primitive root a of GF(q). Each of the existing a gen-

Cercas and Hughes), has been found based on finite field theory. So- erates a different P 1(z), containing 2n codewords, which is the basis,
phisticated computer techniques have been used to refine and extend h = 1, for a new TCH code.
these codes to other binary number lengths not directly achievable, A good method to expand the codeword set is to use the first
as the number of code lengths lying in the range of most practical polynomial in a shift and add procedure which consists of cyclically
applications is extremely scarce, shifting Pi(z) and adding the shifted polynomial with the original

TCH codes have the advantage of an easy implementation of the one, in order to get a second polynomial P 2(z). If P 2(x) has a good
receiver and are suitable for a wide range of applications in commu- auto-correlation function and a good cross-correlation function with
nications particularly those taking place in adverse environments like Pl(z), for all time shifts, then P 2(z) is included in the codeword
fading, Doppler effects, reflections and all types of interference. For set, h = 2, therefore doubling the total number of codewords. The
this reason we looked for codes which could be at least cyclic and procedure is continued in the same way in order to increase the number
with code length n = 2-", m being a positive integer. This allows of information bits k for a given value of minimum distance d,.
the implementation of a maximum-likelihood decoder with a bank of required. The good results obtained with this method rely on the
correlators using transform techniques, such as the Fast Fourier Trans- structure of TCH codes itself. The jr" cross-correlation coefficient
form (FFT), while keeping the total number of correlators as low as between Pi(z) and P,(x) = P,(x)[1 + zr], where r is a time shift, is
possible. given by :

TCH codes are nonlinear cyclic codes of length n = 2" as the Ci = n - 2W[Pj(z)(1 + x2 + z'+j)] (5)

linear addition modulo 2 of two codewords does not necessarily produce where W[.] is the Hamming weight. C, is virtually zero forj = -r.
another valid codeword. They are cyclic in the sense that every cyclic For other time shifts the coefficients are evaluated and tested.
shift of any codeword is always a valid codeword. A TCH code is Although the ratio k/n of TCH codes found so far is relatively
then a block code closed under cyclic shifting but with the all-zero small, it is shownil, 21 that low-rate coding using TCH codes can
codeword excluded. TCH codes can be defined in terms of h code have significant advantages. The fact that TCH codes have length
polynomials, P,(x)i=1 1. h, where Pi(z) :A Pil(a) mod n, i 9k j, for 2" and not 2" - I like BCH codes, dramatically reduces the total
all time shifts r. TCH codes are also non-systematic and cannot be number of transforms through a decoding process with just two steps :
defined in terms of a set of parity check equations, except in special in the first step the modulus of h transforms is evaluated, choosing
cases. The number of information bits k of a TCH(n,k,t) code, able the code polynomial which best matches, and in the second step the
to correct t errors, or simply TCH(n,k), is given by: computation of its 2" phases is performed so to decide what was the

k = m + log2h + 1 (1) most likely codeword sent. The speed gain S, defined as the ratio
between the total number of operations needed to perform maximum

where the term 1 accounts for including the inverses of all codewords, likelihood decoding, and the number of operations needed by a TCH
which are also valid codewords. decoder is given by :

TCH codes can be generated in the following way : once we want S, = h2-" h n2k (6)
cyclic codes length n = 2", we must find polynomials P(x) length Th + 2"' - 1 + _h - 2n2 + 2k
n with coefficients ai, i = 0,1,..., n - 1 from GF(2). Finite field For the TCH(512,16,111) codes found so far the decoding process
theory tells us that polynomials of degree n with coefficients from a
Galois field GF(q), where q is related to a prime number p by q = pk, can be speeded up by more than 100 times (5, = 102.4), and just a

k a positive integer, can be the field elements of GF(q). Restricting bit less (S, = 83.3) for the TCH(256,16,54) codest2I.
the coefficients to GF(2), as required, and for k = 1, we can easily The use of TCH polynomial codewords as PN sequences can also be
construct basic TCH polynomials for all prime numbers p verifying the advantageous as there is very little spectral overlay between them(21,
following equation : or in other words, low cross-correlation. It can be shown that the

p = n + 1 = 2"m + 1 (2) average signal-to-interference ratio for the mentioned TCH(256,16)
code is 24.3 dB, which is identical to the best code of this approximate

Basic TCH polynomiak have the form : length, the (255,16) Kasami code.
(Rji)-' References

P&()= ai'i (3)0=( [1] M. Tomlinson, F. A. B. Cercas, C. D. Hughes. "Aspects of

Coding for Power Efficient Satellite VSAT Systems",
where the number of terms is n/2 so the number of ones equals the ESA Journal 1991, Vol. 15, pp. 165-185.
number of zeros in the polynomial. The exponent values K, are those 121 F. A. B. Cercas, M. Tomlinson, A. A. Albuquerque, "New
which verify the equation Developments and Applications Using TCH Codes".
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Digital Signature Schemes Based on Error-Correcting Codes

Mohseen Alabbadi and Stephen B. Wicker

School of Electrical Engineering, Georgia Institute of Technology

Atlanta, Georgia 30332

In [4] it is shown that Ham and Wang's scheme is suscep-
Abstract tible to a known-plaintext attack. Since the error vectors are re-

We examine the security of several digital signature schemfes vealed during the verification process, we can obtain the expression

based on algebraic block codes. it is shown that Xinmei's digi- v

tal signature scheme can be totally broken by a known plaintext ' (Dc, = h(mJ)S,,G,,PA. Let ltfl ... IZn• be k distinct messages,

attack with complexity O(Pa), where k is the dimension of the h(ml ), h(_m2), .... , h(mt) their respective images under the function h,

code used in the scheme. Barn and Wang have proposed a mod- and jcZ,... , the corresponding signatures. A linear system of

ified version of Xinme. - scheme that prevents selective forgeries, equations is then created: [ei E _j] = [h(mr)] SAGA PA .

Their scheme is also shown to be vulnerable to a known plaintext If the vectors [h(mi)] are linearly independent, SAGA PA can be
attack. We then present a new signature scheme that we believe obtained in 0(k3 ) operations.
to be resistant to the previously described attacks.

3 A New Digital Signature Scheme
1 Xinmei's Digital Signature Scheme

A system is proposed that uses a series of intentional error vectors
Xinmei's digital signature scheme [1] attempts to base its security on that are in the same coset as the maximum likelihood error pattern,

the intractability of the general decoding problem and the difficulty but have higher weight. These error vectors thus cannot be obtained

of factoring large matrices. Each user, say user A, chooses an (n,k) through standard decoding techniques, making the pioposed system

binary Goppa code CA that has the ability to correct tA errors. A k x n immune to the above attacks.

binary generator matrix GA and an (n - k) x i, binary parity check A function f(z,_y) is made available to all users. f is a nonlinear

matrix HA are selected for CA. User A then finds the n x k binary invertible function where 1 is a binary k-tuple, y is a binary n-tuple,

matrix (5ý such that GAGA = Ik, where Ik is the k x k identity matrix, and the output value is a binary k-tuple.

User A selects a nonsingular binary n x n matrix PA and a nonsinsular Each user, say User A, selects an (n, k) binary irreducible Goppa

binary k x k matrix SA. User A completes the set-up of the system code CA that has the ability to correct some tA errors. User A then

by constructing the matrices JA = P;`G:A-'., WA = G*SZI, and selects agenerator matrix GA and aparity check matrix HA,and finds

TA = P A'HX. an n x k binary matrix GA such that GAG = I4. A nonsingular

The public key consists of JA, WA, TA, HA, tA, and t', where binary n x n matrix PA is generated and the matrices G = PA_'G'

t' is an integer such that t' < tA. The private key consists of the two and H = P;- HT computed.

matrices SAGA and PA. Finally User A selects an n x 1 binary matrix WA of rank n,

User A obtains the n-bit signature cj of the k-bit message mi where n < 1, and determines W. such that WA W = I.

by computing g, = (cj ErmSAGA)PA, where ej is an n-bit error vector The public key consists of G'A, H", WA*, t A, and t', where t'e is

with Hamming weight us(g',) = I' chosen at random by user A. an integer such that t' < tG. The private key consists of the matrices

The receiver validates the possibily noise corrupted signature GA, PA, G:, and WA.
e through the use of the Berlekamp-Massey algorithm and the public A k-bit message im is signed in the following manner. A random

key [1]. binary error vector a. of length n and weight t A is selected. A random
1-bit vector e, of arbitrary weight is also seiected. The 1-bit signature

2 Cryptanalysis and a Modification of Xin- j, is then computed using the following expression.

mei's Scheme

In [2] the authors showed that the linearity of the code and knowledge .2, = f(zj e [f(ZilA )q)• zjG"A]GA)PA )ej W}WA ) (1)

of the error vectors could be exploited in a chosen-plaintext attack that The signature is validated by first computing E, = sW,•. The

results in a complete break of Xinmei's scheme. The attack transforms Berlekamp-Massey algorithm is then applied to j to obtain an esti-

the cryptanalytic problem into a pair of systems of linear equations, mate of z.. The remainder of the public key is used to obtain ,

one containing n equations in n variables, and the other containing k which is then compared to the value computed by the receiving user.

equations in k variables. The complexity of the attack is thus O(n
3 ).

It was also observed by Harm and Wang in [31 that the com-

bination of valid signatures of some messages yields a valid signature References
for another message. Han and Wang [3] proposed a modification of

Xinmei's scheme that appears to secure it against selective forgery. 1 oe W. Xinmeie Digital signature scheme based on error-correcting
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tion matrix. In addition, they introduced a one-way hashing function digital signature scheme. Electronics Letters, 28(9):890-891, 23rd

h that is made public. The hashing function accepts an i-bit vector April 1992.

and produces a k-bit vector, where I > k, thus implementing a form of

compression. [3) L. Harm and D. -C. Wang. Cryptanalysis and modification of dig-

The n-bit signature cj of the 1-bit message m, is obtained by ital signature scheme based on error-correcting codes. Electronics

computing Cj = h(Mr)SAGA PA. When the signature r, is transmit- Letters, 28(2):157-159. 16th January 1992.

ted, it becomes susceptible to errors induced by additive channel noisee,. The received signature is thus denoted by • where • = ¢j [4] M. Alabbadi and S. Wicker. Cryptanalysis of the Ham ,rod Wang
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The Trellis Complexity of Equivalent Binary [17,91 Quadratic
Residue Codes Is Five

Yan-Yih Wang Chung-Chin Lu
Department of Electrical Engineering

National Tsing Hua University
Hsinchu, Taiwan 300, R.O.C.

Abstract: It is known that equivalent linear block codes may have
different minimal trellis structures. The minimum complexity among 2. k - Zj - k1,1 > 0 for all 0 < s < n.

all minimal trellis structures of equivalent codes is defined as the trel- The minimal trellis structure of an equivalent code a(C) is
lis complexity of the class of equivalent codes. Sharper lower bounds said to be dominated by a specification as in above if all its
for trellis complexity are derived when more information about the past dimensions kj,,(a) and future dimensions kf,,(a) are upper
infrastructure of codes is supplied. These bounds serve as a starting bounded by k,.i and kf,, respectively at each position i. Neces-
specification for a search algorithm to find optimal permutations un- sary and sufficient conditions for the existence of a permutation
der which the permuted codes achieve the trellis complexity. A simple a under which the minimal trellis structure of the permuted code
application to the class of equivalent binary [17,9] quadratic residue is close to and dominated by a specification are developed. And
codes finds the trellis complexity is five. a constructive algorithm is then built to searcl, for optimal per-

mutations under which permuted codes can achieve the trellis
complexity.

Let C be an [n, k, d] linear block code over GF(q). Let V be Let C be the binary [17,91 quadratic residue code generated
its dual code with minimum distance dx. Let S. be the set of by g(x) = 1 + X3 + X4 + x' + xA.. Let D be its dual code, The
all permutations on the n coordinates of codewords. Let a(C) be minimum distance of C and V are d = 5 and d' = 6. By applying
the equivalent code of C under a permutation a in S_. Let c(C),,j the above results, we can list K 1,, K,,, and K,, in the following
(a(C)f'j) be the past (future) subcode of a(C) which consists of table:

codewords whose future (past) coordinates to position i are all

zero. Let k-,j(a) (k,,(oa)) be the dimension of the past (future) , 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

subcode a(C)P,, (a(C)f,j). The dimension k,,i(ca) of the state space K,,.i 0 0 0 0 0 1 1 2 4 3 4 4 5 6 7 8 9
A',i 9 876 54 4 32 2 111 u 0 00 0

at position i in a minimal trellis of a(C) is [1] K,, 0 1 2 3 4 4 4 5 5 5 5 4 4 4 3 2 1 0

k..i(a) = k - ki(a) - k 1 o(a). Hence, the trellis complexity of the class of equivalent binary
[17,91 QR codes is not smaller than 5. To find optimal permuta-

Let s(a(C)) be the maximum value of k.,i over 0 < i < n. The tions and then to determine the exact trellis complexity, we start
trellis complexity s of the class of equivalent codes of C is defined our search algorithm with the following specification of future
as and past dimensions k,.i, kf,j, a very slight variation from the

s = min s(a(C)). above table, listed in the next table:
aes,

Let-i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

k_,. 0 0 0 0 0 0 1 1 2 2 3 3 4 5 6 7 8 9

K,,,= maxkj,(a),Ky,,=maxkkfj,(o,K), =k-K K,,-AKl,,. kl,, 9 8 7 6 5 4 3 3 2 2 1 1 0 0 0 0 0 0
ES. OaES, k,, 0 1 2 3 4 5 5 5 5 5 5 5 5 4 3 2 1 0

Note that KO,, = K.,-j. Since kpi(a) < K,,, and kf,(a) <_ Kf,i, With the above specification, we have constructed four optimal

we have permutations:

ko.,(a) _> &o,. = (1,4,5.6,9,7,10,2,14,17,3,15,8,11,12,13,16)

In general, Kj,, and K1,, are intrinsic attributes of the class of or (1,4,5,6,9,10,7,2,14,17,3,15,8,11,12,13,16)
equivalent codes of code C. K1,i may be estimated by N(a,O) or (1,4,5,6,9,7,10,2,14,17,15,3,8,11,12,13,16)
[2] which is the minimum possible block length for a linear block
code to have minimum distance a and dimension 0 as follows: or (1,4,5,6,9,10,7,2,14,17, 15,3,8,11,12,13,16).

1. If i < N(d-,j) - 1, then K,, k - i+ j - 1.Witl. anyone of the above permutations, we have

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
2.f>_n-N(d,j)+lthenK,<j-I. k,) 0 0 0 0 i 1 1 2 2 3 3 4 5 6 7 8 9

More precisely, for binary codes and early and late positions i, kf.u(d) 9 8 7 6 5 4 3 3 22 1 1 1 0 0 0 0 0
K1 . can be evaluated as follows: 0,(a) 1 2 3 4 4 5 5 5 5 5 5 4 4 3 2 1 0

k - i, if0 < i < d' - 1, Thus, the trellis complexityof the class of equivalent binary [17,9]
k-i+1, ifd <_i<d-L+ N] -l, QR codes is 5.
1, if n - (d + [4 i - 1) << n - d,

0, if n - d + 1 < i < n. [11 G. D. Forney, JR., "Coset codes - Part 11: Binary lattices
and related codes," IEEE Trans. on Inform. Theory, vol.

Two monotone sequences 0 = kp,,0 < kp,, < ... _< k,,, = k IT-34, no. 5, pp. 1152-1187, Sept. 1988. Part II.
and k = k1,0 >- kf1,, -t ... ' k.,, = 0 together are called a
specification of past and future dimensions if they satisfy [2] H. C. A. van Tilborg, "The smallest length of binary

7-dimensional linear codes with prescribed minimum distance,-
1. 0 < i,,, - kt,,-t(],,,i- - k-,,) < 1,VI < i < n; Discrete Mathematics, 33 (1981), pp. 197-207.
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CHANNEL EQUALIZATION FOR BLOCK TRANSMISSION SYSTEMS

Ghassan Kawas Kaleh

Ecole Nationale Superieure des T616communications, 46, rue Barrauh, 75 634 Paris 13, France

In Block Transmission System the information symbols conventional DFE. We have SNR, = aM., 2 Es/(Noao2). We
are arranged in the form of blocks alternating with blocks show that this performance is better than that of NDDE,
of L known symbols, L being the length of channel ZF-BLE, and the conventional ZF-DFE. The complexity
memory.. The latters help to identify the channel and to is O(LM).
process each information block independently from the
others: their interferences on the sampled output of the S. Minimum.Mean-Squared-Error Block Linear

matched filter are calculated and then subtracted Equalizer (MMSE-BLE). The performance degradation

We thus obtain the observation vector Y = R D + U, of the ZF-BLE can be reduced by inserting between R-1

where R is an MxM Toeplitz Hermitian symmetric and the threshold detector a Wiener estimator T' to obtain

matrix which represents channel distorsion, D = (dM , X = 'v X = D + W', where the power of every

dM-1, ... , dI)t is the information symbol vector and U is a components w'i of W is minimized. The cascade of R-1

Gaussian zero-mean noise vector whose covariance and T is a transformation R'-' =' R- whose input is Y

matrix is 2No R. The known receiver for this system is and output is X', where R'= [ R + (2No /Eldkl 2) 1 . The

the Nonlinear Data-Directed Estimator (NDDE)*. covariance of the error W' is 2No R'1. The SNRi is

Its complexity is O(M 3 ); it has to solve, using the [Eld il2/ EIw'1 2 ] -1.
Levinson Algorithm, M12 Toeplitz systems of decreasing
order.

6. Minimum-Mean-Squared-Error Block
In this paper we extend the equalization techniques to Decision-Feedback Equalizer (MMSE-BDFE). The

Block Transmission Systems and deduce decision- observation can be written as Y = R'D+ U', where

feedback equalizers that have better performance and less the error U' has a covariance matrix 2NoR'. The matrix
complexity than the NDDE. The fact that the observation R' can be Cholesky-factored as R' = H'*t E'2 H'. As above,

and its noise are snapshots from stationary time-series a noise whitener ('.llHl't-1) can be used and its output is

suggests the use of a nonstationary innovations processed using decision feedback strategy as in ZF-

representation based on Cholesky factorization of the BDFE. The decision vector is S = D + A, where the error
matrix R as R = H't 12 H, where H is an upper triangular A is a mixture of noise and residual intersymbol
matrix with I's along the main diagonal and I is diagonal interference. Its covariance is 2No 1'-2. The SNRi is

with positive real entries EYi= aj; i=0, I, ...M-1. The (EId,12/ Ebi12J -I, where 3i is component of A. This

factors H and E are obtained from the Schur algorithm, performance is better than the that of NDDE, ZF-BDFE,
We use this representation to deduce the following and the conventional MMSE-DFE. The complexity is
processors. O(LM).

1. Noise Whitener (£- 1 Ht-l). It transforms the Conclusions: Whereas conventional equalizers use
observation Y into Z = E H D + V. The covariance matrix transversal filters, the derived ones involve the use of
of the noise V is 2No I. The vector Z is obtained from Y matrix transformations, as expected. These
without inverting H't, thanks to its triangular structure. transformations can be implemented exactly, while what

is deduced from the theory of conventional equalization is
2. Maximum Likelihood Block Detector. It may use approximated by simple implementable filters. Moreover,
the Viterbi algorithm. The main difference with the assuming the channel impulse response (or its estimate) is
conventional maximum likelihood sequci.'e detector is available, the equalizer coefficients (the matrix entries)
that the channel seen by the detector is time-varying. are easily calculated using the Levinson or Schur

algorithms. We use the latter because it implies

3. Zero-Forcing Block Linear Equalizer (ZF-BLE) complexity reduction and allows us to use a decision-

It gives X = (Y H)-.Z = R-1 Y= D + W, also without feedback strategy. We have evaluated the performances of

inverting H. Suboptimum symbol-by-symbol decisions are the deduced equalizers and compared them with that of

obtained from X via a threshold detector. The signal-to- known ones. The ZF and MMSE block decision feedback

noise ratio in the decision variable on symbol di, is SNR, equalizers are particularly attractive because of their

= E, /I(Voao 2 R'-IM-.1 .M- ), where E, is the symbol energy. better performance and lower complexity as compared
with the known NDDE.

4. Zero-Forcing Block Decision-Feedback with _the _known _____

Equalizer (ZF-BDFE). We obtain from the noise *

whitener E-I Z = H D + E-I V. The transformation H is F. Hsu. "Data Directed Estimation Techniques for

causal and triangular. Thus, starting with a decision on di, Single-Tone HF Modems," IEEE Military Commun.

the decision on symbol di can be obtained with the help of Conf., Boston, MA., Oct. 1985.

decisions on previous symbols, as made in the
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UPPER BOUNDING THE PERFORMANCE OF ISI CHANNELS*

Sreenivasa A. Raghavan Jack K. Wolf Laurence B. Milstein
ComStream Corporation Center for Magnetic Recording Research Dept. of Electrical & Computer Engineering

10180 Barnes Canyon Road University of California. San Diego University of California, San Diego
San Diego, CA 92121 La Jolla, CA 92093 La Jolla. CA 92093

Summary equivalently, a set of channel signals). The weight profile of the set A with

We consider a communication channel that is corrupted by both respect to a given eor vector Ek. denoted F(A, EAW), is given by

finite ISI and additive white Gaussian noise. The impulse response of the F(A. Ek. W)= yma Wai. (8)
channel is h(r) and we assume BPSK modulation. We assume that h Q) is a

time-limited to nT, where lIT is the rate at which data is transmitted on where ma is the number of elements in the set A that have a squared
the channel. Hence the output of the channel is given by Euclidean error weight a with respect to Ek.

r(t) = , (2ak - l)h(t-kT)+n(t). (I) It is now straightforward to prove the following lemma:
A Lemma: Let A be the set of all binary n-tuples. Then the subset A, of A

where n (t) is additive white Gaussian noise with two sided power spectral defined by
density No/2 and a& is equally likely to be 0 or 1. The receiver filter is
g(t). the whitened matched filter corresponding to h(t). The noise A,=fCIC=(x ........ .Cx 0)
samples at the output of the sampler are uncorrelated Gaussian random b: 1}
variables with zero mean and variance equal to N012. If we denote the forms a sub-group of A. under the operation 9 defined in (7).
sampled outputs ofg(r) by Y, then The set Ac has cardinality 2"-i. The only coset of Ac. denoted A,4

Yk= VA +l n. may be formed from A, as

where A, = (C'I C' = 6(I I I ...... 1). where Ce A,)
4-1

V* =, fj 2a*_-I-)-o This follows from the fact that the all-one vector is not in A, Hence

and adding this vector to all elements of A. forms the only coset ofAc. Ac also

N has cardinality 2'-i .

E nInk = -I- .5. (2) Theorem: For any error pattern E of length n and for any partial
2 response channel f (D) with (n - 1) interfering symbols.

In (2). the symbol E[j stands for expectation an F(A E. W)=F(Ad. EW)

I ifk=m

, 1 else The proof is presented in[ I 1.

For the ISI channel with n = 2. the subset A, corresponds to all
The set of constants {fi} depends on the pulse autocorrelation function of possible outputs from the all zero state and A, is the only coset of A,.
the impulse response. Hence this channel satisfies the conditions imposed in 121 for a class of

Another way to represent the same ISI channel is as a trellis code. It trellis codes, namely a) the trellis is based upon a binary, linear

is equivalent to a rate I/n binary input. linear convolutional code, convolutional code of rate (n- 1)/n with a nonlinear mapping from the

followed by a nonlinear mapping. Each input to the channel a, results in encoder output to channel input symbols, and b)
an n-bit codeword at the output of the encoder given by F(A,. E. W) = F(Ac. E. W). Thus. we can apply a modified generating

function of the ISI channel with one interfering symbol that involves only
Ck = (a&. ak-i. ak- 2 . . ak-, 1 ) (3) 2 states in the state diagram. This modified generating function can then

The nonlinear mapping in our case (i.e.. for the ISI channel) is given by be used to compute the probabilities of both event errors and bit errors. In

.- I the computation of the generating function, we may assume that the initial
M(Ck) = : f,(2at,_- I) (4) state is the all zero state, without loss of any generality. The edge labels

,-o are. however LF(A, E. W)I'. where r is the numbtr of data bit errors. If

Therefore, using this notation, we denote the resulting generating function T(W. L. 1). then the
probability of event error P, and the probability of bit error Pb am upper-

yk = M(C*)+nu n bounded by

Consider the following definitions: dE
Definition I The polynominal. f(D). that characterizes the ISI channel is P, 5 Q exp ý 4No T(W = exp - .L:. I = 1).
given by L N O 4N J 4N 0 1 2

f(D) f.D' (6) and

Dfiiuon 2: Let EA be a binary n-tuple given by (4. ej. -... I). bsQ xp 1 (W =Ixp L I
Then the squared Euclidean error weight of CA with respect to EA is givenI

by respectively, where d) is the normalized minimum squared free Euclidean

d 2 (C;E) = tIM(C) -M(COE)fl 2 , (7) distance of the ISI channel and E, is the average channel symbol energy

where the symbol B stands for bit-by-bit modulo-2 (logical XOR) Referees
operation of two vectors of length n. Since there are at most 2" channel
signals, there can be at most 2"-t(2*-I)+l possible values for the 1I] S.A. Raghavan. J.K. Wolf.andL. B. Milstein."OnthePerformance

Euclidean weight. Evaluation of IS! Channel". Accepted in IEEE Trans. m Inform

DeWtion 3: Let A be a set of binary n-tuple vectors C, (or, Theory.

(21 E. Zehavi and J. K. Wolf, On the Performance Emulation of Trellis

-Thisrltby Nuaal Sawm FuAm wt grw~ NCR 9169. Codes." IEEE 7rans. on Inform. Theory IT-33, 196-202. March

mid dte Censer roe Mgor etec Recording femtch a the Umvenity of Caborn, Ssn Diego
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Performance of M-Algorithm Receivers With Imperfect Channel Estimates

F. Gozzo J.B. Anderson
IBM - Federal Systems Company Rensselaer Polytechnic Institute

Owego, NY 13827-1298 Troy, NY 12180-3590

I. Introduction 3. Eigenvalue Spread Is Useful In The Analysis of Channel

In any practical system, the channel estimate can be Mismatch. In Figure I, we have superimposcd thc eigcnvalue
inaccurate for one of many reasons including finite-length spread of Channel C. As can be seen, the point at which the
training sequences, quantization, time-varying channels, and MLSE receiver (i.e., MA(5,10)) is no longer optimum
truncation. Thus, the performance of any receiver will coincides with the point at which the cigenvalue spread
typically degrade under mismatched channel conditions. approaches infinity. In general, this complexity-inversion
Although this degradation in performance was extensively phenomenon - the situation when increasing a receiver's
studied for MLSE receivers by Divsalar [1), the optimality of complexity could actually degrade its performance - was
the mismatched MLSE receiver was not addressed. found to occur whenever the cigenvalue spread during
Unfortunately, deriving the optimal receiver under arbitrary training and decoding differed significantly.
mismatched channel conditions is clearly an intractable
problem. This paper presents test results in an effort to better Channel C (o=0.435)
understand the performance of MLSE receivers in arbitrary SNRRNN= SNRRtM = 10 db 106
channel mismatch conditions. 10-1 -

I!. The M-Algorithm 10- ,

The M-algorithm, which has become increasingly popular in " . 101
communications applications [2]- [7], gives the designer the a 10_-
ability to easily trade-off complexity and performance. It
performs a breadth-first search of an ISI tree (or trellis), but 102

only keeps the best M paths, up to a decision-depth. D. As 10-4 10)
each new signal is received, the algorithm extends the Al
paths, sorts them according to their cost, and retains only the 100
best Al paths. We will denote the M-algorithm receiver as
MA(M,D), where M is the number of paths to keep and D is 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

the decision depth. Assuming the decision depth is long GTRW

enough, the single parameter, M, enables one to investigate a Figure I. Performance of M-Algorithm In Channel Mismatch.
continuum of practical MLSE-based receivers - from Solid curves represent PA for selected Al. Dashed curve
reduced-search to full-complexity MLSE. represents the eigenvaluc spread, X.

11. Test Results

The results from [8] shown in Fi urc I are for a channel References
whose transfer function is H(z) = I - a2 + az '. A series of [I] D. Divsalar, "Performance of Mismatched Rcceivcrs on IHandlimited
tests were run to determine what value of Af wouwl yield Channels,' Ph.i). )isscrtation. UC('LA, 197R.
MLSE performance. We began with a complkxity orf 4 = I [2] J.B. Anderson and S. Mohan, 'Sequential Coding Algorithms: A
and proceeded to increase Al until marginal performance Survey and Cost Analysis,' IEEE Trant. Commun., Vol. COM-32, No.

changes were found under a broad range of mismatch 2, pp. 169-176, Feb. 1984.
conditions. Bit error rates are shown as a function of a,,, the [3] J.D. Anderson and S. Mohan, Source and (hannl Coding: An

Algorithmic Approach. Boston: Kluwer, 1991.
value of the parameter a during training. The highest value [4) J.B. Anderson, limited Search Trellis 1Decoding of (onvolutional
of M shown represents the saturating value of AM. i.e.. Codes,' IEEE Trans. Inform. Theory, Vol. 35. No. 5, pp. 944-955,
increasing Al further did not significantly alter the curve. Sept. 1989.

Based on the test results, several observations can be made: [5] D. Dauer, II Speer, and C.M. Zhao, 'performance of Sequential
Detection Schemes For Trcilis-lncoded D)ata Signals Distorted By

I. Ml-Algorithm quckly consverges to AfLSE Perfirnance. Intcrymb•o Interference," Proc. tEE. Sixth In(. Confo n 1)g. Proc of

Relatively few paths were required to achieve near-MLSE Sig. in Comm., pp. 141-146, Sept. 1991.
(61 F-Q Wang and DJ. Costello, "A flybrid M-Algrorithm/S',;quential

performance, in spite of the fact that merged paths were (6 t For a ng and Tello s Cy d M-Al Techm Rept.Detector For Convolutional and Trellis Codes." N,.fSA 7"eh Repor.
ignored by our implementation. CR-I16863, June 29, 1990.

2. Incrca.mng Al-Algorithm Complexity May Degrade [7] G. Zimmerman and W. Rupprecht, 'Adaptive Receiver Structures
"With Sequential Detection Algorithms For Digital Mobile Radio

Performance In Mismatch Conditions. Analogous to results Systems., Proc. lEE, Sixth Int. Conf on Mir. Proc of Sit. in Comm.
for other receivers discussd in [8], we feel confident that: Sept. 1991, pp. 141-146.

Under channel mismatch conditions, a (well-trained) [8] F. Gozzo. 'Robust Sequence •stimation in the Presnce of ChannelUnde chnne mimath cndiion, a (wel- raied) Mismatch,' Ph.D. Di~ssertation, Rensselaer Poly. Inst, May. 1992
full-complexity MLSE receiver will he opttima4~y matched to the
wrong channel, and may therefore achieve a deeper level of
mismatch than a reduced-complexity MLSE scheme.

Presented at the 1993 I-FF Intenmational Symposium on Information 'lhery
This work was supported by the IBM Resident Study Program
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New Results in Signal Design for the AWGN Channel

M. Steiner

Naval Research Laboratory

Summary minimum distance between signals. This extends the re-
sult by Balakrishnan who proved that the regular simplex

There has been a fair amount of work done in the area maximizes the minimum distance under a peak power con-

of signal design. Unfortunately, there are few results on the straint. This result leads to the corollary that a signal set

optimality of signal sets (throughout the paper an optimal which maximizes the minimum distance is not necessarily

signal set is one that maximizes the average probability of optimum. This is an interesting result since much signal

detection). The optimal selection of M signal vectors em- design work has been based on maximizing the minimum

bedded in even the most fundamental type of noise, white distance due to the inherent simplicity of the criteria. A

Gaussian noise, is not known in general. One of the most simple proof that the regular simplex maximizes the mini-

famous of communication conjectures, dating back to 1948, mum distance under a peak power constraint is also shown.

states that the optimal signal vectors are vertices of an n The global optimality of the regular simplex under the per-

dimensional regular simplex for which M = n + 1. When formance measure of the union bound on the probability of

the signal vectors are constrained only by an average power detection is addressed. The union bound is often used to

limitation, this conjecture has been referred to as the strong assess the performance of many signal sets at medium to

simplex conjecture (SSC). To avoid confusion, we refer to high SNR when computation of the probability of detection

the conjecture of simplex optimality when the signal vectors is intractable. It is proven that the regular simplex uniquely

lie on the surface of a sphere as the weak simplex conjecture maximizes the union bound at all signal to noise ratios.

(WSC). The validity of the SSC implies the validity of the

WSC, although the converse statement is not true. References
Under the assumption that the signal vectors are equal

energy, Balakrishnan proved in his seminal work [1] that the [I] A. V. Balakrishnan, "A contribution to the sphere-

regular simplex is 1) optimal (in terms of maximizing the packing problem of communication theory," Journal of

average probability of detection) as the signal to noise ra- Mathematical Analysis and Applications, vol. 3, pp. 485-

tio (SNR) A approaches infinity, 2) optimal as A approaches 506, 1961.

zero, and 3) locally optimal at all A. He also proved that if

there does exist a signal set which is optimal at all A it is [2] B. Dunbridge, "Asymmetric signal design for the coher-

necessarily the regular simplex signal set. Dunbridge[2][3] ent Gaussian channel," IEEE Trans. on Inform. Theory,

in 1967 extended Balakrishnan's work where only an aver- vol. IT-13, pp. 422-431, July 1967.

age power constraint is imposed on the signal set. It was 13] B. Dunbridge, Optimal signal design for the coherent

proven by both Balalcrishnan [4] and Weber[5] that the reg- Gaussian channel. PhD thesis, University of Southern

ular simplex maximizes the minimum distance under a peak California, Los Angeles, December 1965.

power constraint.
A number of new results are presented. The strong sim- [4] A. V. Balakrishnan, Advances in communication ssy.

plex conjecture is disproven. A signal set is shown which tern. New York: McGraw-Hill, 1965.

performs better than the regular simplex at low signal to

noise ratios for all M > 7. This leads to a theorem which 15] C. L. Weber, Elements of Detection and Signal Desigt.

states that in general there is no signal set which is optimal Springer Verlag, 1987.

at all signal to noise ratios. Furthermore it is found that

the optimal solution at low signal to noise ratios is not an

equal energy solution for all ', > 7. The regular simplex

is shown to be the unique 'ope which maximises the
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PRACTICAL USE OF IMPORTANCE SAMPLING IN
DIGITAL COMMUNICATION SYSTEM SIMULATIONS

Kung Yao and Dongrin Kim
Electrical Engineering Department

University of California, Los Angeles, CA 90024-1594

Importance sampling scheme using a fixed mean translation is innocuous. We consider unconditioned stream ISI simulation
(MT) without conditioning on the intersymbol interference (ISI) which generates both the ISI sequence vectors and noise vectors.
in a digital communication system s proposed. The reduction Rather than using cj(opt) for each 1SI sequence generated, a fixed
in simulation samples is significant. MT shift found by adaptive shift ejfi is used for the MT IS. When this method is applied to
algorithm agrees with the one from numerical method based on our nonlinear model, the c,.. will be taken as the optimum c, for
large deviation theory for nonlinear system. the least signal output which can be evaluated.

For systems with memory of length M, unconditioned ISI is sig-
nificantly more effective than conditioned ISI simulation as this

In a digital communication system the bit error probability scheme does not require 2 M-1 simulations with different c's. An
(P.) is an important performance measure, but often it can not unconditioned ISI stream simulation is applied to a nonlinear sys-
be derived analytically in closed form due to the complexity of the tem with M=12. Results are shown in the following figure for
system. For this reason the Monte Carlo (MC) simulation method three different downlink to uplink noise ratios. The efficiency
has been commonly used. Since the number of MC samples is of (i.e., the ratio of number of MC simulations to the number of un-
the order of 1/P., for a small P., this number can be quite large. conditioned stream IS for the same variance) versus P, is shown.
Important sampling(IS) is one variance reduction method to eval- As can be seen, the efficiency increases for small Pe.
uate P, with the same degree of of accuracy but using a smaller
number of samples than the conventional MC method. We will
consider a simplified satellite digital communication system model We presented a practical method to estimate P,, for a nonlinear
with uplink and downlink noise. The nonlinear element of the system with memory by biasing the Gaussian noise and not condi-
system contains the third order term for modeling the saturating tioning on the ISI. In order to find the proper MT shift amount,
amplifier. numerical method was used. When the adaptive method was

Mean Translation Importance Sampling used assuming no knowledge of the ideal shifting value, the nu-
merically obtained minumum rate point and the mean value of

In the MT IS scheme [1] the new random vector n* is obtained the error causing noise vector were almost identical.
by n* = n + c, where c is a constant vector. Therefore, it is
critical to find a proper value c in order for the IS technique to References
effectively decrease the variance of the sampled data. For the
linear system most efficient MT shift cj(opt) can be found easily [11 D. Lu and K. Yao,"Improved Importance Sampling Tech. for
if the conditioned ISI pattern is used. efficient Simulation of Digital Comm. Systems," IEEE J. Sel.

In order to find a cj for nonlinear system we use the result of Ar. Comm. Jan. 1988, pp.6 7-75 .
large deviation theory and an adaptive scheme. From the large
deviation theory [2] we can use a numerical method which pro- [2] J.S. Sadowsky and J.A. Bucklew,"On Large Deviations The-
vides c whose behavior is more desirable than the ci(opt) of the ory and Asymp. Efficient Monte Carlo Estimation," IEEE
linearized version of the system. Adaptive scheme [3] includes Trans. on lnfor. Theory, No. 3, May 1990.
the process of finding cj in the simulation program estimating [3] J.S. Stadler and S. Roy,"Adaptive Importance Sampling," To
the system performance. Both methods can be used to obtain appear.
identical result of cj(opt) when applied to the linear system.

Application 105 F. .. . ..

From analysis we can show that for a linear system the max-
imum MT shift which gives variance reductions as compared to 104 '. Nd:Nu=2:1 -
the MC scheme is about twice as large as c.,j. This illustrates the P '% Nd:Nu=1:1 --

adverse effect of a large MT shift, while a small amount of shift Nd:Nu=1:"
103 Nd:Nu-l:2-

102

10' ..
10-9 10- 10-3
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A New Class of Optimum Importance Sampling Strategies Derived from
Statistical Distance Measures

Geoffrey C. Orsak' BcAnazm AnzAsoe
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George Mason University Rice University
Fairfax, VA 22030-4444 Houston, TX 77251-1892

Summary biasing strategies must generate the rare event with greater
frequency than the statistics of the original Monte Carlo simu-

Performance analysis of discrete time systems often requires lation. In fact, the probability of the rare event with respect to
the evaluation of the expected value of a cost function of the the Importance Sampling statistics is the controlling parameter
system output or equivalently the expected value of a func- in an achievable lower bound on the variance of the Importance
tional of the system input vector. In either case, analytical Sampling simulation. Therefore, generalizing these arguments,
expressions for the performance in many practical situations we consider the class of all biasing distributions with probabil-
are typically unavailable. As an alternative to approximations ity man over an arbitrary Borel subset bounded by some &a
or bounds, Monte Carlo simulations are often employed as a arbitrary constant.
convergent method for obtaining arbitrarily accurate estimates We eliminate the mathematical formalities and develop-
of the performance. Unfortunately, in many important appli- ments and simply stale the major results. The optimum bias-
cations, the required computations can often be prohibitive. ing distribution from any constraint dam is that distribution
Therefore, much recent research has focused on the develop- which minimizes a speciJic f-divergence to the global optimal
ment of new and efficient forms of the method of Monte Carlo distribution. Via a theorem developed in this work, we derive
known as Importance Sampling simulations. the unique biasing distribution from the constraitht class de-

The fundamental problem in Importance Sampling is to scribed above which minimizes every f-divergence or Ali-Silvey
determine the appropriate statistics for the simulation. It is distance to the optimal statistics. As a special cane, we show
well known that the minimum variance statistics can not be im- that this distribution minimizes the Importance Sampling vari-
plemented since they require the explicit knowledge of the ex- ance among all distributions from this constraint dams. More-
pectation one is attempting to estimate. Therefore, researchers over, it is shown that the savings over standard Monte Carlo
have worked to determine "good' suboptimal statistics from simulations obtained through the use of this distribution can
probability measure constraint classes which exclude the de- be made arbitrarily close to the optimal savings by varying the
generate optimal solution. These so-called 'biasing strategies' selection of the parameters of the constraint set.
are typically obtained by minimizing the variance of the Impor- It is shown that for the case of estimating the probability
tance Sampling estimator with respect to the biasing statistics of rare events, the constrained optimal biasing distribution can
over a class of probability measures which exclude the optimal be made completely independent of the parameter of interest,
distribution. thus readily admitting to a practical implementation. We show

Recently[3], it was shown by the authors that minimizing further that the computational savings obtained through the
the Importance Sampling variance is equivalent to minimizing use of this biasing distribution can be made arbitrarily large
an Ali-Silvey distance [1] of equivalently an f-divergence [2J be- by adjusting the parameters of the constraint clans.
tween the admissible biasing densities and the well known op- We conclude this work with an asymptotic analysis of the
timal biasing density. This result has led to a new approach in performance gains of these biasing distributions. Necesary and
the design of Importance Sampling strategies where one merely sufficient conditions are given for the asymptotic gains achieved
determines the biasing density from an arbitrary constraint through these distributions to become unbounded as the prob-
claws with minimum "distance' to the global optimal distribu- ability of the rare event diminishes. Furthermore, a methodol-
tion to minimize the simulation variance. ogy for selecting sequences of Borel bounding sets which sat-

Extending this previous research, we derive in this work isfy these conditions and yet renders simulations which are
the minimum variance biasing distribution from a constraint amenable to implementation is presented.
class whose controlling parameter is fundamental in the per-
formance analysis of Importance Sampling. In addition, we
will show that for the special case of estimating the probabil-
ity of rare events, the constrained optimal biasing distribution 111 S. M. Ali and D. Silvey, 'A General Clam of Coefficients
from this class is independent of the unknown parameter and of Divergence of One Distribution from Another,' J. Royal
as such, leads to solutions which are both amenable to im- Slat Soc., vol. 28, pp. 131-142, 1966.
plementation and yet still optimal with respect to a relevant [2) 1. Csiszar, 'Information-Type Measures of Difference
criterion, of Probability Distributions and Indirect Observations,'

To motivate the proposed constraint class, we note that it Studio Scentiorumn Mathematicnrum Hungarica, val. 2,
has been analytically established for the very important special pp. 299-318, 1967.
case of estimating the probability of a rare event that effective 13) G. C. Orsak and B. Aanhang, "Constrained Solutions in

'Supported in part by the National Science Foundation under Importance Sampling via Robust Statistics,* IEEE 7Trmm.
Grant NCR-9109658 and in part by Rome Laboratories under con- Inform. Theory, vol. IT-37, no. 2, pp. 307-316, March 1991.
tract F30602-92-C-00s3.2Supported in part by the IBM Contract 89-832302 and the Texas
Advanced Technology Grant 003604-016.
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IMPORTANCE SAMPLING USING GEOMETRY*
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ABSTRACT natiral path, the so called geodesic connecting p0 and pi,
The problem of finding an importance sampling biasing is the exponential mixture density.
density for estimating the performance of an optimal bi-
nary detection system is addressed geometrically. This A -<- -<" 1 (1
geometric approach allows us to find an importance sam- "" J ' ; -

piing biasing density for any pair of mutually absolutel
continuous nominal densities unlike other methods which The normalization factor J, is a strictly convex func-
are problem specific. We prove that the biasing density tion; hence, there exists a unique 0 < v < I so that
lying geometrically halfway between the nominals gives an J. = info<u<1 J,.. The density p. has the property that
asymptotically infinite importance sampling gain as sys- it lies mid'wiy between po and pi in the sense of Kullback-
tem performance improves and the probability of error Leibler information. We have shown that choosing ps, con-
tends to zero. sistently yields significant importance sampling gain. Un-

der the minimum probability of error criterion, the gain r
1. BACKGROUND is lower bounded by the reciprocal of the error probabil-

Consider the standard binary hypothesis testing problem ity raised to a constant power. Asymptotically, as perfor-
Cofsiderthermi aning d w ichnof hypothesistestig pro bm amance improves the importance sampling gain tends to
of determining which of two hypotheses (H0 and Hj) ' infinity. Under the Neyman-Pearson criterion, the density
true based upon a set of observations I = twi, .... ,wnj E Pi is used in Monte-Carlo simulations. When the observa-
fl, the observation space. Po and P denote the respec- tions are lID, we have shown that computationally efficient
tive probability measures on 01 that correspond to these estimates of the miss probability Pr[HoIHi] occur when
hypotheses. The optimal detector under a variety of per- importance sampling schemes employ the other nominal
formance criteria is the likelihood ratio test. We focus here pg. The importance sampling gain is bounded according
in two criteria: minimum probability of error and Neyman- to In r/n > I(P•[Po), where I(P1Ipol) is the Kullback-
Pearson. Leibler information between observations' marginal distri-

Calculation of performance probabilities is usually so butions.
complicated that numerical estimation is required. The The biasing densities corresponding to some standard
number of Monte Carlo simulations to be performed to problems are very interesting. When the nominal bias-
obtain a reliable numerical estimate of the performance ing densities are equal-variance Gaussians with means m0
can be very large since it is inversely related to the per- and mi, the geometric importance sampling biasing den-
formance. A technique known as importance sampling has sity equals a Gaussian with mean ' with the variance
been employed to greatly reduce the number of simulations
required to produce accurate estimates [3]. Here, observa- remaining the same. The geometric Liasing density corre-
tions are generated according to an alternate model speci- sponding to nominals distributed with a Cauchy or the
fled by the biasing density, the utility of importance sam- Generalized Gaussian density are multimodal. When the
piing hinges on finding a biasing density that can greatly nominals are homogeneous Poisson densities with means
reduce the number of required simulations to achieve ac- Ao and A,, then a Poisson density with mean *(A-NO.)
curate performance estimates. A measure used to quantify is the biasing density. When the nominals are multivariate,
this reduction is the importance sampling gain r = 1k, the shifted-mean (the two hypotheses correspond to determin-
ratio of the number of trials N required for Monte Carlo istic signals in additive noise), densities symmetric about
simulations and the number of trials M required for the the mean, thenv = I
importance sampling technique such that the estimates' m h
variances are equal. In general for arbitrary nominal den- REFERENCES
sities, no straightforward method is known to produce a
biasing density that provably yields gain; usually problem [1] A G. Dabak. A Geometry for Detection Theory. PhD
specific, ad hoc methods are used. In this paper, we em- thesis, Rice University, Houston, Tx, 1992.
ploy the natural geometry underlying detection problems
to find the importance sampling biasing density. e [2] A G. Dabk and Don H. Johnson. A geometry for

detection theory. In Proceedings Cont. Infor. Sc. Syat.,
2. GEOMETRIC IMPORTANCE SAMPLING Princeton, NJ, Princeton Univ., March 992.

We assume that P0 and P1 are mutually absolutely con- [3] G. Orsak and B. Aashang. On the theory of importance
tinuous with respect to each other. Let pg and pi de- sampling applied to the analysis of detection systems.
note the probability densities of P0 and P1 with respect to IEEE trs. comm., 37(4):332-339, April 1989.
some other absolutely continuous measure P. Employing
the tools of differential geometry, we have analysed else-
where [1, 21 the non-Riemannian geometry of the space
of all probability measures on 01 mutually absolutely con-
tinuous with respect to P0 and P1. In this geometry, the

'Supported by ONR Grant N00014-.9-J-3152.



Interference Channels with Correlated Sources
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Abstract typical sequences. Our main result is given the following
theorem.

We investigate transmission of correlated information Theorem: Let a discrete-memoryless interference
sources over an interference channel. A coding scheme channel be denoted by input alphabets, X1, X2, out-
for matching the source to the channel is developed and put alphabets Y1,Y2. and a probability transition
sufficient matching conditions between the source and the matrix, p'(Yhzti, Z2), where p*(y",y2x"I1,x") =
channel are derived [l-' p*(phi, y2i zli,zu2), and let two correlated infor-

mation sources be generated according to independent

1 Introduction drawings of random variables S and T with joint PMF
p" (s, t). Then, if there exist two auxiliary random vari-
ables U and V such that

So far, the problem of transmission of correlated sources

over communication channels has been investigated for p(q, s, t, 11, 1v, ZI, T2, Yii, Y)
the multipleaccess channels[l], broadcast channels[21 and p" (s, t)p(q)p(uls, q)p(vlt, q)p(zl Is, u, q) x
two-way channels[3]. In this work we study this problem XP(Z2lt, V, 9)P*(YI, Y2Zt, Z2)
for the interference channel. The existence of correlation
between sources makes it possible for the encoders to and
partially cooperate and this partial cooperation results in H(SIUVQ) < I(Yi; SX1 IUVQ)
better performance compared to the case of independent
messages. An encoding scheme is proposed and based on H(S VQ) < I(Y1; SX, IVQ)

this scheme sufficient conditions for reliable transmission H(SIUVQ) + I(T; VIUQ) < I(Yi; SVX 1 IUQ)
of correlated sources over an interference channel are H(SIVQ) + I(T, VIQ) < I(YI; SVX1 IQ)
obtained. The results are then applied to two classes H(TIUVQ) < I(Y2"TX21UVQ)
of interference channels for which the capacity region is
already known. H(TIUQ) < I(Y2; TX 2IUQ)

H(TIUVQ) + I(S; UIVQ) < I(Y 2; TUX 2IVQ)

2 Main Results H(TIUQ) + I(S; UIQ) < I(Y2; TUX 21Q)

the correlated sources (S, T) can be reliably transmitted
The interference channel is a mathematical model for corn- via the interference channel.
munication between M transmitter-receiver pairs over a These results are then applied to some special cases for
single communication medium. The existence of cor- which the capacity of the interference channel is already
relation between the two information sources makes it known.
possible that the encoders, although located separately,
cooperate to some extent. The cooperation between the References
encoders can be employed in designing improved codes.
We employ an encoding scheme based on the using the IIl T. M. Cover, A. ElGamal, and M. Salehi, "Multiple-
covering lemma and the correlation preserving coding. In access channels with arbitrarily correlated sources,"
the first stage of encoding we use covering to represent IEEE Transactions on Information Theory, vol. IT-26,
the information about each source embedded in the other pp. 648--657, November 1980.
source by an auxiliary random variable. The next step is
to provide partial cooperation between the encoders. The 121 T. S. Han and M. Costa, "Broadcast channels with
codewords generated in this step statistically depend on arbitrarily correlated sources," IEEE Transactions
the information content of the each source output and the on Information Theory, vol. IT-33, pp. 641--650,
auxiliary random variable representing the information September 1987.
about the other source output. The decoding scheme and 131 M. Salehi, "Restricted two-way channels with come-
error analysis are based on using the properties of jointly Wated sources," in Proceedint s of the twenty-eighth

'fIbis work was mppaned by ihe Natiexa Science Ioundtiun (;rant annual Allerton Conference on communicationa con-
NCR-9101560 trol and computing, October 1990.

208
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Abstract We also extend the single-user water-filling argument to the two-
W~e find the capacity region of a two-user Gaussian multiaccess chan- user case. We derive a geometrical method to obtain the optimal inputWe fnd he apaityregon f atwouse Gassin mlticces can- PSDs. It turns out that this geometrical argument can be explained
nel with intersymbol interference (ISI) where the inputs pass through via t turn ideat th e argument c an be essine

rcspcctive linear systems and are then superimposed before being cor- two main ideas: the equivalent channel idea and the successive
rupted by an addi'tive Gaussian noise process. decoding idea (decode one user's information while treating the other

We give a novel geometrical method to obtain the optimal input user's information as noise first and then decode the remaining user's

power spectral densities and the capacity region. This method can information). The equivalent channel idea bears some resemblance
be viewed as a nontrivial generalization of the singa--user water-filling to the single-user water-filling argument in the sense that it obtains
argument. We show that as in the tradit;bnal memoryless multiac- graphically the optimal input power distribution over the frequency
ce chargumntel, sho withatpasminltheetrakfrequmemoryaess murtiac- domain. It can be applied directly to the single-user channel to obtain
cess channel, FDMA, with optimally selected frequency bands for each

user, achieves the total capacity of the K-user Gaussian multiaccess the optimal input PSD. Roughly speaking, in the two-user case, the

channel with ISI. However, the capacit3 region of the two-user channel equivalent channel idea determines graphically the optimal distribu-
with mieiory is, in general, not a pentagon unless the channel transfer tion of the total power over the frequency domain, while the successive
wicthomemory ish inuera t are pentiaon undecoding idea determines, again graphically, the optimal split of the
functions for both users are identical, total power among the users for each frequency.

Sumimary In particular, we show that the optimal input PSD pair achieving

the total capacity can be obtained graphically using the equivalent

In a recent paper [1], a limiting expression for the capacity regions channel idea alone. Moreover, the optimal PSD pair do not overlap;
of multiaccess channels with memory was obtained. Such a limiting hence, as in the memoryless multiaccess channel, FDMA, with opti-

expression was explicitly evaluated for some channels with memory in mally selected bands and optimally shaped PSDs, achieves the total
[1] andI [2]. In [3], we show that the limiting expression of [1] can be capacity of the multiaccess channel with ISI.
used to obtain a computable capacity region formula for Gaussian lin-
ear multiple-access channels with finite ISI. We extend the single-user Theorem 1
water-filling argument to the two-user case and derive a geometrical For any K-user fr-dependent Gaussian multiaccess channel with
method to obtain the optimal input power spectral densities (PSDs). finite intersymbol interference and power constraints W1,.WA, the
We show that the optimal input PSDs of the users that maximize total capacity can be achieved by FDMA with optimal input PSD

the total capacity do not overlap in the frequency domain. As in the K-tuple, (Sl(w),..Sh(w)), where

traditional memoryless multiaccess channel, FDMA with optimally se-
lected frequency bands and optimally shaped PSDs achieves the total Sk(w) = Sk(w)

capacity. bk+[1 - bkT•-(w)]+ if bsT,7'(w) < bTJ-'(w) for 1 $ k,
We consider a general Gaussian multiaccess channel with ISI tk(w) = I 1 otherwise.

ZiYFIfk~jXk.i-j+ N,,
k=l j=o Tk(w) = Ijfk(w)12 /N(w) is the magnitude square of the transfer func-

tion over the noise PSD, and b -... ,bK are chosen such that

Where Za is the output of the channel, X..,i is tile i thi symbol sent 1 w=t
by user k, and Ni is a zero-mean rn-dependent stationary Gaussian " Jo bklVS
noise process (i.e., R, = 0, Vjna > in). We assume that the k thm user
has power constraint iWk and all the channels seen by the users have for k = 1,..., K.0
finite-length impulse responses with length less than or equal to tn.

"The capacity of a single-user Gaussian channel with ISI is obtained References
using the Karlihuien-Loive expansion. This expansion decomposes
the channel into independent parallel menioryless Gaussian channels [1] S. Verdti, "Multiple-access channels with memory with and without

whose capacities are well known: thereby reducing the problem to one frame synchronism," IEEE Transactions on Information Theory.

of optimal power allocation into various channels. It is crucial to note vol. IT-35, no. 3, pp. 605-619, May 1989.

that tile kernel used in the Karlhunen-Lobve expansion depends on the [2] S. Verdti, "The capacity region of the symbol-asynchronous Gaus-
ISI coefficients. In the two-user Gaussian channel with ISI, there are sian multiple-access channel," IEEE Transactions op Information
two sets of ISI coefficients, one for each user. If the channels seen by Theory, vol. IT-35, no. 4, pp. 733-7.51, July 1989.
the users are identical, the traditional procedures can be applied and
the capacity region has been obtained in [4, 5]. If the sets of ISI co- [3] R. S. Chieng and S. Verdti, "Gaussian multiaccess channels with
eflicients are not the same, a similar decomposition cannot be applied ISI: capacity region and multiuser water-filling," to appear in IEEE
since no kernel caii simultaneously decompose the signals from both Transactions on Information Theory.
misers.

urTherefore, in order to obtain the result in the multiuser case, a [4] C. W. Keilers, The Capacity of the Spectral Gaussian Multiple-

new approach based on the circular channel methods of [2) and [6) access Channel. PhD thesis, Stanford University, May 1976.

are employed. This approach enables an orthogonal decomposition of [5] C. M. Zeng, N. le, and F. Kulmann, "Capacity region of a wave-
the channel using the discrete Fourier transform which is independent form Gaussian multiple-access channel," in Book of Abstracts of the
of the ISI coefficients. In this paper, we employ these ideas and the 1990 International Symposium on Information Theory, San Diego,
limiting expression for the capacity region of inultiaccess channel with
memory in [1] toobtain the capacity region of the Gaussian multiaccess CA, p. 93, January 1990.
channel with ISI. [61 W. Hirt and J. L. Massey, "Capacity of the discrete-time Gaus-

This work wyas supported by the Office of Naval Research inder Granit N0001-1- sian channel with intersymbol interference," IEEE Transactions

90.J1.734. on Information Theory, vol. IT-34, no. 3, pp. 380-388, May 1988.
209



THE SMALLEST LIST FOR THE ARBITRARILY VARYING CHANNEL

Brias Hughes
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Abstract is invariant under all permutations of the arguments
i, oi -.. , zm for all y =,l 2 mil,.•., m- By definition,

The capacity C(L) of the arbitrarily varying chan- we take all AVCs to be 0-symmetrisable. 0
nel for deterministic list codes of fiaed list size L is
considered under the average probability of error cr Remarik: (1) This definition generalizes the sym-teno. Wen he andm cdingcapcit cu p~ retrisabilty condition of [2]. (2) If an AVC is in-te rion . W hen the ran dom coding ca pacity C , is po s.- y m t i a l th n t is l o ir - m e r s b e f r
itive, it is shown that synmetrisble then it is also m'-symmetri"able forall 0 < in' <_,n.

SC,, L > LO, Theorem 1: If an AVC is rn-symmetrisable then
0, I(S<AYIX)

where P, called the .pmmetrizability, is a computable, In < minmif I(XAY)

non-negative integer. Thus L* + I is the smallest list A

size for which a positive rate is achievable. _ (C,)-l min{log IYI. log 1811

Summary Definition 2: The maximum m for which the AVC
At the 1990 IEEE Information Theory Workshop, is m-symmetrisable is called the symmetrisaiiity and

M.S. Pinsker conjectured the following theorem: For is denoted by P. 0
an arbitrarily varying channel (AVC), every rate be- Theorem I and Definitions I and 2 imply a corn-
low the random code capacity C, is achievable with putable characterization of L.
deterministic list codes of const hantM sise, if the av- Theorem 2t The list-L capacity of the AVC under
erage probability of error criterion is used. Ahiswede
and Cai [1] proved this conjecture by showing that
codes exist with rate R, list size L, and average prob- C(L) C= , L > LP,ability of error X for all 0()= , L <_ L-.()

L log l <(
A-(R) R<C,, (1) Example: For X= S ={0, 1}, y = {0, 1, 2} and

where E(R) is the random coding reliability function I 1 =Xz+ (,
of the AVC, and S is the channel state alphabet. This W(VIMz,a) = 0 z + s, (3)
list size depends on R, A, and S, and grows without
bound as A --4 0 or R --# C,. C, = 0.5 bits/channel use, and L = 1. Conse-

The contribution of this paper is to show that quently, there exist codes for all R < 0.5 such that
Pinsker's conjecture holds for a constant list size L the receiver can reliably narrow the transmitted mes-
that depends only on the channel and not on RA A, or sage to one of two possibilities, but no further.
S. Moreover, we determine the smaliest list size for References
which the conjecture is valid.

Consider a discrete, memoryless AVC with tramn- [1] R. Ahlswede and N. Cai, "Two proofs of Pinsker's
tion probability W : X x S --4 Y. Let X, S, and Y be conjecture concerning AV channels," IEEB 71rsn-
random variables, with p.m.f. P(z)Q(s)W(ypj, s). actions o Isforomatio Theory , IT-37 (6), pp.

Definition Is An AVC is m-.pmmetrisable If there 1647-1749, November 1991.
exists a channel U : Xm -. +S such that the channel [2] 1. Cssr and P. Narayan, 'The capacity of the
V : Xm+l Y defined by arbitrarily varying channel revisited: positivity,

V(plza . z, ) --- ,) constraints," IREB 2Msactios on Informsa-
,S- tios Tleory , IT-34 (2), pp. 181-193, March

1988.
Supported in pert by ARO Grant DAAL434WK-0130.
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Coding Strategies for the Definition. A code is called maximal for particul input length

Permuting Jammer Channel n if no other code has larger cardinality.
Definition. A code U is packed or is a packed code if it cannot

by accommodate any other codewords.
A maximal code is necessarily packed, but a packed code

Wah Keung Chan* need not be maximal. Packedness is useful as a first test for
5411 Waverly, Montreal, Qu6bec, maximality.

CANADA, H2T 2X8 Definition. A repeated code is the cartesian product Um of a
code U.

SUMMARY Ahlswede and Kaspi [2] established their result by consider-

The difficulty of determining results on the capacity of finite- + +.+
state channels with memory resides with the added complexity ing U, (a,fl) := {11.. 1, ... 2,..., a.•... a) and verifying that
due to the memory. The natural approach is to study a simple U, (2,,0) m is a maximal code for length n = (,8 + 1)m.
model. The Permuting Channel is one such model. The best way We first note that
to introduce the Permuting Jammer Channel is by an example. Lemma. For a > 2,8 Ž_ 1 and arbitrary So, Ui(a,#) is the
Consider Blackwell's Trapdoor channel [1]. only maximalcode for n = 13+1.

Example. Consider the case of two trapdoors with each door Thus, in the binary case, the repeated code, U1 (2,13) ', is
having the same probability of being opened, as shown in Figure maximal. We want to explore conditions on maximal codes
1. Initially (Fig. la), a ball labeled either 0 or 1 is present in one which yield maximal repeated codes.
of the two slots. Then (Fig. I b) a ball, either a 0 or 1, is placed As a matter of notation, we let S0 Ix --+ y to denote the
in the empty slot, after which (Fig. lc) one of the trapdoors output y is reachable from input z and initial state So. Fur-
opens. The ball lying above the open door then falls through. thermore, let Y(Solx) denote the cover of x, i.e., the set of all
The door closes (as in Fig. Ia) and the process is repeated. possible y reachable from z, and Y(SoIU) = UzcuY(So 1z).

Definition. A set U C C' has the Universal Property if for all
Si, S2 E S and for all x E Cn, Y(S 1 Ix)n Y(S 2 U) $6 0, i.e., there
exist u E U and Y E Cn such that

0 1 0 SiIZ-y and S 2 ju-*y.

A code U is a Universal Code or is said to be universal if it
has the Universal Property.7o Universal codes are packed. To see this, just let S1 = S2.

() (b)C) Furthermore, repeated Universal codes are also Universal codes.
Definition. By extending a set Z' C C" to a code Z C Cn+k

Figure 1. Blackwell's trapdoor channel 11] we mean to augment each sequence z, E Z' by adjoining to it
We generalize this example as follows: attachment words ci E Ck such that Z = Izi.j = zici,) is a

Definition. The permuting channel is a finite-state channel code. If there are in total a, ci's adjoint to z,, we say that z,
consisting of ft + 1 trapdoors with each trapdoor compartment contributes ai codewords to Z.
capable of holding only 1 character. At the start, 6 of these com- Definition. Let U C C" be a code, k = JUI, and Z' C C" a
partments are occupied. The alphabet consists of a characters. set extended to a code Z C C 2,. A maximal code U is strongly
The initial state, So, represents the nature of the 1 characters maximal if for any set V of atmost k sequences with pairwise
at the start. non-disjoint covers, i.e. V = {zi,z2-...,zi(E Z')}s.t. Y(Solz,)n

The operations of this channel, as introduced by Ahlswede Y(Solzj) 5 0, V contributes atmost k codewords.
and Kaspi [2], depends on three participants as shown We note that strongly maximal codes are universal codes.

The truth of the converse statement is not known.
0 Result 1. Repeated strongly maximal codes are maximal.

I This establishes strongly maximal as the condition sufficient
--- Zn------ - I " R for constructing maximal repeated codes. Is there a weaker con-

dition? Examples of strongly maximal codes are hard to to find.
For the ternary character set we found U1 (3,1P) to be strongly

Figure 2. I - Sender, 0 - Trapdoor Selector, R - Receiver. maximal, and thus U1 (3,,8)m is maximal for n = (#+1)m. Thus

Definition. In the permuting jammer channel (PJ Channel), Result 2. For a = 3, 3 > 1 and for all So the capacity of the
0 acts as a jammer in frustrating I, the message sender, by permuting jammer channel is Cj(3, #, So) = log 3
scrambling the output. Here, we shall consider the condition 13+1
that the initial state is known to all users. References

In ]2], Ahiswede and Kaspi found the capacity of the PJ (11 R. Ash, Information Theory, New York: Wiley, 1965, pp.
channel in the binary case. Piret [3] solved the case of 1 = 211-229.
1 memory. In this paper, the capacity for the case a = 3 is [2] R. Ahlswede and A. Kaspi, "Optimal Coding Strategies For
established. Certain Permuting Channels," IEEE Trans. Inform. The-

To find the capacity, we follow the lead of Ahlswede and ory, vol. IT-33, pp. 310-314, May 1987.
Kaspi, of constructing maximal codes for particular input length [3] Ph. Piret, "Two Results on the Permuting Mailbox Chan-
n. Let us define certain properties of codes. nel," IEEE Trans. Inform. Theory, vol. IT-35, pp. 888-892,

"*Supported by a FCAR Post-Graduate Fellowship July 1989.
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V.N. Koshelev
Council for Cybernetics
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Vavilov str. 40

117333 Moscow, Russia

Multi-level coding schemes reveal a special
information-theoretical problem called the divisi-
bility problem that is connected to a tree-like struc-
ture of the codes. It can be traced in source and
channel coding as well as to hierarchical cover-
ing metric spaces. In the broadcast source coding
scheme, divisibility looks like a problem of addi-
tional information necessary to achieve per-letter
distortion C2 < C, provided that the distortion level
cl has been already achieved. We say that the
source is divisible for the pair (Cl, E2) if this ad-
ditional amount of information (per source letter)
is equal to R(C2 ) - R(E2 ) , where R(E) is distor-
tion rate function of the source. It is easy to show
that the source is divisible if and only if the matrix
equation q,, - s = q. 2 holds, where q, is the test-
channel matrix of the source, has a stochastic so-
lution s = . The divisibility equatioon was in-
troduced by Koshelev (Probl. Peeredachi Inform.,
3, 1980, pp. 31-49, in Russian); recently it was
also described by Equitz and Cover (IEEE Trans.
on IT, 2, 1991, pp 269-275).

To solve the equation we propose a method of
local divisibility letting cl = C2 + 6, 6 - 0. Using
it we find strong conditions under which equiprob-
able ternary memoryless source with balanced dis-
tortion measure is divisible. We discuss divisibility
of metric spaces and construction of hierarchical E-
nets. Finally we consider multi-level channel cod-
ing and the problem of channel-input divisibility.
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DATA COMPRESSION WITH SIDE INFORMATION AND GRAPH ENTROPY

Alon Orlitsky

Room 2C-361, AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974

Abstract the lower bound holds for all (X, Y) pairs, and that
the upper bound holds for a large class of (X, Y) pairs.

"X and Y are random variables. A person who knows We do not know whether the upper bound holds for all
"X wants to convey it to another person who knows Y. (X, Y) pairs.
What is the minimum number, L(XIY), of bits he must Graph entropy was introduced by J. K6rner [1]. It
transmit on the average? Let G be an appropriately was recently applied to prove lower bounds on per-
defined communication hypergraph of X and Y, and let feet hashing, circuit complexity, and sorting. Yet these
H(G, X) be its graph entropy.' We show that for all proofs used technical properties of this formally-defined
(X, Y) pairs, L(XIY) > H(G, X) and that for a large (see below) functional and did not shed light on its un-
class of (X, Y) pairs L(XIY) <_ H(G, X) + loge + 1. derlying meaning. Our bounds provide an intuitive in-

terpretation for this increasingly prevalent measure.

Summary We conclude the summary by defining the communi-
cation hypergraph and its graph entropy. Let (X, Y) be

X is a random variable. A person who knows X wants distributed over X x Y according to some probability

to convey it to another. What is the minimum number, distribution p(z, y). The communication graph G of X

L(X), of bits he must transmit on the average? The and Y has X as its vertex set, and for every y E Y it has
def

well known answer to this question is:2  the hyperedge e,, = Ix : p(z, y) > 0}. This communica-
tion hypergraph is equivalent to a graph defined by [2]

H(X) !5 L(X) !5 H(X) + 1 and used in [3] to analyze the number of bits needed

Surprisingly, the answer to the following, closely re- in our proL!em if the two persons are allowed to com-

lated question, is not known. X and Y are random municate back and forth. This paper concerns only the

variables. A person who knows X wants to convey it to one-way -'ersion of this problem.

another person who knows Y. Feedback is not allowed. Let G be a hypergraph and let X be a random vari-

What is the minimum number, L(XIY), of bits he must able ranging over its vertices (in our problem the ver-

transmit on the average? tices of G were defined by V). A set of vertices of G is

As usual, we assume that both persons agree in ad- independent if no two of its mm-nber• belong to the same

vance on an encoding of X that must be prefix free given edge. Denote by y(G) the collection of independent sets

the value of Y. Standard reasoning yields in G. The hypergraph entropy H(G, X) of G and X is

H(XIY) < L(XIY) < H(X) + 1 . H(G,X)=ef min{I(X;Z) : X E Z E 7(G)}

Yet a simple example shows that neither bound is tight. Namely, it is the minimum mutual information between
For c E [0, 1) define X and any random variable Z ranging over independent

sets of G and c,.astrained to always contain X.
. for z = y,

for -- i4 YReferences
and let (X,Y) be distributed according to pe(r,fr).
Then I1(X) = logn, while H(XIY) = h(,)+c log(n-1). [1] J. K6rner. Coding of an information source hay-
For c = 0 it is easy to show that L(XIY) = 0 = H(XIY) ing ambiguous alphabet and the entropy of graphs.
whereas for ( > 0 we have L(XIY) = logn = H(X). Proc. of the 6th Prague Conference on Information

In this paper we provide a partial solution to the Theory, pages 411-425, 1973.
above question. We define G, the communication hy-
pergraph of X and Y, and show that for many (X, Y) (2] H. Witsenhausen. The zero-error side information
pairs, L(XIY) is roughly H(G, X), the graph entropy of problem and chromatic numbers. IEEE TRusuac-
G and X. More precisely, we show that in the inequality tions on Information Theory, 22(5):592-593, 1976.

H(G, X) < L(XIY) < H(G, X) + loge + 1 , [3] A. Orlitsky. Worst-case interactive communication
and e s the : Two messages are almost optimal. IEEE Trans-

'All entropies and logarithms are to the base 2, and a is theITforma t oria IEEE)Trans-

base of the natural logarithm. actions on Information Theory, 36(5):1111-1126,
'Here and below, 11(X) is the binary entropy of X and September 1990.

H(XIY) is the conditional binary entropy of X given Y.
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Mlltiple-User Distributed Information Storage
James R. Roche

Room 2C-254, AT&T Bell Laboratories, 600 Mountain Ave., Murray Hill, NJ 07974

Abstract Remark: It follows from Definitions 3 and 4 that
N1 (s) = n, for k, _<s _<fnu.

Suppose that we have an information storage net-

work with m users Pnd n disks, each disk having the The conditions for sequential refinement can be shown
same capacity. Different users are connected to ar- to be related to the triangularity of certain incidence
bitrary (perhaps overlapping) subsets of the n disks, matrices determined by the network topology. We
and some of the disks might fall. We wish to encode
a binary Information sequence such that for a spec-
ified m-tuple (X1 ,...., X), the ith user can reliably Definition 5 User U, (1 < i < m) is triangular if
recover the first X, bits of the sequence.

There is a natural upper bound on each individual Ni(s) <_ s for all s < ki - 1. A storage network is fully
Xi. If this bound can be attained simultaneously for triangular if each user is triangular.
each of the m users, we say that sequential refinement Is
possible. We find necessary and sufficient conditions Theorem 1 Assume that each disk in a storage net-
for a storage network to admit sequential refinement, work of n disks has capacity C bits. If the storage net-

work admits sequential refinement, it is fully triangular;
the converse holds if C > n, or if kmax < n/2 and C >

Summary kmax log 2 n.

Consider an information storage network with m users, In practice the number of bits per disk, C, will gener-
Ul, U2, ..... UM, connected to arbitrary (perhaps over- ally be much larger than the number of disks, n. Thus in
lapping) subsets S, 52,..Sm of a set of n disks, all cases of practical interest, a network admits sequen-
{D 1 ,D 2 ..... Dn}. For 1 < i < m, let ni = 1Sil. For tial refinement if and only if the network is fully triangu-
simplicity, we assume that the n disks all have the same lar. The necessity of this condition follows from simple
capacity, C bits. If user Ui is guaranteed access to just information-theoretic arguments. The sufficiency can
ki disks of Si at any given time (ki < ni), then he can be established by a constructive scheme that encodes
hope to recover at most kiC bits of information reliably, information using linear algebra over Galois fields.

We wish to encode an r-bit information sequence
(yi.... ,yr) so that each user Ui (1 < i < m)
can reliably recover the first Xi bits of the sequence,
(yi,.. yx,). For which m-tuples (Xi,..., Xm) is such
an encoding possible?

Ideally, we might hope to achieve (X....Xm) =
(k 1 C, ... , kmC). In such a case, we say that sequen-
tial refinement is achievable. Unfortunately, this is not
always possible. We find necessary and sufficient condi-
tions for a network to admit sequential refinement. Be-
fore stating the conditions (Theorem 1), we give several
definitions.

Definition 1 Let kmax = maxl<i<,n ki.

Definition 2 Let E be the set of edges between users
and disks; ..e.,

E = {(i,j) : User Ui is connected to disk DO}.

Definition 3 For 1 < j < n, associate with disk Di
the disk degree

di = Min ki.
i'(',j)EE

Definition 4 For 1 < i < m and 1 < s < ni, let Ni(s)
be the number of disks Dj connected to user U. that
satisfy the inequality d, < s.
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Huffman Algebras for Independent Random Variables
Cheng-Shang Chang Joy A. Thomas
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Abstract have analogous fundamental limits. In particular, we define

The Huffman algorithm was originally devised to I(p) = I'12 10 ', P), where a = F-9 and J(p) =

construct the minimal expected length instantaneous 102 (E-n=x 2P'). We can then show that[3, 5]

source code for a random variable. In this paper, we 1(p) < mi V pi 7" < I(p) + 1
identify the Hardy-Littlewood.Polya inequality as the T
key step in the proof of the optimality of the Huffman al- J(p) - I <max mi"•(p, +,) Q< J(p) _< mina x(p, + ,) < J(p)+ 1
gorithm and use this to provide an unified framework for T - T T

various applications of the Huffman algorithm. Quan- The quantity I(p) is a scaled version of the Renyi entropy of
tities that are analogous to entropy are identified for the distribution p. The quantity J(p) can be identified as the
these applications. We also consider the case when the fundamental limit in a model of parallel processing in which tasks
weights of the leaves of the tree are independent random of length p1, p3,... ,P are executed in parallel and their results
variables. A Huffman algebra is defined, which provides are combined two at a time. We also define the concept of tree
conditions under which the Huffman algorithm is opti- extensions that is analogous to block coding for source codes, and
mal for the case of random weights. In particular, it is show that it is possible to get arbitrarily close to the fundamental
shown that the "most balanced" tree is optimal for the limits using tree extensions.
case of independent and identically distributed weights Random weights: When the weights of the leaves are in-
for any arrangement increasing Huffman algebra. dependent random variables, we ask the question-when is the

The Huffman coding algorithm is a greedy bottom up tree build- Huffman algorithm optimal in terms of expected cost? To an-

ing algorithm constructs the optimum source code for a random swer this question, we define Huffman algebras for independent

variable, i.e., it finds a binary tree that minimises the weighted random variables. Random weights introduce many new difficul-

lengths F p•i,, where pi is the probability of symbol i and 4 is the ties. For example, there is no total order among random vai-

depth of the corresponding leaf. The same greedy tree building ables; instead, various partial orderings have been defined, such

algorithm was later applied to construct trees that minimise other as likelihood ratio ordering, stochastic ordering, and increasing

tree functionals such as max,(pi + 4), which has applications in convex ordering. Chang and Yao [1] derived stochastic versions

circuit design and parallel processing[3]. of Hardy-Littlewood-Polyn inequalities using three different par-

In this paper, we provide an unified framework for the different tial orderings for the random variables.

applications of the Huffman algorithm and extend some of the Motivated by the requirements for the Hardy-Littlewood-Polya
results to the case when the weights of the leaves are independent inequality, we define an arrangement increasing Huffman alge-

random var:ables. In the proof of the optimality of the Huffman bra (S, 0, 0, <t, <2, <s) as a set with two operators D and o

algorithm, the key step turns out to be a rearrangement inequality and three different partial orders <i, <2, <as, which satisfies vari-
called the Hairdy.Littlewood.Polya inequality, which states that for onu consistency properties for the orderings and also satisfies the

any real numbers, a, b, c and d, with a < b and c < d, then Hardy-Littlewood-Polya inequality[1]. For Huffman algebras that

a d+bc<ac+bd. This-inequality isused toshow that the are closed under Q) and ®, we can show that the Huffman algo-

longest codewords are associated with the lowest weights. rithm produces the optimal tree. However, most Huffman alge-

Deterministic weights: Motivated by ;ius inequality, bras are not closed, and in these cases, it is difficult to proceed
wetonsidermiitwo oerator algebra t by thattisfineshit, with the Huffman algorithm after the first step, since the newwe consider a two operator algebra (e , , 0) that satisfies this weight produced by ..ombining the lowest two weights is not di-
rearrangement inequality with + replaced Hy f and replaced re-tly comparable w-Lh the other weights.
by ®. We call these algebras arrangement increasing Huffms4n However, in the special case when the weights are i.i.d., we can use
algebras (AIHA) (extending an earlier definition by Knuth[4) 0e the concepts of stochastic majorisation to prove that the most bal-
one operator Huffman algebras). We also define arrangement de- anced tree minimises the expected cost w(T) for arrangement in-
creasing Hulman algebras (ADHA) when the inequality in the creasing Huffman algebras.The 'most balanced" tree can be con-
Hardy-Littlewood-Polya inequality is reversed. We show that i structed from the top down using a procedure called the *power
we define the cost of a tree T as us(T) = •' ® le"), of 2" rule[2]. However, the 'most balanced" tree is not always
then the Huffman algorithm on an AIHA (reap. ADHA) will pro- optimal for ADHA's, and we conclude with counterexample to
duce an optimal tree that minimizes (reap. maximises) the cost illustrate that our intuition about 'balanced" trees is not always
of the tree. (-y is a constant that represents the cost of one level valid for the stochastic case.
of the tree.) References

Table 1. Huffman algebras for deterministic weights [1] C.S. Chang and D.D. Yao. Rearrangement, majorisation and
Algebra (S. a), ) Type Objective stochastic scheduling. IBM RC 16250, 1990.
(1•, max, +) AIHA min maxE,(p, + i) [2] C.R. Glassey and R.M. Karp. On the optimality of Huffman

(R, min, +) ADHA max min5 (pj + -ly) trees. SIAM J. Appl. Math., 31:3W8-378, 1976.
( n, max, mn) AIHA min max,(min(pj, "y)) [3] M.C. Golumbic. Combinatorial merging. IEEE 7Vans. Corn-
( 1+,max,.) AIHA min maxi(pi • I'-) put., C-25:1164-1167, 1976.

IRZ+, m I.ADHA maxmin,(pi. -'4) [4] D.E. Knuth. Huffman's algorithm via algebra. Journal of
Combinatorial Theory, Series A, 32:216-224, 1982.

Just as the entropy of a random variable is a fundamental [5] D.S. Parker. Combinatorial merging and Huffman's algorithm.
lower limit to the expected length of the Huffman code, we I•EE 7•,, Comyuf., TC-2S:$65-387, 1979.

show that the various examples of Huffman algebras in Table I
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of the form AC or BC by (A+B)C links, and

The problem of designing a sequence of replacing links of the form CA or CB by C(A+B)
optimal binary tests for the identification of links. Newly redundant links are eliminated.
a single faulty component is addressed. For One new Hasse diagram is created for each link
components in linear order this is equivalent in the original. The collection of search
to the classical alphabetic coding problem trees consistent with these diagrams with
solved by Hu and Tucker. For partially composite nodes may include some which are no
ordered components the problem is more longer consistent with the original diagram.
difficult. Here, the problem is solved by These can be identified easily, since they
reduction to a minimization over a set of contain upper sets which do not belong to the
alphabetic problems. original partial order. Therefore we

eliminate intermediate Hasse diagrams which
Our problem is, for a given partial introduce upper sets not found in the original

order and assignment of probabilities to the Hasse diagram. It is thus clear that by
nodes in its Hasse diagram (which correspond construction the set of search trees Over
to the components), to find a sequence of which we now optimize is exactly the set
upper sets to test so as to minimize the consistent with the original partial order.
average number of tests to locate the
defective node. An upper set is defined by: we can repeat the process for the

consistent intermediate Hasse diagrams whose
Defnio: If X in a node, the U wit of solutions are not yet available to us. Once
X, U(X) o (Y : Y n X), is X together with the all intermediate problems are solved and their
set of all ngdes greater than X in the partial associated expected number of tests
ordering. determined, the minimum expected number of

tests solution is the solution to the original
The seqluence of upper sets to be tested can be partial order problem-

represented as a binary search tree. A search
tree which minimizes the average number of There are two simple types of
teots is called an optimal search tree. intermediate problem whose solutions are

available to us. These are linear orders and
Brute force examination of all search mV - orders".

trees consistent with the partial order is, in
general, not a feasible approach to minimizing Dgjn±tLWJ : A partial order is a V- Order if
the average number of tests. For some it the union of two linear orders which have
particular sets of probabilities assigned to precisely their minimal element in common.
the components there are known ways to
restrict the search. A number of these are Mjg9X=_a: A V - order, A, > A&-, > ... > Ai
given by Gilbert and Moore in the linear order > A,; A1 > • > ... -- Aj. > A3, has the same
case. One method for partial orders is optimal search tree as the linear order, A. >
provided in A._, > ... > Aj,1 > Aj > A,.1 > ... > A2 > As.

ThMoArzft : In an optimal search tree, at To summarize, the proposed approach
least one node of minimum probability must consists of the following. For each link in
form a sibling pair with a node to which it is the Hasse diagram form a new diagram with a
linked in the Hasse diagram. composite node whose new probability is the

Nevertheless, we require a more powerful sum of the previous node probabilities. If
approach in order to reke pregess on the new upper sets not present in the original
generoalh patia order seare problem. o he an asse diagram have been created, do not
general partial order search problem. We can consider the new diagram further. If the new
systematically decompose any partially ordered diagram is a linear order or a V - order, find
problem into a set of linearly ordered its optimal test tree by the Hu-Tucker
problem from which the original can be solved algorithm. Split the composite node into a
indirectly. We use the Hu-Tuckor algorithm on pair of sibling nodes in the final test tree,each linear problem. The linear pro'-!v ande cluaeteosofhere.if the
solved by the Ru-Tucker algorithm n• * ".I and calculate the cost of the tree. I h
composite nodes, corresponding to .t f- new diagram cannot be solved immediately,
sibling pairs in the search tree, and of begin the process of forming composite nodes
must be expanded back out in tvrleLa.. h'he again with that diagram. The optimal test

average number of tests required by the tree for the original problem is the minimum
particular candidate solution. The final tree cost solution from among these candidate
is the minimum over the several Hu-Tucker trees.
solutions.

Nore specifically, each link, AS, in the
Hasse diagram, consider the Hasse diagram
formed by substituting the composite node A+B
(with probability given by the sun of PA and Ps
in obvious notation) for A and replacing links
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Summary empty and is not a prefix of any codeword, and (2) c., is not
a substring of any other codeword. These two conditions

When variable length codes such as Huffman codes ae guarantee that regardless of prior slippage the decoder will
transmitted through a noisy channel, any bit error can lead not decode the ESC as parts of other codewords (as long
to loss of synchronization at the decoder and cause error as there is no error in the ESC itself). Hence, the ESC will
propagation. Synchronizing codewords (SCs) have been be correctly decoded, so that the decoder knows that there
previously proposed to resynchronize the decoder regard- was an error and can resynchronize after the ESC.
less of any preceding synchronisation slippage. However, The following bounds on the amount of overhead needed
SCs retain one significant disadvantage. Although the de- in designing a code with an ESC can be obtained. If a
coder will be synchronized after decoding a SC, the decoded source S is designed to have a prefix code C that has at least
symbols after the SC may be shifted since the number of one ESC, then E(C) > E(H) where H is the Huffman code
decoded symbols before the SC may be different from the for S. On the other hand, there exists a prefix code C with
original number (due to decoding a variable-length code in an ESC of probability N, and E(C) = E(H) + p,1,n. Also,
the presence of errors). Also, even though the decoder will if the depth of a maximal complete subtree in a Huffman
be synchronized after decoding a synchronizing codeword, code is d, then there exists a prefix code C with an ESC
the decoder may not realize it was ever out of synchroniza- of probability N, and E(C) = E(H) + N(d + 1). Using
tion. results from [2] and [1] it follows that a source S admits a

To overcome the drawbacks of synchronizing codewords, prefix code C with an ESC of probability p. and E(C) =
we introduce the concept of extended synchronizing code- E(H) + I. But we can show that for all n > 6, N(d + 1)
words (ESCs). ESCs can guarantee both codeword and is a tighter bound than - (the two bounds are equal only
symbol synchronization, so that the symbols after the ESC when n = 6 and n = 8). In fact, N(d + 1) --, 0 as n -, 0.
will be decoded correctly and will be put in their correct Finally, some relationships between ESCs and SCs can
positions. Thus, ESCs can be used as markers in the bit be obtained. For example, if a code C has a SC c.%, then
stream to prevent propagation of both decoding errors and cj.cj is an ESC for C', where C' has the same codewords
symbol shift errors. An application of this to image cod- except that C' leaves the codeword ci unused. Also, if a
ing has been studied in [3]. We give a formal definition of source S can be designed to have a SC c. (probability p.%)
ESCs and derive some bounds on the amount of overhead with no overhead, then S admits a code C with an ESC
necessary in designing a binary prefix code with an ESC, and B(C) = pi + pA(/i + 1), where i can be any codeword
and study relationships between ESCs and SCs. index.

In this paper, we consider only binary prefix codes. For a
source S with symbols (si,' " - , s.), denote the probability References
distribution of the symbols by (pl,... ,p,N), and assume pi 2
pj+j. A code C = {ci,. . ., c.) is associated with the source [1] T. Berger and .W. Yeung, "Optimum 1-ended binary
S if ci is assigned to the symbol s,. The length of i is prefix codes," 1EEE Trans. Inforwdion Theory, vol. IT-
denoted by Ii, and the average codeword length of C is 36(6), pp. 1435-1441, Nov., 1990.
denoted by E(C) = E'& forml yf [2] R.M. Capocelli, A.A.D. Santis, L. Gargano, and U. Vac-

Our notion of an ESC is formally defined as follows. A caro, "On the construction of statistically synchroniz-
codeword c.. of a prefix code C is defined to be an ESC if it able codes," IEEE Trans. Inforrnation Theory, vol. IT-
satisfies the following conditions: (1) for all a 6 c,., if c.. = 38(2), pp. 407-414, Mar., 1992.
a r and a is a suffix of some codeword of C, then P -in [3] W.-M. Lam and A.R. Reibman, "Self-synchronizing
where - is empty or a sequence of codewords, and I is not [3]variable-length codes for image transmission," Proc.

"Thi wotk ama suppotted in part by a pant fim Siemens Cvopo- ICA$$P, vol 3, pp. 477-480, Mar. 1992.
rte Research of Princeton, NJ.
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The decoder also receives a concatenation of side informa-
We consider an lID source that generates binary data with tions. The first side information z is separable in the following

a distribution P on {0, 1}. H(P) denotes the entropy function for 1) Read the length n+1 of a segment I. 10. 2) Regard the

P. A denotes an acceptable distortion that is a real constant in [0, n-length sequence C prefixed by I ...10 as the n-bit integer expres-
1]. W denotes a conditional probability on {0, 1} x {0, 1}. R(P, A) sion of the value of 1k/rnJ, where m is given by (*). 3) Regard the
denotes the rate function for P and A with Hamming distortion Rog2 ml-length sequence prefixed by C as the [log& mi-bit integer
d that is measured by the normalized Hamming distance. ofsn of the value of k - mx [k/mi.The proposed code system [1] encodes a binary message of expressionothvaeofk-m×[m.

The ropsed odesysem [1 ecode a inay mesag ofNow, let a counter ý store the number of the data already
variable length (VL) into the pair of 1) a binary VL codeword and
2) a binary VL sequence called a side information. A sequence reproduced. A variable A can assume reals in [PW(I)/W(IjO) - 1,
concatenated codewords and another sequence concatenated side PW(0)/W(0 1)), and another variable &, in [I - PW(1)/W(1IO),
informations can be mixed in time sharing and be transmitted to PW( 1)/W(Oj1)). The decoder, after initialization
a decoder as a single binary sequence. 4-- 0 A-- 1, C +- 0

Encoder retraces tie Recursion and Termination of encoder in the following

We suppose that P and W, where W(11O)+W(O11)>112 so way. Retrace of Termination: In the Termination of encoder,
that m>2 may be guaranteed in (*), are given beforehand. A before update of A and C, either [C, C+A)q[0, W(011)) or [C,
counter c stores the number of the source data already processed C+A)_[W(010), 1) is true. By updating A and C in the for-
by the encoder. Each of variables A and C can assume reals in [0, mer case, it follows that [C, C+A)g[0, PW(O)), that is, 0.kE[0.y,
1]. The encoder, after initialization 0.y+2-')_[C, C+A)C_[0, PW(O)). By updating A and C in thec -- 1, A *-- 1, C *-- 0,
begins the following Recursion. latter case, it follows that [C, C+A)_[PW(O), 1), that is, 0.k'E[0.y,

Recursion: The encoder puts a source data x, in. When 0.y+2-')C[C, C+A)C[PW(O), 1). These cases can occur alterna-
zc=0, one of the following three cases a0 , fl0 and 70 can occur. tively and the following rule for retrace of Termination can dis-

In case ao of [C, C+A)_[0, W(0I0)), if [C, C+A)![O, crimnnate them.
W(011)), then the processing, after update If 0.ySE[0, PW(O)), then the decoder, after update

c .- c+l, A -- AxPW(0)/W(0O0), C - CxPW(0)/W(010), •- a+1, A •- A•xPW(0)/W(0II), & - b,
reenters into Recursion. Otherwise1 the processing escapes from puts a data :i-=0 out. Otherwise, the decoder, after update
Recursion and enters into Termination. -+1, A4A x-PW(1)/W(liO), C,-C+•×Ax(I-PW(1)/W(110)),

In case &0 of [C, C+A)g[W(0I0), 1), the processing escapes puts zi=1 out.
from Recursion and enters into Termination. After execution of either one of the above operations, the

The third case -) is [C, C+A)3W(0I0), which includes a0  decoder retraces the Recursion of encoder in the following way.
and &0 half and half. In this case, the encoder reduces [C, C+A) Retrace of Recursion: If 0.-E[C, C+AxPW(0)), then
into either one of subintervals [C, W(010)) and [W(010), C+A). the decoder, after update
Definitely, the encoder selects a random real r uniformly in [0, a -+l, A -AxPW(O)/W(0I0), & 4-

1). (Transmission of r to the decoder side is unnecessary.) If puts a data ia=0 out. Otherwise, the decoder, after update
r<(W(0I0) - C)/A, then [C, C+A) is reduced into the first subin- . A... ..xPW(1)1W(I1l) 4-+AX(l-PW(1)IW(111)),
terval [C, W(010)) as puts zi=1 out. After execution of either one of the above opera-

A - W(0I0)-C, C - C, tions, if the counter ý is less than k, then the processing reenters
and the current case )b returns to a0 . Otherwise, [C, C+A) is into retrace of Recursion. Otherwise, the processing escapes from
reduced into the second subinterval [W(010), C+A) as retrace of Recursion. - -

A -C+A-W(010), C -W(00), After the escape, regard the reverted sequence x -. -r
and 7yo returns to A,. as the reproduced message that corresponds to the original mes-

These cases a 0, fl0 and lb can occur for zx=O. Alternatively, sage x=z.. Zk. Further, y is reproducible only from i.... ii with-
when z,=I, symmetric cases al, lu and -/ can occur (abbreviated). out using the random numbers. Hence the decoder can separate

uniquely y from *, and can proceed to processing of the next code-Termination: If [C, C+A)C-[0, W(011)), then c, A and C worn.

are updated as
c 4- c+l, A *- AxPW(0)/W(01l), C - CxPW(0)/W(01l). Compression Efficiency

Otherwise, that is, if [C, C+A)C_[W(0I0), 1), then c, A and C are We consider an arbitrary W achieving the minimum mutual
updated as information I(P, W) on condition that

o--c+ 1, A,-AxPW(1)/W(IlO), C-I-(1-C)xPW(I)/W(IlO). EC=sv)e~o.•lx o,l} P(z)W(ylz)d(z, y)

Next, finding the minimum length I such that = P(0)W(I10)+P(I)W(0II) <_ A.
[0.y,0.y + 2-)_[C,C+A) where 0.y = F1. 2-Jy, If A is small so that the condition

for at least a binary se 1uence Yy" .y., the encoder puts y out. max (Pwo 0w , )) < (mt)+w(o1)r
This yis the codewordi or a message x=ui.. *zi, where k denotes 0)6
the final value of c. may be satisfied, then the redundancy p defined by

The encoder also puts out a side information z that is corn- (the expectaltionof ) + ( the expectiation o
posed of i) 2og [k/mJ + l)1-length juxtaposition of Is where codeword length side iufonnation length

M = M(W(i 0)+W(011))i, (I) (the expectation of memage leagth)

ii) a 0, iii) logP2 ([k/m J+ l)i-bit integer expression of the value of is bounded as
Lk/mJ, and iv) P092 mI-bit integer expression of the value of k - p < R(P, A) + (W(I10) + W(01 1)) x
mx.k + (- [ + [l, + 2),

Decoder the right hand side of which is close to R(P, A) for small A.
The decoder receives from the encoder a concatenation ofcodewords. However, no boundary is there between the first code- Reference

word Hoandether, s ond coundeordy isthereforetwee the decodrs ca t [1] H. Suzuki and S. Arimoto, "Arithmetic Code-Like Variable-to-
word y and the second codeword y'. Therefore the decoder cannot Vari-able Length Source Code with a Fidelity Criterion for Binary
but reproduce data by using some y-prefixed sequence k ecty .lID Sources" IEICE Trans. Fundamentals, vol. E75-A, no. 9, pp.
instead of using y directly. 1148-1158, Sep. 1992.
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Failure Detection for Communication Networks Using Finite-State Models and Viterbi Decoding

EnderAyanoolu
AT&TBelfLaboratoris

101 Crawfords Corner Road 4F-507
".Momdel, NJ 07733-30, USA

In any communication network, facility failures need to be timely detected In order to benchmark the performance of the stochastic model, we use
so that necessary protection switching functions can be initiated without much the conventional leaky integration scheme known as the leaky bucket. In this
delay and loss of customer data. Older transmission systems such as TI scheme, there is a counter, which is incremented every time a bad checksum
trunks base this decision on a count of the severely errored seconds (SES). occurs, and decremented whenever the count is positive for every TL good
When"many' consecutive SES's occur, afacilityfailuredetectionschemecon- checksums received. A changeover is initiated when the counter reaches
cludes that the line is not reliable, and initiates an alarm, which in turn initiates TB. The values used for TL and TB for the SS7 network are 256 and 64.
a changeover of the transmission link to spare capacity. For transmission sys- respectively.
tems that employ a packet format with total or partial cyclic redundancy check Modeling the temporal behavior of a channel at the receiver end as a
(CRC) fields, the information on the line errors is available at the receiver after Markov source is quite common. With this motivation, we simulated the data
performing a CRC check. Such transmission systems include many data link at the receiveras the output ofa Markov source (different than theone used for
layer transmission protocols such as HDLC, SDLC. LAPD, and LAPB. or the failure detection). Picking a block size of B = 16, we assumed the source to
physical layer schemes such as the SONET transmission frame, the ATM cell consist of 17 states, each roughly corresponding to the number of errors in the
structure, etc. Alternatively, the corrupted flags of a data link layer protocol block, from 0 to 16. The transition from one state to its neighbors is governed
can be used, or special sampling frames can be transmitted for facility moni- by a geometric rule, the farther a neighbor is, it is geometrically harder to get to
tong purposes. For example, in Signaling System No. 7(SS7), fill-in signal it. States 8-16 are bad states, there is no way the system can go Lack to the
units (FISU's) are transmittedforthis purpose over the signaling network For good states 0-7, once it enters one of the bad states. For the observations,
many transmission functions, in particular for signaling, this detection should we introduce another degree of randomness into the model. The number of
be very fast. Existing algorithms for this purpose usually involve some inte- errors that the model generates when at state i is a random variable whose
gration so that intermittent SES's or bad CRCs do not cause alarms when the mean is i, and whose standard deviation is proportional to i. This model is
facility is healthy, or conversely, intermittent non-severely errored seconds or relativelyarbitrary, however, it captures the important featuresoffacilyfailure.
good CRC's do not prevent a changeover when the facility is faulty. Usually. A Markov source is commonly used for modeling receiver data. The block size
this filter is designed with deterministic specifications, without any stochastic 16 is chosen as a compromise between performance and complexity. This
modeling of the source. size is sufficient for this scheme to have better performance than the leaky

The deterministic filter designed for tracking the low-frequency trends in bucket, but smaller block sizes may have even better performance. We would
SES's or CRC's is a linear and time-invariant system. On the other hand, like the system to exhibit an absorbing state, or a super-state, and we pick
the underlying process one would like to estimate is a nonstationary or time- states 8-16 for this purpose. The geometrical rule is one way to assign hoi
varying stochastic process. A linear and time-invariant system would be transition probabilities to closer neighbors, other poesibilities exist, but it is not
inferior to an adaptive nonlinear scheme based on a good stochastic model much likely that this will change the overall result. Making the number of bad
of the source, designed to optimize an objective performance criterion. Even checksums at each state random introduces an extra degree of randomness
if its parameters are not adjusted adaptively, a stochastic nonlinear source so that the failure detection algorithm does not simply learn to keep track of
model can greatly improve the performance of the failure detection system. the number of errors and determine the state of the model, i.e., it hides the
One such model is a finite-state model, or a Markov model. It is possible to underlying model from the observer. By design, we pick the mean of the
generate detailed Markov models, but in its simplest form, the Maakov model errors at each state equal to the state. In order to increase the uncertainty
for the facility consists of a "good state* and a "bad state" where good state at the larger states, we also pick the standard deviation proportional to the
refers to a healthy facility, and bad state refers to a failed facility. Associated state. Other models are possible, but again, this is not expected to change
with each state is a probability of a bad checksum, equal to p for the good the overall result significantly.
state, and equal to 1-q for the bad state. The system is in good state at time Simulations show that the large values of TB are associated with small
k, conditioned that it was in good state at time k-i with probability 1-a, and values of the false alarm probability, and conversely, small values of TB are
it is in bad state at time k, conditioned that it was in bad state at time k-I associated with small values of the detection delay. Although the effect is
with probability 1. Typically, p < 1, q <41, a < 1. Such Markov models, more minor, small values of T can be observed to be associated with a large
known as hidden Markov models, are used in many fields such as ecology, probability of false alarm prolebiit, and large values with small detection
cryptoanalysis, and most importantly, speech recognition. delay. In summary, it is not possible to optimize either TB or TL for mirinzing

Fitting a time series of good and bad checksums, i.e., a sequence of U's both PFA and Tdt The best solution seems to be reaching a compromise
and I's to this model can be achieved via dynamic programming or the Vitede between PF- rT*t, Our simulations showed that a value of T = 64,
algorithm, provided that a meaningful performance criterion is chosen. The and 256 < TL - 32 yields the best solution, in line with the SS7 stan=ird. On
most commonly used performance criterion for this purpose is known as the the other handl, all the hidden Markov models studied substantially outperform
maximum likelihood criterion. Based on the observation of a good (G) or the leaky bucket, achieving both PFA and Tdst results significarnly better than
bad (B) checksum, the Viterbi algorithm associated with the model above the leaky bucket.
proceeds as follows.

1. DG(O) = O, DB(O) = -oo, k = 1. Leaky Bucket- Pr,

1,± 256 128 64 32 16 8 4
128 0.08 0.068 0.07 0.07 0.06 0.03 0.00

2. 64 0.31 0.31 0.32 0.30 0.29 0.19 0.05
Dlog (1-p) if G 32 0.60 0.60 0.60 0.60 0.568 0.50 0.26

G(k) = log(I-a)+ ogp if B 16 0.63 0.84 0.65 0.84 0.61 0.75 0.94OG(k) = G ) I8 0.94 0.93 0.93 0.03 0.92 0.68 0.78

ilogq if Leaky Bucket=DB(k) = max[DG(k.1)+loga'DB(k'1)]+ lglq fBLay T
TTL g25 128 64 32 16 a 4

3. If 0() > DG(k),initiateachangeover. Else, et k- k+1, goto2. -%a-- 134 134 135 137 145 170

W4 63 63 62 62 63 68 60

The probabilities p and q, and the conditional probability a can be estimated 32 34 34 34 34 35 37 41
from real data, obtainable from transmission statistics. Alternatively, hidden 18 22 21 21 22 22 23 32
Markov model training techniques can be used. 8 17 17 16 17 17 17 17

The performance evaluation for a failure detection scheme should be
based on how long it takes to declare a line failed after an actual failure. Fin,@-State Model ]
as well as how frequently the scheme declares a healthy line failed. We will Inlal Tried
call the first of these quantities the defection delay, Tddd, and the second, the 0.1 22 1 P1
prbab of false alarm, PFA" A good failure detection scheme minimizes A 22 ] o06 Lit

both of the" quantities. 219



Asymptotic Non-stationary Behavior of Statistica! Multiplexing
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Abstract where khA is the mth element of an integer vector k = [kl,. - *, hi,]:
The cell low probability i a major performance factor in de- k., =O0,1,2,- .. and m= 1,2,---,M.

signing an ATM (asynchronous transfer mode) network for broad- The eigenvalue u~s), involved in the above equation, is given by
bend integrated services of multi-media communicationa. The dy- solving
namic behavior of an ATM network needs to be well understood
because of its extremely high speed and diversity of traffic. We gwW R + A.?2 + uA.RA u s 6
analyse the transient bufFer overflow probability of a statistical /.. - 1C-a 6

multiplexer with multiple types of traffic by taking a spectral rep. M,=2 ult + A1.
resentation approach. The joint distribution is obtained in the Ni we denote uk(s) the eigenvalue for the integer vector k, and let Vk(a)
Laplace transform domain in analytic form. An asymptotic be and U~k(a) be the corresponding right and left eigenvectors, respectively,
havior is characterised by simple parameters of what we term the then they can be represented as
'dominant' type traffic.

Summinary Vic(s) =Vh,(') 0 VIVs,(a)

We assume that there are Mf types of sources, and the traffic of type m Uk(s) = (Q1 )2 k(s)
is characterized by the arrival of "bursts" with Poisson rate A.,. The with
burst length is exponentially distributed with mean k-, and each burst [4(s)DVk(s) = 6&(7)
generates cells at the rate of RU [cells/sec1. The output link capacity anQisadgolmtrxfifnteiesonivnb
is denoted by C [cells/se]. To make the system stable, we require anQisadgolmtrxfinnteiesongvnb

Let .I,.(t) be the number of type in burst at time t. The aggre-
gate rate of cell arrivals at the multiplexer is then given by R(t) = It can be shown from [4] that the number of the positive eigenvalues,

I iR.Jw.(t). When R(t) exceeds C [cells/sec], all the cells cannot denoted by q(s) and derived from Eq.(O), is equal to the number of k's
be handled immediately. Let Q(t) denote the number of cells outstand- that satisfy
ing in the output buffr, and define M

Pj(t, z) = Prob{J.(t) =U 1 < m < M; and QQt) :5 xJ (1) E R,.k,. <
I= I

Let P(t, z) be the columnn vector that consists of all the Pj(t, a). Fol- Thus, the unknown transient boundary condition P*(s, 0) can be deter-
lowing (1], we can derive a matrix differential equation for P(t, x): mined by a set of linear constraint equations

OP(t, Z) + 2 8PE(LL = MP(t, a) (2) [4(s)[P*(0, 4(s)) +VP(a, 0)] = 0 (9)
at ex

where Since the dimension of this matrix equation is infinite, we should be
interca.ted in the most dominant (largest negative) eigenvalue ud. ,(a),

M = Mi (@ M 2 9 .. ( Mm, which is obtained by setting k = 0 in Eq.(6). This dominant term
V = IZ1 DI(2) (D ... -ZM C .1I. will be of practical importance when we consider an asymptotic buffer

Here@ ad ( repeset Konecer rodct ad Koneker umresec-behavior, i.e., when a is large enough. The transient probability that
Hierey, and I rstepresentit Karoneke poducfinte aimndsKonece sundi the buffer content Q(t) exceeds some predetermined buffer capacity B

tivey, nd is he denitymatrx o ininie dienson.And[cells] is approximately given, for larger B, by

U +A,) ~ 6 .0 Gs(., B) =E 4f{Prob{Q(t) > B}} P, b(s)ezp~u& .(,)B) (10)

MU0 AU -(Am + 2AO, ... where b(s) = -U;(#)(F*(0, Um. (8)) + PP*(&, O)]Vo(l; a).
We can show that the dominant eigenvalue va. .,(a) lies between

R(U)- diag[.0, R,, - - ,JUR,.,**-J maxcf{- L})and 0for all a2!0.

In order to solve Eq.(2), we first take the double Laplace transform References
(t, z) "- (a, u) on P(t, x), i.e., P(t, x) +-6 P*(s, u), and use P*(s, 0)
and P*(0,u) to denote the Laplace transforms of P(t,O) and P(0,x), [1) Kobayashi, H. and Q. Ken [199], 'Non-stationary Behavior of Sta-
respectively. Equation (2) then becomes tistical Multiplexing for Multiple Types of Traffic', Prac. Twenty-

P**(, u = uD sl- M`1P*O, ) +VP*s, )). (3) Siath Annual Conference on Information Sciences and Systems,
P~(sa) =(a~ + e - )1 [P(O~)+ 2P~a0)]. (3) Princeton University, Princeton, N.J., March 18-20, 199.

Let us solve the elgenvalues with respect to u, i.e., uVV(s) = (M - [2] Kobayashi, H. [1991], 'A Spectral Representation Approach to Sta-
&I)V(a), and let V(s) and V(s; a) be the corresponding right eigenvector tistical Multiplexing of Multiple Types of Traffc 1 , Prac. 199 IBEE
and Its generating function, we assume that V(s; a) can be decomposed Insternational IT Synsposiwn , p.156, Budapest, Hungary.

+s Vs )n ,.x;a), .the Itolow [3] Kosten, L. [1984], 'Stochastic Theory of Data handling Systems
Egi(*t A). A.10,{lnVU(zU,1) with Group of Multiple Sources'. In H. Rudin and W. Buz (eds.),

-a -+ VC + = A(, - 1). (4) Pefomance of Cornpuder-Communication Systems, pp. 321.331.

The solution of Eq.(4) should have the following form: North-Holland Publishing Co.

_______[4] Lancaster, P. and M. Tismenetaky (I19], The Theory of Matrices,
Vk.(Z.; a) = e2P + )(,1A1.- Ns) + A~v-" (5) Academic Press.



THE THROUGHPUT REGION OF NETWORKS WITH TIME-VARYING TOPOLOGY
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Abstract The transmission vector R(t) is determined according to some
Acommunication network with time-varying topology is transmission scheduling policy. In this work we characterize the

A commundct ion of with throug uopology throughput region of the time-varying network. That is the set
owisidered and the region of achievable throughputs under any of arrival rates aj = E[A,,(t)], i = 1,.., N, j = 1,.., M for

transmission control strategy is characterized. The topology of waivh tes is stable u = 1,..,N, i wM r
the network is arbitrary. The topological property that variesunder some scheduling policy where
withe nietw is arbconnectivitrry. Te too calproty ofthat l the network is defined to be stable if the expectation of the to-
with time is the connectivity and/or the capacity of the links. tanubropcksinheytmisufrlyond.Te

An underlying network state process is considered that reflects und erlyinganetsor n the system is um ly bounde The

the physical characteristics of the network that affect the link erlying network state process is assumed to be a finite state

transmission capacity. The capacities of the links is a function of space irreducible Markov chain. The probability of state at un-

the state process which has Markovian statistics. The transmis- der the stationary distribution is denoted by p5 (al). The two

sions are scheduled dynamically based on information about the main results are the following.

link capacities and the backlog in the network. The maximum Theorem 1: The necessary and sufficient condition for a
achievable throughput is characterized and a scheduling policy vector a = (aij : i = 1,..,N, j = 1,..,M) to belong to the
that obtains it is specified. The model of changing topology that throughput region of the system is that there exist nonegative

is considered here applies to TDMA and CDMA networks with numbers Clm, I = 1,.., L, m = 1,.., 2 NM such that
mobile users and networks with meteor-burst communication
channels. 2NM

E clm <, 1 = 1,..,L
Summary M-1

The network model consists of N transmitters and M re- for which we can express the arrival rate vector as
ceivers. Each transmitter may transmit to every receiver. The
transmission of transmitter i to receiver j at slot t is successful L 2NM

with some probability Qji(t). A network with arbitrary topology a e • p(st) cjmQ(sa, r m )
can be represented with the above model. The transmitters and 1=1 M=1
the receivers correspond to the network nodes and the connec-
tivity is mapped in the probabilities of successful transmissions. where r', m = 1,.., 2 NM are all the binary vectors with NM el-

If there is no communication link from transmitter i to receiver ements and Q(sh, r) = (Qij(., r): i = 1,.., N, j = 1,.., M).

j then Qj(t) = 0.
The time varying topology is represented by the variation Theorem 2: The policy that schedules at slot t the trans-

with time of the probabilities of successful transmission Qi(t). mission vector
These probabilities depend on certain physical characteristics of N M

the network that change with time. In addition these probabili- R(t) = argrmax • Z Q,(S(t), r)Xm.(t)
ties depend on which transmitters attempt transmission towards relOi)fM .f j=1
which receivers at each slot. The physical characteristics of the
network that affect the probabilities of successful transmission stabilizes the network under the necessary and sufficient condi-

are captured by the underlying network state variable s(t) which tion of theorem 1.

takes values in the set S = {1,.., L}. In the case of a network
of mobile nodes, the underlying network state denotes the geo- The necessity in theorem 1 follows from the fact that in

graphical position of the nodes, while in a meteor-burst network stable mode the long time average number of packets success-

the state denotes the existence or absence of meteor-bursts for fully transmitted equals to the arrival rate. The sufficiency in

the various links. Each transmitter at any slot may attempt to theorem 1 is proved by showing that under the policy of the-

transmit to one of the receivers or to idle. The transmission orem 2 the system is stable when the condition of theorem I

attempts at slot t are denoted by the binary transmission vec- holds. The state of the system is represented by the vector of

tor R(t) = (Rii(t) : i = 1,..,Nj -= 1,..,M) where RAi(t) is packet backlogs in the nodes and the underlying topology state.

equal to 1 if transmitter i attempts transmission to receiver j First it is shown that the drift of a quadratic function of the

at that slot and 0 otherwise. Let Qii : x 0,I}MN -. 10,1) backlog when it is averaged by the underlying topology state

be the function that determines the probability of success in stationary distribution is negative. Then it is shown that if for

the transmission from i to j at t based on R(t), s(t); that is a multidimensional Markov chain with infinite and finite val-

Qj,(t) = QOi(s(t),R(t)). ued components, the drift of a LiApunov function of the infinite

If the number of packets Xij(t) in transmitter i with des- valued components is negative when averaged by the stationary

tination the receiver j at the end of slot t is nonzero then a distribution of the finite valued components then the chain is

packet is transmitted successfully to j in slot t + 1 with prob- ergodic.
ability Q41(t + 1) and independently of the past. At transmit-
ter i, Aij(t) packets are generated with destination the receiver
j during slot t. The arrival processes are Markov modulated.
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Loss Probability Approximation for General Stationary Input Traffic
Kenji NAKAGAWA, Nagaoka University of Technology

1 Introduction 5 General Input and Service Time
The above idea can be extended to obtain upper bounds in the cases

Queueing problem is investigated for a very wide class of input traffic where the cell inter-arrival time distribution is specified in the ATM
models and a good loss probability approximation is obtained. queueing, and more generally, extended to G/G/1 queueing.

We first consider ATM (Asynchronous Transfer Mode) queueing, 5.1 Inter-arrival Time Distribution
i.e., G/D/l, and then extend the approximating method to general Let w. be the waiting time of the n th cell, r. the arrival time of
queueing problems. The only essential assumption is the stationarity the n th cell. The unit of time is, of course, taken to be the service
of customer's arrival process and the service process. time of the server. Denote by t, = rn - T74- the inter-arrival time

2 Preliminaries between the n th and n- 1 th cells. Assume that the random variables

We first consider the discrete time ATM queueing system. Every {ftn are mutually independent and identically distributed. Let p(k) =

cell which arriveg at a multiplexer is served by a single server with Prob[tn = kJ, k = 0,1,..-, denote the probability distribution of t,.

constant service time by FIFO (First-In-First-Out) discipline. The and 11(z) the PGF of tn. Lindley's recursion w,+, = max(0,W,. +

multiplexer is assumed to have a buffer of infinite length. The unit of 1 - tn+1) leads to the direct expression w = sup,.>o Vn, where w =
time is taken to be the service time of one cell. lim,-o. w, and V. = _-01 (I - ti,+) = n - E t,, n > 0, Vo =

Let us denote by at the number of cells which arrives at t th time 0. We have an upper bound of the cell loss probability as P[w >

slot, and Qj the queue length at the end of t th time slot. We assume q] _ .n>q" s-ltn(-zi), where an is the number that minimizes

Qt0 = 0 for some to. The queue length Qt satisfies the well-known >- -1.n(a 1 ) a _ 1.
recursion formula Qt = max(Qt-l - 1,0) + at by Lindley [1]. By 5.2 G/G/1
solving this recursion, we have the direct expression of Qt [1]: We consider an extension of our method to general input and service

9 time distribution. No specific stochastic nature of the input traffic
Qt= max ( a3 - i). (1) and the service time are assumed except for stationarity.

o:5i<t-to j-t-i Let us denote by Q, Ni and Li the stationary number of packets

Now, we assume that the arriving cell number {at} is a stationary in the queue, that of arriving packets during an i-interval and that

process. Let the initial time to tend to -oo and denote by Q the of packets served during an i-interval, respectively. Further, denote

stationary queue length, and Ni the stationary number of arriving cells by %N,(z) and 'PL,(Z) the PGF's of N, and Li, respectively. Then

in an i-interval. (Here, we call an interval of length i an i-interval.) we have P[Q > q] _ >•>i> (q a +l)%N,(O.i)TL,-J(a'i), where a, is the
Thus, by (1), the queue length Q is written as Q = maxi>o(Ni+l - i), number that minimizes -(9+1)*N,(a)AL,_(1), ( a > 1.
and the cell loss probability PIQ > q] is given by Furthermore, we can eliminate the independence assumption of

P[Q > q] = P~max(N, - i) q(2) the input traffic and the service time if the joint distribution of the
= >a -input and the service time is given.

In general, however, it is difficult to calculate the exact value of 6 Heuristic Modification of u(q)
the right-hand side of (2). The purpose of this paper is to give a goodapproximation of (2). From detailed and extensive numerical comparison between u(q) and

exact formulas or simulation of loss probability, it seems that log P[Q >

3 Loss Probability Upper Bounds q] is approximated well by log u(q)+constant. Since P[Q > 01 = p, we

It is readily seen from (2) that the following inequality holds. modify u(q) to define ii(q) = -t•u(q), where p is the link utilization.
u(0)

Lemma 1 We show the numerical calculation results of u(q) and ii(q) in Fig-
P[Q > q] •- F P[N, Ž i + q]. (3) ures 1-4 to compare them with the exact loss probability or computer

i>1 simulation.

Each term P[N, Ž_ i + q] in the right-hand side of (3) is approxi- References
mated with the aid of the Chernoff bound technique. [1] Bhargava,A., et al., IEEE GLOBECOM, 1989, pp.9 0 3 -9 0 7 .

Lemma 2 (Chernoff bound) Let N be a random variable taking on [2] Roberts,J.W., et al., IEEE Trans on Com, Feb. 1991, pp.298-303.
non-negative integral values and *(z) the probability generating func- 4, 3 1
tion (PGF) of N. Then P[N > r] !5 o-t*(a) holds for any integer r 23 ., - u(q)
and any real number a > 1. u0q) .

By applying Lemma 2 to (3), we have r y-

Theorem I Let t,(z) be the PGF of the Ni, i = 1,2,.-.. Then, we . I4 -

have P[Q > q] < u(q), where u(q) = 0> -+0)i(ai), and ai is , , .in--

the number that minimizes a-('+9)i(a), a _ 1, i = 1,2,....-o - oja -. - e .I

4 Application to Several Input Models 0 20 40 0 0 a,•0 1 0 20 40 00o ,0 1** 2 140

qu length q qt- lenQgt
4.1 M/D/1 Fig.1 cal ki p m Fig.2 AR(1)/Dc1 eeo los.• pr ity4mt.M / fo Po o inputdO.921) fo oppoxamp on (oad-0.S. av.l b-0.5)

The PGF Wi(z) in Theorem 1 for Poisson traffic of rate p is ki(z) =
e• O-i), i = 1,2,.... Hence, we have the upper bound u(q) of the T u(aJ - , -

M/D/I queueing system as u(q) s .i>i( '-qqe8+P for any in-

teger q > 0. LZ~) L 4
4.2 AR(1)/D/1V
Suppose the input process {at} is represented approximately as a, = "W
p + , b, b&_, + t, where b is a constant, 1b1 < 1, and {t) are 13w 1A1"u-
i.i.d. Gaussian random variables such that et -N(O,,

2 ). We have
the upper bound u(q) for AR(I)/D/I as u(q) = q e-(q+.-ps)/20, queue 0ength q U 406 0 -

whr 1 T Fig.3 CON 1080 prOMaIllyqirx FIGA MU 1080I lasPrObfty OPms
where ( " -b2 ) - 2b(1 - b')). (we omit details) t (esaon forexponlentsial= Imsiia. 006d.S)

-62 ) (liuf veuo.12,-110..)
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Performance Analysis for Two Manhattan Street Network
Routing Algorithms

Zheng Chen and Toby Berger
School of Electrical Engineering

Cornell University

Ithaca, NY 14853, U.S.A.

The MSN is a two-connected, regular network with We consider two routing algorithms that eliminate
unidirectional links. The links are arranged in a struc- the above drawbacks-rand(om routing and a hierarchi-
ture that resembles the one-waLy system of streets and cal deflection routing. The random routing algorithimi,
avenues in midtown Manhattan; a 16-node MSN is selects the output link of every packet randomly at each
shown in Figure 1. It has the same number of con- node. It can be performed fast enough to copy packets
nections per node as a bidirectional loop, namely two using high speed lines. It does not requirc any knowl-
inputs and two outputs. The node numbered' (i, j) be- edge about the current topology of nodes and totally
longs to row level ring i and column level ring j. eliminates queuing delay; it is always possible to switch

the input packets to the output links without conflicts
provided the links have the same speed. Moreover, no
memory space is needed at nodes for saving routing ta-
bles. For the random routing algorithm we give the
theoretical steady state delay and throughput analy-

_ -1 sis for MSNs via a single node approximation Markov
-. ---.0 1.2 0 _Chain model. A simple iterative formula used for cal-

culating the related distributions is derived, and its ac-
curacy is verified by simulation. Not surprisingly, the
network throughput of this random routing is quite low

2.0 2.1 d 2jcompared to that of the shortest path routing. To ad-
dress this weakness we propose a hierarchical deflection
routing procedure that retains many of the advantages
of the random routing (for example, simplicity and no

to. . 3 need for topological knowledge) yet achieves an efficient
network throughput. We analyze approximate analyt-
ical models of this routing algorithm under the condi-
tions of infinite buffers, finite buffers and no buffers at

Figure 1: 16-node MSN structure each node and give a simple, iterative formula to calcu-
late the steady state performance parameters. Copious

The choice of the routing procedure in a MSN simulations have been done, and the results match well
strongly impacts performance. In particular, the short- with the theory. We conclude with a comparison of the
est path routing technique minimizes the transmission performances of shortest path, hierarchical and random
capacity used by each packet; if the load is balanced routing, describing their individual characteristics and
among the node pairs, it may be effective in maximizing how they can be combined for enhanced performance in
the throughput of the network. However, it necessitates practical applications.
extra time for a routing table look-up for each packet
at each node. For high speed networks (e.g., optical *This work was supported in part by NSF grants NCR-
nets) or heavily loaded networks, this can cause long 8903288 and IRI-9005849, and by the l1 C. Wong Ed-
waiting time as many packets queue in buffers at the ucation Foundation in Hong Kong.
nodes. Also the routing table at each node needs to be
updated when network irregularities occur because of
link failures or network expansion. Maxemchuk's rout-
ing rules need to decide routes (besides checking the
message headers) at each node; some of them are appli-
cable to irregular networks.
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SCHEDULING TRANSMISSIONS IN A MULTICAST PACKET SWITCH
WHEN CALL SPLITTING IS ALLOWED

by
Charutosh Dixit' and Galen Sasaki2

The MSCS Problem is NP-Complete but our simulations
Abstract: Multicast packet switching has recently received con- show that simple scheduling strategies are likely to find sched-
siderable attention [1, 2, 4, 5]. A multicast packet is one that has ule lengths of r. The next theorem is an attempt to explain this
a set of destinations; hence, it has applications in multiparty com- under the following probabilistic assumptions.
munication (e.g. voice conference calls, video conferencing, and
video distribution ). The switch considered has N inputs and Assumptions 1. Each packet of the original set is equally likely
N outputs, as shown in Figure 1, and transports packets at the to be at one of the inputs and these locations are independent of
inputs that are destined for the outputs. Time is assumed to be one another. A packet will choose an output as one of its desti-
slotted and packets at inputs are transmitted at slot boundaries, nations with probability p and the probability is independent of
Packets transmitted in a given slot arrive at all their destinations other outputs and packets. Hence, the average number of desti-
in the same slot. The switch has the call splitting ability. This nations of a packet is pN.
means that a multicast packet can be duplicated at an input so Theorem 2. There is an Algorithm A that produces a feasible
the destinations of the copies form a partition of the destinations schedule of length TA in 0((V + N)N 2 ) time with the following
of the original packet. The copies can then be transmitted at property. Suppose Assumptions 1 are true, V > cNlogN, and
different times. The call splitting operation is assumed to require property. Supoe Au i 1 are tre(, IT e lo g Nhen

negligible time. Call splitting allows higher throughput. In fact, e - 2 w0 N he
it has been shown experimentally that it provides near optimal p [A > 1 + f.N] is O(VN-), where f7,N = N--±",...(

throughput [4]. We consider the problem of finding a schedule I \ I-Civ , w

of transmissions that delivers a set of multicast packets (or their (Note that f,.N -4 (1 + c)
2 as N --* oo.)

copies) to their destinations in the minimum number of time slots. Algorithm A. First, divide the V packets in the original set into
I. subsets, called bins. The size of bins are required to be in

Summary: The scheduling problem will be defined more pre- { L vJ, r.*. } and each bin has at most one packet for each input.

cisely. It is assumed that there are V packets initially in the Second, find a minimum length schedule for each bin. Greedy

switch. These packets are called the original set. A set of packets scheduling finds the minimum length schedule because there are

resulting from call splitting none, some, or all of the original set at most one packet per input. Finally, concatenate the schedules

is called a refinement. Note that a packet r that has been call together to form the final schedule. n

split into a set of packets rj, ..., xrn has the property that the des- The proof of Theorem 2 has two parts. First, P[T _ <
tinations of ir, ... , ,,n form a partition of the destinations of r. If pV(1 - f,N)] is shown to be 0 (e-cN) using the Chernoff and
H is a refinement and o is a mapping from H to {1,2,...} then [T 2

(H,o) is called a schedule. A schedule (H, r) is called feasible if union bounds. Finally, P [A is shown to be
for each 7r', r'2 E H, ,(r•r) = u(ir 2) implies that packets 7r, and ir2 O(VN-c). This is derived by showing that with probability
do not share a common destination. The length of schedule (H,oa) 1 - O(N-c+l), -- fN.N __ 1. - X < Le, and with probability
is maxiEn ocr). 1 - O(N-c+I), a bin has schedule length at most I_-,Np(N + 1).

Let Ii be the number of packets in the original set at input i; The last two probabilistic results can be derived using the Cher-

0, be the number of packets in the original set destined for output noff bound, the union bound, and Theorem 1.

i; I. := maxi_<1<N1I; 0. := maxl<i<NOi; and r := max{I.,O.}. References
Note that r is a lower bound on the number of slots required to [1] R.P. Bianchini, Jr. and H.S. Kim, "Design of a nonblock-
deliver the packets to their destinations. ing shared memory copy network for ATM," Proc. of IEEE

Multicast Scheduling with Call Splitting (MSCS) Prob- Infocom '92, pp. 876-885.
lem. Find a feasible schedule with minimum length. [2] W.T. Chen, P.R. Shen, and J.H. Yu, "Time slot assignments

The problem can be shown to be NP-Complete by modifying in TDM multicast switching systems," Proc. of IEEE Info-
a proof used in [2] for another NP-Complete scheduling problem. corn '91, pp. 1296-1305.
However, for a restricted class of instances, the problem has poly-
nomial time complexity. [3] R. Jain d G. Sasaki Scheduhng packet transfers i a classof TDM hierarchical switching systems," Proc. of ICC '91.

Theorem 1. Consider the MSCS Problem with the following

additional conditions: each input has either (i) at most one mul- [4] C. K. Kim and T. Lee, "Call scheduling algorithms in a mul-
ticast packet or (ii) a set of unicast packets (i.e., packets with one ticast switch," IEEE Trans. Commun., vol. 40, no. 3, pp.
destination). Then the problem has time complexity O(Ns) and 625-635, March 1992.
minimum schedule length r. [5] T.H. Lee and S.J. Lin, "A fair high speed copy network for

The theorem can be proven by transforming the problem into multicast packet switch," Proc. of IEEE infocom '92, pp.886.
a polynomial scheduling problem described in [3]. 894.
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MINIMAL STANDARD-PATH SWITCHING NETWORKS
Chris J. Smyth and Liam Halpenny

Department of Mathematics and Statistics, Edinburgh University, JCMB, RD
Mayfield Road, Edinburgh EH9 3JZ, UK

In this paper we investigate n-inlet, n-outlet One can then show that in any SPN we can divide the
networks having, at each node, a two-inlet, two-outlet switches of the network into five types (0, +1, 2, 3)
(2 x 2) switch with two states according as to how they alter, on outpuL, LThe abels

on their inlets.

The design of minimal staged networks can be
possessing the standard-path property. This property formulated in terms of a game:
is the following:
given any inlet i and outlet j of the network, The match game and minimal staged networks
there is a fixed path through the network, denoted We now describe a solitaire game, played on a grid
I -+ j and called a standard path, from inlet i to 2
outlet j, which is always free (carrying no signal of n points (i,j) (i, j - 1, 2, ... , n), with
from any other inlet to any other outlet) provided n(n-1) matches. Initially, the matches are all in a
inlet i and outlet j are free, and existing vertical position, i.e. with endpoints
connections have been made using standard paths. We {(i,j), (i,j+l)) (i = 1,, 2, ... , n;
call a network with this property a standard-path j = 1, ... , n-l). The aim is to position all the
network (SPN). matches horizontally (i.e. with endpoints

J(i,j), (i+l,j)) (i - 1, ... , n-1; j = 1. .. n))

An SPN is therefore a special kind of (wide-sense) using as few moves as possible.
non-blocking network: a free inlet can certainly be The allowable moves are as follows:
connected to a free outlet without disturbing existing 1. Remove a vertical match, or add a horizontal
connections. However, an SPN also has the advantage match.
that a signal can be routed through the network without 2. Rotate a vertical match through 900 about one of
regard to the network state: only the free inlet and its endpoints.
free outlet to be connected need be known. The signal 3. Replace an adjacent vertical pair of matches by an
can therefore be self-routing, adjacent horizontal pair of matches with the same four

endpoints.
We have found SPNs, staged SPNs and staged planar

SPNs having the minimal numbers of switches: These moves may only be used in positions where no
"right angle of matches" (a horizontal match and a

THEOREM 1. Any n x n standard-path network has at vertical match with a common endpoint) is created.
least n 2 - I•J switches. This number is best The correspondence between this game and the

21 n x n staged network is as follows: The point (i,j)
possible: there are n × n SPNs with n2 - 3n represents the label i:j , and the connected

l tcomponents of the graph defined by the matches
switches achieving these lower bounds. (See Figure for represent the current label sets. Each move
n - 8). corresponds to a switch:

move 1 corresponds to a type 1 or type -1 switch;
THEOREM 2. (see also £I)) Any n x n staged move 2 corresponds to a type 2 switch;

standard-path network has at least n -n-l (n even) move 3 corresponds to a type 3 switch.

and n 2 -n (n odd) 2 x 2 switches. Furthermore, these There is a corresponding game using coins which
lower bounds are always achieved, corresponds to minimal staged plaxar networks.

THEOREM 3. Any n x n planar staged standard-path [(] H.D.L. Hollmann and J.H. van Lint Jr, "Nonblocking
network has at least self-routing switching networks", Discrete Applied

2 - n Mathematics, vol. 37/38, pp.319-340, 1992.Mn n2 L- 2 (2J Liam Halpenny and C.J. Smyth, "A classification of
2 x 2 switches. Furthermore, these numbers Mn of minimal standard-path 2 x 2 switching networks,

switches are achieved for n - 2, 3, 6, 7, 10, 11, ... , Theoretical Computer Science vol. 102,
while for n = 4, 5, 8, 9, 12, 13,..., Mn + I is pp.329-354, 1992.

achieved.

Proofs of the theorems appear in (2].

For an n x n SPN with inlets 1, 2, ... , n and
outlets 1, 2, ... , n, we choose a typical inlet i,
outlet j and standard path i - j . All edges of
the network on this path I -4 j will be given the
label element i:j. The label of an edge is the set
of all such label elements"Tjji - j uses the edge).

For any integers m, t with 1 c m, t 4 n, let m or

X denote some m- or L-element subset of

{1, 2, ... , n), and i:mr (respectively L:J) denote

the labels {i:jIjjem) (resp. .i:jIiEZ)). Then

LEMMA Every edge label in an SPN is either of the

form i:m or Uj for some subsets * or . of Figure. A minimal S x 8 SPN with 52 switches.

{l, 2, ... , n).
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BINARY TREES FOR CLASSIFICATION, REGRESSION, AND CLUSTERING,
WITH APPLICATIONS TO LOSSY DATA COMPRESSION

Richard A. QIshen
Division of Biostatistics

Stanford University School of Medicine
Stanford, California 94305-5092

ABSTRACT The talk will include a report on applications of PTSVQ
to problems of data compression in digital radiography.

This talk is a survey of binary tree-structured methods The studies were undertaken by a group of engineers, ra-
for classification, regression, survival analysis, and clus- diologists, and statisticians at Stanford University (see [2]).
tering. The discussion will include a survey of unifying
themes, together with applications, and an introduction REFERENCES
to mathematical issues that arise in studying their asymp- [1]L, Breiman, J.H. Friedman, RA. Qlshen, and C..
totic properties. There will be special emiphasis on the Stone, Classification and Regression Trees. Belmont,
CARTTM algorithms of Breiman et al., and on applica- California: Wadsworth, 1984.
tions of the clustering algorithms to predictive, pruned,
tree-structured vector quantization (predictive PTSVQ). [2] P.C. Cosman, C. Tseng, R.M. Gray, R.A. Olshen,
The talk is a summary of collaborations with many au- L.E. Moses, H.C. Davidson, C.J. Bergin, and E.A.
thors over an eighteen year period. Riskin, "Tree-structured vector quantization of CT

chest scans: Image quality and diagnostic accuracy."
Binary tree-structured statistical methods have found Submitted for publication.

wide applicability in recent years. Areas of application
have included computer-aided diagnosis and prognosis in [3] A. Gersho and R.M. Gray, Vector Quantization and
medicine ([1], [5]); speech recognition, ship recognition [1]; Signal Compression. Boston: Kluwer, 1992.
prediction in economics and finance; the search for pro- [4] L. Gordon and R.A. Olshen, "Almost surely consis-
moter regions in genetics; particle identification in physics; tent nonparametric regression from recursive parti-
and, perhaps especially for this audience, lossy data com- tioning schemes," Journal of Multivariate Analysis,
pression [3] in digital radiography [2]. There are predictors vol. 15, pp. 147-163, October 1984.
(features), X, and a response, Y. There is a learning sam-
ple C = {(Xi, Y,) : i = 1, ... , n}, possibly independent and [5] L.W. Kwak, J. Halpern, R.A. Olshen, and S.J. Horn-
identically distributed, or at least with the Yj's condition- ing, "Prognostic significance of actual dose intensity
ally independent given the X~s (see Chapter 12 of [1]). in diffuse large-cell lymphoma: Results of a tree-
We use £ to infer an unknown future Y* from its corre- structured survival analysis, Journal of Clinical On-
sponding known X*. In some cases we estimate the entire coiogy, vol. 8, pp. 963-977, June 1990.
conditional distribution F(.IX* = x*) of Y*, even when [6] A.B. Nobel and R.A. Olshen, "Boundedness and con-
for some (Xi, Yj) pairs in C, Yj is "censored." If the range sistency of greedy growing for tree-structured vector
of Y* is finite and the goal is to predict its value, then the quantizers," in Proceedings of the 1993 IEEE Inter-
problem is one of "classification" (or "discrimination"). If national Symposium on Information Theory, 1993, to
Y* is real, the problem is "regression." If Y* is real, and appear.
the goal is to estimate P(Y* < ylX* = z), then the prob-
lem is "survival analysis.' PTSVQ can be viewed as an
approach to successive 2-means clustering; X* = Y* is
Euclidean, and we want to predict Y*; but the complexity
(bit rate) of the predictor is constrained.

Algorithms involve successively partitioning, that is to
say "splitting," the range of X (the "feature space"). At
least when X E Vt the partitioning is by hyperplanes. Re-
sults of this "recursive partitioning" can be summarized by
a binary tree; X* is passed from the root node successively
to a terminal node. There is a rule, that typically is con-
stant on each terminal node, by which Y* is predicted.
The rule can be an estimated Bayes rule, as in classifica-
tion, or a centroid of members of the terminal node, as in
PTSVQ. Splitting is always "greedy," one node at a time.
In order to obtain soepsible benefits of "lookahead,"
which these algorithms do not have, we grow larger trees
than we intend to use and prune them back [1] on the basis
of a validation sample; internal validation (typically cross-
validation); or, in the case of PTSVQ, a bit rate constraint
([3], [2]).

Versions of these algorithms can be shown to be "con-
sistent" in various senses: Bayes risk consistent for clas-
sification, LP and almost surely consistent for regression,
clustering, and survival analysis. See, for example, [1], [4],
and (6].
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PRIVATE-rKEY BURgT CORRECTING CODE ENCRYFFIoN

F. Xd Rt Alenicar
A. M. P. IA.

R. Xd Camp&*. 4e Somza

Cominleaicejw Researc Group - CODEC
Departtizient de ENetrilmea a Slotemass - UFPE

CP. 78", 50740-530, Retire - PF, Brail!

Abstract - In this paper, a privie-ky encryption ftecnuie is proposed.,11111111
which maes use of binamy linar block burtw-ara-conrectmg codes mad as
bosed on die fact diat such codes have an a=o control capacity related 60 Conuidering that die system harkmantsion aS simpie, t a
buatsawhich is. i generalarger tmhasaa randm artra control neca~may to focus on questions related tj 0 security. Apparetly. die
capacity. cryptmlalis has, at his disiosal, at leaet two main approaches; to taftc~ die

211111=13)To feod die un±-v;ce G mad P fion known par (MC).

Encrypeku techmiques, based on algebriic, codes have been proposed j) Torecoover d afteratumcqatkagC *fran' coen paaks (C).
for both public anui private-key cryplosystems Specifically, tdcElmec
[I I introdt"e a public-key cryptosystain based on t-arror correcting Ciopp The amfassiaility of (Q via many exhaustive searh typ of procedire
codes mad a die Wftactd efficient decoding algorithmns ouist forsumch as clear because of die Impe numbder of choices for die mtinces G mad P.
codes while; to a mc aue for a linew code in general. To be effective, Besides. dhii die knowni plaitectattack a also difficult to hayleanat, sawe
die "yaan needs a larg blocklength code (w-163 ) which s; capable of die msoluion of the equaionsm relited to die colurms vackrs of 0 (or 0' = MIF
ccsrecting a large nmnber of rmxkdcanorar (t-441. Besides thi, require a Imge nmnber of known peais mad dii may be prevented by timely
McEliece's wchane: results in a substantial data expmasimx Mome recenitly. changes on die keys used
Roo mad Nama (2). 131. introduced a private-key encryption sitilE to To recover Md fra C, as suggested in (it). mewns. first, to find 0'
McElieces, the diffaerace being die fact that die code generator motm fivin a sufficierst nmbcer of chosen pairs mad. seconad, considering
wa kept secret This allowed die use of simpler codes, while keepig die
seurt leveLM ,..M

In dins paper a private-key crypoosystarn is hinloduced, which makes
use of bitumy linew block burst-ewrrorcorrecting codes. The most goal as to C =C ........ C

construct a secure systarn which emnploy's simple erro control codes, based
on di fac du h us-ofcigcpct of a cod a.i enrl E,= a.......... t
-u dim at rmandom error comceting capacity mand

In what follows. B(n~kd~b) denotes a bininy lie bloc bust G=(gij]I,1ik ~~
correcting code with length ni. dimenisso. k. minimuma Hsminkg distmance d,
capableof correcting bursts of length up to b. Bya burstof lensigb. it s

,nm a biunay cumo vecic of length n whtose noneo, coponents we t mmfo h a
confluedlto bconsecutive, positions, die firs mad hat ofwhich we nonzem C. = 0191+ .. + MkgkI + b
It is assumedl did b >t, whered =2t+ 1.

Denoting by G die Wericralm mar of B(n~kd~b). die systemt C2 = M292 +..+ Mkgk2 + eb,
designer choose an n x n pernentskinmimtu P. Froma theses, die

aiiher anmd deciper oeshabonsraiksrled tothe pluianiM proceed as =zn g~ = ~ .. M I g~ + +ei 1 bn
fowlws:

Enipern The point here as to only dug die solutionu of die shove system
requres a computational ccuaplewly of die order of k , buit asoe. ma

C = (MG + EbPperapse uore important, die fact dithat iding this wiotioa is equivalent
C = (G + b )Pto decode, using at-ermo-correcting code. a received vecim cornipted by

wher Ebdenoes burt o lendi ~ > ~ m anor vector of weight greter dmat t. Thuelmke, die systema security relies
wherens ib dienotes & urtto engt bd m ad ndi cyantrt) wegh > t mixy nt only on tie dfifficulty of decoding a general thawu code, as in die
legmath md, at respetivsstely. M n tecp ~ a kr au f Whece schaene, bit Ams on die diffiulty of correcting a nmbader of

lengh k axin. rspetivey. rras which is beyond die errcr-ccurectiag cqaaciy of a givent code.e
ii - Decdipering

step I - Compute This work received partia suppot &in die Brazil=m Science mad

C' = C P Reiseiarch Coezacil - CNPq mad Deodo Draoil.

where P~is die transpose of P, to obain d

[1I R.J. NkEliece, A Pedalic-Key Qryposyistan Based on Algebraic Codha
C' = MG + Lb Theory, D9N Program Report 42-44. My 114-I l6 ii PrqVbkm

Ihbornasty, CA, Jmniumy mad Febraury 1973.
stop 2 -Decode C'. 1a.. srem E~b viasomenedecoding algordonm. 12) T.R.N. Rao mad IL Nam, Private-Key Algebraic Qpsyina s

This recovers the pbhitr" Id Advances in CtypeAo-r.ypeo 86. pp 35-48. Springer- Verlig. 1966
131 T.R.N. Rmaao mad K. Namn Privafte-Ky AlgehwaicCode sypIma

MEE Trmansctions, Vol. ff-3S, NQ 4. pp $29.83. July 1969.
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H is strongly-universal, (or SU,) if for every set of t pairwise
distinct elements z, . . . , x, E A and for every i, . .. , yt E B,

UNIVERSAL HASHING i{h E•H : h(z 1 ) = y, ... ,h(z,) = yj}l = IHI/IBI'.
AND UNCONDITIONAL AUTHENTICATION CODES A t - (v, k, A) design is a pair (X, 8), where X is a set of

Tran van . v elements (called points) and B is a family of k-subsets of
Institute for Experimental Mathematics, University of Essen X (called blocks) such that every t-subset of X is contained

in exactly A blocks. A t - (v, k, A) design is resolvaMe ifEllernstrasse 29, 4300 Essen 12, Germany the blocks can be partitioned into r = A(,-,)/(k-I) parallel

classes, each of which consists of v/k blocks that partition
the set of points.

Universal classes of hash functions were introduced by An orthogonal array OA5 (t, n, k) is a An' x k array of n sym-
Carter and Wegman [11 and were studied further by Sar- bols such that every set of t columns contains every ordered
wate [21, Weg-nan and Carter [81 and recently by Stinson t-set of symbols exactly A times.
[6], [7]. Stinson has found the connections between combi- For descriptions of unconditional authentication code•, we
natorial designs and universal hashing. He has proved new refer to the papers of Simmons and Stinson (see e.g. [3],
lower bounds on the size of universal2 classes of hash func- [4,[5],[?])
tions.
In this paper we study universal, classes of hash functions for Our further results are presented in the following theorems.
t > 2. The case t = 2 has been investigated in [1], [2], [6], [7],
[8]. We present some characterizations of universal, classes Theorem 2. If there exists a resolvable t - (v, k, A) design,
of hash functions in term of combinatorial designs and or- then there exists an OU, class H of hash functions from A to
thogonal arrays and the application of universal, classes of B, where JAI = v, EBl = v/k and IHI = r =

hash functions to the construction of authentication codes. Conversely, if there exists an OU class H of hash functions

Let A and B be finite sets, where IAI >- IBI. A function from A to B where a IAI and b = IBI, then there exists
h : A --- B will be called a hash function. Let h be a hash aresolvablet-(v,k,A) design, where v=a, k=a/b-andA

function and let t >_ 2 be an integer. For a set of t pairwise
distinct elements xl,.. . ,z, E A, define h(zj,...,z,) = 1 Theorem 3. If there is an orthogonal array OA5 (t,n,k),
if h(zx) = ... = h(xt), and bh(xl, ... ,x,) = 0 otherwise. then there exists an SUt, class H of hash functions from A
For a finite set H of hash functions, define 6H(Zl,. .. , r,) = to B, where IAI = k, IBI = n and IHI = An'. Conversely, if
ZXe 6u(z 1 . -t. ,). We now give two definitions of classes there exists an SU, class H of hash functions from A to B,
of hash functions. where a = JAI and b = IBI, then there exists an OAA(t, n, k),
1. Let e be a positive real number. H is e-almost universal, where n=b, k=a and A = IHI/n'.
(or c-AU,) if 6 xl,. . . , zt) < eIHI for all t pairwise distinct
elements z,...,zt E A. Theorem 4. If there exists an e - ASUt class H of hash2. Let e be a positive real number. H is e-almost stronglyl- functions from A to B, then there exists an authentication
uni2ersal (or te - ASUt) if the following two conditions are code for IAI source states, IBI authenticators and IHI encod-
satisfiedr oing rules, such that Pd0 = 1/1BI and Pd. < e, i = 1...,t.

(a) for every z E A and for every Y E B, I{h E H : h(x) = Using combinatorial designs many families of hash functions
y}I = IHIlIBI. in the above theorems have been constructed.

(b) for every set of t pairwise distinct elements zl,. ., z E
A, and for every Yj,. .- , yt E B, References

j{h - " : h(z 1 ) = y,-.. ,h(z,) = yt}l - e1H/IIBI''.
First, we state a bound on 6H(zl,... ,zt), that is a general- [1] J. L. Carter and M. N. Wegman, Universal classes of
ization of Theorem 1.1 [ hash functions, J. Computer and System Sdt., 18(1979),

143-154.
Theorem 1. For any class H of hash functions from A to [2] D. V. Sarwate, A note on universal classes of hash func-
B and for any integer t > 2, there exist t pairwise distinct tions. Information Processing Letters, 10 (1984), 41-45.
elements l,... ,- t E A, such that [3] G. J. Simmons, Message authentication: a game on hy-

pergraphs, Congressus Numerantium, 45 (1984), 161-
S a/b) /(a) 192.6 (Z1,. .. ,) >t ) /4 G. J. Simmons, A survey of information authentication,

Proceedings of the IEEE, 76 (1988), 603-620.

where a = JAI and b = IBI . [51 D. R. Stinson, The combinatorics of authentication and
secrecy codes, J. Cryptology, 2 (1990), 23-49.

Two special cases of our definitions are optimally-universal4 [6] D. R. Stinson, Combinatorial techniques for universal
and strongly-univerJsl, classes of hash functions, which are hashing, preprint.
defined as follows: [7] D. R. Stinson, Universal hashing and authentication

codes, preprint.
H is optimally-univerial4 (or OU) if [8] M. N. Wegman and J. L. Carter, New hash functions

6 H(Z.... , z,) = IHIb("')/(•), for all t pairwise distinct and their use in authentication and set equality, J. Coan-
elements z,,...,z, E A. puter and System Sci.,22 (1981), 265-279.
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are independent of the disclosed shadow. However, setting up the

Abstract secure channels for distributing shadows can be expensive. This

When a shadow of a threshold scheme is publicized, new paper considers schemes which distribute modifications to exist-
shadows have to be reconstructed and redistributed in order to ing shadows through insecure channels. Such a scheme is said to
maintain the same level of security. In this paper we consider have a disenrolling capability.
threshold schemes with disenrollment capabilities where the new
shadows can be created by broadcasts through a public chan- DEFINITION 2. A (t, n) threshold scheme with L-fold disen-

nel. We establish a lower bound on the size of each shadow in a rollment capability is a collection of random variables (KO, K1 ,...,
scheme that allows L disenrollments. We exhibit three systems KL, SI, ...,Sn, P1,.--, PL) such that for each i, i = 0,..., L,

that achieve the lower bound on shadow size. n(Ki [Aj (k), Pi,-.., Pj) =5 0 Vk >_ t, (4)

Summary H(KilAi(k), Pi,..., Pi, $j_.. Si) > 0 Vk < t, (5)

In safeguarding a secret, there are many situations where
two or more guardians provide more security than only one. Com- where Ai(k) = {S,.Sk } C_ {Si+l, S'/ 2 .... S,, }.
mon examples can be found in safe deposit boxes and in the con- In order to minimize the cost of distributing shadows through
trol of nuclear weapons. In these cases, two keys are needed to secure channels, we wish to minimize the number of bits required
activate the control mechanism; the ability to exercise shared con- to encode each shadow. It is conceivable that a (t,n) thresh-
trol is lost if either key is lost or either key's owner is incapaci- old scheme with higher disenrollment capability requires higher
tated. To guard against such a loss, copies of keys or instructions overhead for encoding the shadows. We show that this is indeed
may be made and distributed to different parties. However, in- the case by establishing a lower bound on the number of bits re-
creasing the number of distributed copies increases the risk of quired to encode a shadow that grows linearly with the number
some copy being compromised, reducing the security of the sys- L of disenrollments.
tem. By distributing "shadows" of a shared secret (which can be
used as a key), threshold schemes allow shared control without THEOREM. Let(Ko, Kl,...,KL,S .-- S., P1,...,PL) bea per-
risking compromise of the secret. fect (t, n) threshold scheme with L-fold disenrollment capability.

A (t, n) threshold scheme distributes partially redundant shad- If H(Ki) = m, for i = 0,..., L, then
ows S,..,S,, among n users so that any t or more shadows
uniquely determine the secret K. Using the entropy function H(Sj) (L + )m Vj = n.
H(X) introduced by Shannon. we have the following definitions.

We consider three examples of optimal threshold schemes
DEFINITION 1. A (t.n) threshold scheme is a collection of with L-fold disenrollment capability, each of which achieves the
random variables (K, Si,.. S.) such that for any 1 < il < i2 < above lower bound. The Brickell-Stinson scheme [3] makes use

..< i < n, of one-time pads, the nonrigid hyperplane scheme [2] is based on
geometric properties of hyperplanes and the Martin scheme [51

H(KIS .. ..... S, ) = 0 Vi > t, (1) employs threshold schemes with higher thresholds.
H(KIS, ...... S,,) > 0 Vj < t. (2) References

Condition (1) says that every set of t or more shadows deter- 1. G.R. Blakley, "Safeguarding Cryptographic Keys," Proceed-
mines the secret uniquely, whereas condition (2) indicates that the ings AFIPS 1979 Nat. Computer Conf. 48 (1979), 313-317.
secret cannot be uniquely determined by fewer than t shadows. 2. Bob Blakley, G. R. Blakley, A. H. Chan and J. L. Massey,
A (t,n) threshold scheme is said to be perfect if "Threshold Schemes With Disenrollments," Proceedings of

CRYPTO92• (to appear).
H(KIS, ....... S,,) = H(Ký) Vj < t. (3) CRP02(oapr)

3. 3rickell and Stinson, oral communication.

Condition (3) says that knowledge of fewer than t shadows does 4. Karnin, Greene and Hellman, "On Secret Sharing Systems,"
not reduce one's uncertainty about the secret. IEEE Trans. on Information Theory IT-29 (1983), 35-41.

The disclosure of a shadow decreases the security against col- 5. K. M. Martin, "Untrustworthy Participants in Perfect Secret
lusion of a threshold scheme since every t - I remaining shadows, Sharing Schemes," preprint.
together with the disclosed shadow, determine the secret. Thus, 6. A. Shamir, "How to Share a Secret," Communications ACM
the threshold is reduced from t to t - 1. In order to maintain the 22-11 (1979). 612-613.

same threshold t, the key must be changed and the shadows mod-
ified. One way to do this is to design a new (t, n) scheme where Acknowledgement
shadows are then distributed through secure channels. The se-
curity of the new system is not compromised if the new shadows Agnes Chan's work was supported by MITRE Sponsored

Research Program.
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Abstract: Guinther gave an algorithm for homofonic coding ing a sequence rn" with the algorithm above given E is:
of messages for cryptographic purpose which was based on
known source statistics. In this paper we give an adaptive ho- Rn(.m" I E) = 1 E _ Iog(,p(in I M111)) (1)
mofonic algorithm with short delay for a discrete memoryless n AM.)
source with unknown statistics based on Ginthers algorithm.
We give a formula for the individual redundancy as well as The theorem states that the redundancy for a given source
a bound for the max redundancy. Finally a comparison with only depends on the choice of E. Hence it is then easy to
universal source coding and classical ciphers is made. calculate the average redundancy. Next we select an adequate

Summary- The unicity distance is an important measure E. According to results from Shtarkov [3] a natural choice is
for the strength of a cipher. The unicity distance depends on
the redundancy and a possible strengthening of a cryptoalgo- P(mrn I ) = s-(--) + 1/2 (2)
rithm is source coding. Another approach is homofonic coding. S 1 + L/2

Let M denote a discrete memoryless source emitting where t.(m,-i) is the number of occurrences of the letter m in
symbols from the alphabet M of L =1 M I letters; Mn" = - m-i. This choice ensures uniform convergence towards zero
MI,m2, ... , vIn a sequence of n letters from the alphabet M; -max redundancy as n grows towards infinity and a proof for
M' the set of all possible m'"; p(m) the probability of occur- the next theorem can be given.
rence of the letter m E M of the source M ; P(m I rn-')
an estimation for the probability of the letter in E M given Theorem: For the algorithm the following inequality holdsthe sequence rn'-" E a way for calculating P(rn I ran-1)•th-eqec ' a o acltn ( !"1 for the maximum redundancy max R,,(M• E) over all possi-
Denote by R(.m" I E) the total individual redundancy after ble sources max when £ is determined by (2):

coding given E, when the sequence m" is coded by the pro-

posed algorithm; R.n(mn I E) the per letter redundancy for L - I
the same sequence; similar R(M I E) respectively Rn(M I E) max2Rn(M [ E) n . logon)+ (3)
the ordinary average redundancy for a source M. where c is a positive constant that is small compared to

Given an estimation E, the following algorithm realizes a log(n) for large n.
letter by letter adaptive binary homofonic coding for M ac- We analyze the performance of the given algorithm andcording to Gtinthers algorithm [1]. compare it with results by Davisson [4] for binary memoryless

s := 0 sources and the optimal homofonic algorithm [2]. The algo-
l) a := 1,s := s + 1, read a new letter mn' E M, Yin E M, rithm is then analyzed according to Shannon and Heilmans

calculate P(mj& 1 ), and let p 0 )(m I n'-') :theory for secrecy. Examples are given for classical stream ci-
phers with key entropy exceeding ij2i log(n) + c, the minimal

2) oi := --log(maxEm i•-1)(mJmj-1)]. key entropy for a unicity distance greater than n.

3) Yrn E M, n() := t2"Kp('-')(njM'-')J, let the References
4),n (natural chosen) symbols P(•,1 ... ,M,('represent the letter m. (1] Ch.G. Gunther, "A Universal Algorithm for Homofonic

Coding", pp. 405-414 in Advances in Cryptology - Euro.

4) The remaining : -E. ) symbols crypt '88, Lect. Notes in Comp. Sci. No. 330. New York
4aing = ,n( sy s and Heidelberg: Springer 1988.

2" are chosen as prefix symbols. [2] H.N. Jendal, Y.J.B. Kuhn and J.L. Massey, "An

5)- Choose a raInformation-Theoretic treatment of Homophonic Substitu-tion", pp. 382-394 in Advances in Cryptology•. Eurocrypt

6) If 2"'r < n(0, transmit P(0,2"r]) and go to 1), else '89, Lect. Notes in Comp. Sci. No. 435. Berlin: Springer
1989.

7) VYn E M,A()(ilrn"-) := (2nR,(-)(mlm" I) - nO))/n('). [3] Y.M. Shtarkov, "Universal Sequential Coding of single
Trasmt gt2 message", Problemy Peredachi lnformatsii(english trans.),

Transmit -- i: i + 1, go to 2). Vol 23, No 3, pp. 3-17, July-Sept., 1987.

Using the results by Jendal, Kuhn and Massey (2] it is pos- [4] L.D. Davisson, R.J. McElice, M.B. Pursley and M.S. Wal-Usinetogive the resulowibyeng , Kuhn. alace, "Efficient universal noiseless source codes", IEEE
sible to give the following theorem. Trans. on Information Theory, IT-27, No. 3, 1981, pp.269-

Theorem: The individual per letter redundancy after cod- 279.

This work was supported by the TFR grant 222 92-662

230



LOWER BOUNDS ON THE PROBABILITY OF DECEPTION

IN AUTHENTICATION WITH ARBITRATION

Thomas Johansson
Department of Information Theory

Lund University, Box 118
S-221 00 Lund, Sweden

Abstract - Lower bounds on the probability of success choosing a message. For each way of cheating, we denote
for the different kinds of attacks in authentication with arbi- the probability of success with P1 , Ps, PT, PR. and PR,.
tration are derived. These bounds give rise to combinatorial The overall probability of deception is denoted PD and is
lower bounds on the number of encoding rules and on the defined to be PD = max(PI, Ps, Pr, PR&, PRI).
number of messages necessary in an authentication code with For unconditionally secure authentication codes we de-
arbitration. rive the following lower bounds on the probability of suc-

cess for the different kinds of deceptions:
Summary - In the model for normal authentication

the transmitter and the receiver are using the same en- PI ? 2 -1(ER;ET)+1(ER;ErIM)

coding rule and are thus trusting each other. However, it pS > 2 -1(En;ET[M)

is not always the case that the two communicating parties
want to trust each other. Inspired by this problem Sim- PT Ž 2 -H(ErlET)
mons has introduced an extended authentication model, PR. 2: 2 -H(ETr;MIE)
here referred to as the authentication model with arbitra- PR, 2_ 2 H(ETIMER)
tion, [1]. In this model caution is taken against deception
from both outsiders (opponent) and insiders (transmitter Here ER is the receiver's encoding rule and ET is the
and receiver). The model includes a fourth person, called transmitter's encoding rule. The bounds are valid for all
the arbiter. The arbiter has access to all key information authentication codes with ISI > 1 except for a class of
and is by definition not cheating. The arbiter does not degenerate codes which all have P&o = 1 and hence not
take part in any communication activities on the channel very interesting.
but has to solve disputes between the transmitter and the From the above bounds we also derive lower bounds
receiver whenever such occur. on the number of encoding rules and on the number of

There are essentially five different kinds of attacks to messages to be used in an authentication code with arbi-
cheat which are possible. The attacks are the following: tration. Assume that the number of source states for a
I, Impersonation by the opponent. The opponent sends symmetric source is ISI and let PD = 1/q for an authen-
a message to the receiver and succeeds if the message is tication code with arbitration. Let £l o CT denote the
accepted by the receiver as authentic. set of possible pairs (ER, ET). Then the following lower
S, Substitution by the opponent. The opponent observes bounds are valid on the number of encoding rules and on
a message that is transmitted and substitutes this mes- the number of messages that are necessary in the code,
sage with another. The opponent succeeds if this other J q 3

message is accepted by the receiver as authentic. [£T1 94
T, Impersonation by the transmitter. The transmitter ICTI _ q4

sends a message to the receiver and denies having sent it. IR o CT I 2! q5

The transmitter succeeds if the message is accepted by IMI 2_ 921,.
the receiver as authentic and if the message is not one of
the messages that the transmitter could have generated Using these combinatorial lower bounds it is for example
due to his encoding rule. possible to show that the cartesian product construction
R 0 , Impersonation by the receiver. The receiver claims for authentication codes with arbitration does not meet
to have received a message from the transmitter. The re- all lower bounds with equality, (1].
ceiver succeeds if the message could have been generated
by the transmitter due to his encoding rule. References
R 1 , Substitution by the receiver. The receiver receives a
message from the transmitter but claims to have received [1] G. Simmons, "A Cartesian Product Construction for
another message. The receiver succeeds if this other rmes- Unconditionally Secure Authentication Codes that
sage could have been generated by the transmitter due to Permit Arbitration", Journal of Cryptologp, Vol. 2,
his encoding rule. no 2, 1990, pp. 77-104.
In all these possible attacks to cheat it is understood that This work was supported by the TFR grant 222 92-662
the cheating person is using an optimal strategy when
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One way to encrypt data for secrecy is Our new method of specifying permuta-

to use a block cipher which maps t q-ary mes- tions over GF(q ) is based on the function

sage symbols into E q-ary cipher symbols, f(x)=mxe4c. It specifies a permutation if

i.e., C=Sk(M), where m denotes a message m,ceGF(q ), m*O, and gcd(q -l,e)=1. Clearly,

block of length t, c denotes a ciphertext f(x) is quite easy to specify and to compute,

block of length E and sk denotes a one-to-one but by itself offers little security. Howev-

transformation under the control of a secret er, consider a sequence of n building-block

key k. Without loss of generality sk can be permutations f.(x)=m xe|+c with

regarded as an element of the set of permuta- randomly chosen mi, e., and c. (satisfying

tions on q objects. There are q such per- the restrictions on me,c given above). Suc-

mutations and in practice sk needs to be re- cessive application of these building-blocks

stricted to a subset of all permutations to yields an overall permutation s(x)=

obtain a manageable keyspace size. The "art" f n(f n(..f Ix)..)), which is easy to speci-

of designing block ciphers then is to find a fy and compute for suitably chosen n and

simple way to specify permutations from a which (based on our simulation results) ap-

subset of all possible permutations, without pears to be undistinguishable from a randomly

simplifying the job of the cryptanalyst which chosen permutation. In this case the key is

tries to break the system without knowledge given by k={(miei,ci); i=l,..,n), and it is

of the secret key k. easy to see that the size of the key can be

adapted to a wide range of needs by varying

n. The deciphering function is also very easy
A straightforward way to specify any to obtain by using the inverse permutations

permutation of q objects is to specify the f~y)-l =((y-c)/ml/e, starting with f (y)-

vector s=(s(0),s(l),...,s(q -1)), which de- - I n
and ending with fI(y) . Note that the expo-

scribes the effect of the permutation s(.) nent I/e is computed modulo q -1.

for each input value. In this case s is the

secret key, but for any practical values of

q this key is impractically large (e.g., Exa leX: Let q =23 and let f (x)=llx+ 14,

270"I021 bits for q =2 64). Another way to f2 (x)=8x 13+3, f 3 (x)=2x 96. Then s=(s(O),..,

specify any permutation if q >2 is a prime or s(22))=(4,14,12,17,1,2,21,19,10,5,18,7,1I,20,

a prime power is in the form of a polynomial, 9,6,0,22%,8,3,16,13,15) and s(x)=

i.e., s(x)=st xt+...+sIX+s 0 , where t=q -2 and f 3(f 2(f 1(x)))=2(8(llx 7+ )13+3) 9+6=

s .GF(q ). Here the key is the set of coeffi- 21+x204x 
1 9

+lax 18+7 
1 7

+19X 16+16X 15+12X 144

cients (si) and it is readily seen that this 15x13+ 1×11+ x10+22x97+22x B 12 6÷5x5÷x 4÷

description is as cumbersome as the s vector 5x3+l1X 24x+4. The key is k=((l11,7,14)

given above. However, any permutation which (8,13,3)s(2,9,6)} and the deciphering func-

can be written in polynomial for-,) can also be tion is f (f2(f3(y)-I--I where f -(y) -1=

obtained from a series of elementary build- 19 1)- -I

Ing-block permutations, each of which is easy 2 3

to specify and to compute. (12y+20)5

232



A SOURCE OF CRYPTOGRAPHICALLY STRONG PERMUTATIONS
FOR USE IN BLOCK CIPHERS

Lothrop Mittenthal
Teledyne Electronics
649 Lawrence Drive

Newbury Park, CA 91320

This paper suggests a scheme in which crypto- mapping, z--, then the uncertainty may be expressed as:
graphically strong permutations can be randomly selected H(x e M) lye EM) = -log 2 P(z eM) ly C M) = -log 2 (0.5) = 1.

from a large proper subset of the permutations on blocks A permutation or block substitution on r. is shown
of binary numbers which have certain properties of to be balanced if and only if it is an orthomorphism,
cryptographic strength that are independent of the irrespective of whether it is linear, affime, or nonlinear.
underlying Boolean functions. Because an orthomorphic permutation can be

described by a set of 2" equations, an approach is to

Let r2 be the group of n-bit binary numbers under generate these randomly with constraints, taking
coordinatewise addition modulo 2. An orthomorphism is advantage of the balance property. However, this is a
a 1-to-1 mapping R: Z! -+ Z4so that ( R(x)z x0 R I z Ze rather inefficient process.

2 2 4)=
Now, let S(x) = x 9 R(x), then S(W) is a permutation An alternate method is to construct an orthomor-

on 4. S(x) will have a single fixed point, assumed here to phism which is linear at the bit level and modify it to be
be O = 00 - and otherwise maximal. It can be represented nonlinear. In that case, the equations in Figure 1 take the
as a permutation (0) (x1 , x 2, --., xm) or a set ofm =24 - 1 form:

equations: Xk.1 * Xk f xk.p (1)
x ( RWx) = SW() for some integer p and for all indices k. The permutation

e D e = e (0) (xxl , ... , ,x) represented by the order ofthe (z. 1 }, xj}),

Xm * x = Z and (x..v} in the set of equations is also the same as that

X1 0 x2  = Z2 specified by the mapping x-+R(x). Additional ortho-

morphic permutations are defined by any power s of this

permutation. The result is a new orthomorphic linear
permutation S'(x) defined by z -4 R8W) represented by a set

Xml ( xm = zm of m equations:

Figure 1 xks * XJ =f Xkp (2)

where R(xk.l) = xk and S(xk.1) = zk. The integer p.is a function of s. This holds for 1 s< 2-2,

As in any mapping on2, the orthomorphic so that for one basic orthomorphic permutation, a family

mappings x -- SW() can be linear, affine, or nonlinear. The of 2" - 2 orthomorphic permutations, all linear at the bit

linear version is actually linear only at the bit level, but level, is generated. This is a transitive group of permuta-

nonlinear at the integer level. It is common to express tions [3]. This property is also invariant under change of

block substitutions in the form of Boolean functions on the Boolean functions defining the basic block substitution

x ze4 where fi(x) = 0, 1 is the value in the ith bit position of if it is a linear orthomorphism. Any or all of these can

the encrypted image of x. Orthomorphic mappings are now be converted to nonlinear permutations by suitable

generated by other means but can be expressed by Boolean modifications to a subset of the equations, or, equivalently,

functions if desired: the Strict Avalanching Criterion by altering the order in two of the three columns of

(SAC), the Bit Independence Criterion (BIC), and other numbers.
desirable properties in a block substitution or permutation References

depend on the defining Boolean functions. The process of

changing such substitutions raises questions as to the 1. C. Adams & S. Tavares, "The Structured Design of

strength of the replacement. Because it would be useful to Cryptographically Good S-Boxes," J.Cptol (1990)

have a class of block substitutions which possess some 3:27-41.
property of cryptographic strength that is invariant under

change of the defining Boolean functions, a class of so- 2. M. Jacobson, Lectures in AbstractLAlgmra, Vol 1, D.,

called balanced block substitutions is offered. The VanNostrand Co., 1964.

definition of balanced block substitutions is based on the

fact that Z2 is an additive group of order 2n and has 2n - 1 3. L. Mittenthal, "Block Substitutions Using Orthomor-

maximal subgroups [2), e.g., the even numbers. phic Mappings," Advances in Math (to appear).

A permutation or block substitution on Z4. is said to

be balanced if it maps each maximal subgroup half into
itself and half into its complement. This can be expressed

in terms of Shannon's information theory: If M is any

maximal subgroup of the n-bit numbers, for a balanced
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Abstract The enemy uses this distribution to select a key z E Z,
and then iaiiditly chooses a codeword of Y, for sub-

We define two classes of strategies for substitution stitution. Let P0 and P1 denote the best probability
attack and derive lower bounds on the probability of de- of deception in impersonation and substitution attack
ception for each class for codes with perfect protection respectively.
for impersonation. We show that the equality of the Proposition 2.1 If the source is uniform and Po =
two bounds uniquely determines the number of encod- k/M we have
ing rules and forces the incidence matrix of the code to
be that of a BIBD. It also implies that random selection pk. >

from the remaining cryptograms gives the same prob- - kE
ability of deception to the enemy as random selection The bound is achieved if pw is uniform for all v.
from the set of keys that are incident with the inter- In class M 1 strategies the enemy chooses a prob-
cepted codeword. ability distribution q' on the reduced cryptogram set

Y\v with- q90 = 0, and uses it to choose a cryptogram
for substitution. We have [1)1 Preliminaries -1

P- > k(2)
We consider an authentication scenario in which a M - 1

transmitter wants to send a message to a receiver over and the bound is achieved when q" = 1/(M - 1) for all
a publicly exposed channel and an enemy who tries v. Combining the bound 1 and 2 we have theorem 2.1.
to deceive the receiver in accepting a fraudulent mes- Theorem 2.1 For a uniform source, if Po = k/M the
sage as genuine. An authentication code (A-code) is probability of deception is lower bounded by
a collection Z, IZI = E, of mappings from the set X, M k-1
IXI = k, of the source states into the set Y, I YI = M, of mat (- M-
codewords. Let Y, denote the subset of codewords that

are authentic under the key z E Z and Z, denote the The two bound are equal if E = -=n
subset of encoding rules that are incident with y E Y. which case the incidence matri of the code corresponds

The incidence matriz of an A-code is a zero-one ma- to a the it

trix of size E x M in which az, = 1 only if y E Y'.

The communicants use a probability distribution This result is in accordance with Stinson's (2].
Ir = (7r," "-, ,ru) on the key space as their strategy. Bounds 1 and 2 are achieved for the random strate-
In a substitution attack the enemy intercepts a code- gies of class A, and M, respectively. If E > EO ran-
word and tries to substitute it with a fraudulent one. dom strategy of class K1 gives a higher probability of

success and if E < E0 random strategy of class M, is
superior.

2 Lower Bound for Substitution Attack References:
1. J.L. Massey, Cryptography, A Selective Survey,

We consider two possible courses of action (classes Digital Communi cations, ed.E. Biglieri and G.
of strategies) for the enemy and find bounds on the Pratti, Elsevier Science Publ., 1986, 3-25.
probability of deception in each case.

Assume the enemy intercepts a cryptogram v E Y. 2. D.R. Stinson, Combinatorial Characterizstions of
In a classn X strategy the enemy chooses a probabil- Authentication Codes, Proceedings of Crypto '92.
ity distribution pU on Z which is nonzero only on Zu.
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ON RSA SIGNATURES
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When analysing the security of electronic cash systems [1,3] one In the case of the electronic cash system the subset assumption is
comes up with a question concerning RSA signatures. This question satisfied because the number of opened numbers is fixed. The rootcom-
arises when looking at the cut and choose method of the withdrawal putability assumption means that if an RSA-root is computable from
protocol. Previous results [2] cannot be applied. Using some assump- another RSA-root, this computation can be done using only multipli-
tions this problem is solved. cations, divisions and exponentiations. Note that this excludes cases

like z = (DES(yd))e (mad n), but for randomly chosen z this seems
Introduction to be a reasonable assumption. The rootinfeasibility assumption means

A way to protect the privacy of the user in electronic cash systems that it is infeasible to compute (non-trivial) e"' roots on products of

is to use the cut and choose idea in the withdrawal protocol. At the elements of C. The essential restriction on the rl, ... ,rk is that at least

end of the withdrawal protocol (1,31 the user obtains an RSA root [41 one is not zero. Realizing that the numbers in the set C are images of
on the product of the numbers that were not opened by the bank. The a one way function makes this assumption reasonable.
numbers in the signed product that represents money, are supposed to
contain the identity of the user which prevents the user from double-

spending his money. Since the bank cannot verify all numbers before Using all four assumptions the problem is solved. W.l.o.g. all Y1
signing the user can try to cheat. For the bank it is important to know are not empty and I > 2. The sentence "a number z coprime with n
what kind of money-representing signatures a cheating user can obtain. such that for each 1 < i < I it is feasible to compute Y.' from (X.- z)'

This question is formalized next. After that the assumptions that modulo n?" is for convenience abbreviated to "such a number z".
are used to solve this problem are given and finally the results are Theorem 1. If it is feasible to compute such a number z, then (the
presented. For more details and proofs see 15]. sets Y1 to Y1 are not subset-related) or (there is a number j E (1, ... , 1

Formal statement of the problem such that the sets Yj for i 5 j are not subset-related and Yj _ Y1 for
every i).

Let n be an RSA modulus [4], e and d integers such that e - d E I Theorem 2. Suppose the first case of Theorem I is satislied. Define
(mod ýp(n)) and C a set of numbers coprime with n. The numbers e the set U as the union of all Xj, the set X as the intersection of all X.
and n are public while the number d and the factorization of n are not. and the set Y as the intersection of all YV (I < i _< 1). Then it is feasible
The elements of C are images of a one way function F. The sentence to compute such a number z if and only if Vt<j<j[Yj = (U \ Xj) + Y] or
"Choose an element a from the domain of F and compute the image Vi< y[y = (X \ X) + Y].t
z = F(a)" is for convenience abbreviated to "Let z E C". Similarly Theorem 3. Suppose the second case of Theorem 1 is satisfied.
with subsets of C. For subsets W of C the number E is defined as the W.l.o.g. j = 1. Define the set U as the union of all X,, the set X
product of all the elements of W modulo n. as the intersection of all Xi and the set Y as the intersection of all Yj

In the case of the electronic cash system each element from the (2 _• i 5 1). Then it is feasible to compute such a number z if and only
domain of F determines the identity of some user. if {V2<i<t[Y. = (U \ Xi) + Y] and Y = (XA -- U) and Y1 = (U \ XA)} or

An honest user doing the withdrawal protocol would choose some + Y dY= X A) dy-A .
set W4 C C with all elements corresponding to his identity. The bank f V2jiY =(i\X + Yjand Y -- (X ) and = (XI \X)).t

From Theorem 1 follows that if such a number z is computable, the
would ask him to open some numbers X E W and the user would obtain Yj(I :_ i < 1) are related in only two possible ways. The first possibility
Xd for some subset Xj of W. is treated in Theorem 2. The second possibility is treated in Theorem 3.

A cheating user however chooses at least one number not containing Observation of the proofs shows that if such a number z is com-
his identity. Instead, he chooses a number z modulo n in a clever way.So w.bo.g, he chooses some set W C C with all elements corresponding putable, it is easy to compute such a number z. Furthermore, in the
to his ident andoses asmber set moCCoit.The ank theent ass horre dimg t proofs is not used that the elements of C are images of a one wayto his identity, and a number z modulo n. The bank then asks him to function, although these numbers have to satisfy the rootinfeasibility-

open some of these numbers and if he is not caught (i.e. the number z
is not chosen by the bank), he obtains (.V, _ z)d for some subset XA of assumption.

When applying the results to an electronic cash system one has to
IV. Since this signature does not represent money he tries to compute realize that a signature y can only represent money if the cardinality of
E.d from it for some subset YV of C. Note that a cheating user can Yr has some specific value. Thererefre Theorem 2 can be applied. When

allways (•try to) obtain a signature on the opened numbers by computing translating the results of Theorem 2 to cheating-user-strategies it follows
z W (mod n). that a cheating user can try to replace some not- opened-numbers that

The central problem in this paper can now be stated as: contain his identity (the elements of X) by other numbers that do not

Let I > 1. Let Xi and Y, be subsets of C (i = 1 .... , I). contain his identity (the elements of Y). The remaining signed numbers

Is it feasible to compute, without knowing the factorization of n, can be either the opened numbers or the other not-opened-numbers.

a number z coprime with n such that for each I < i < I it is feasible Note that a cheating user is caught with probability 0.5 independent
to compute yd from (A__ • z)' modulo n? of his strategy, although the probability that his strategy succeeds is

generally less.
Assumptions F�urther research can be done on the area of cheating users whowant to combine their obtained signatures to produce other signatures.

Four assumptions are made (their interpretation follows below): Finally I would like to thank David Chaum, Matthijs Coster, Hendrik
Jan Evertse, Euf&ae van Heyst and Henk van Tilborg for their useful

Prime: The root e is a fixed prime, at least 5 (for e = 3 the results comments and discussions.
are different).

Subset: The sets X, to Xi are not subset-related i.e. there are no Refernces

two sets Xj and X, (i 6 j) such that Xi C Xj. [i] Chaum D., A. Fiat and M. Naor, Untraceable electronic cash, Advances in
Rootcomputability: Let z and y be coprime with n. If it is Cryptoijo-CRYPTO '88, S. Goldwasser ed., Spriager-Veelag, pp. 319-321.

feibled from (,, mod oe [2) Erte, J.H. and E. "a Heyst, Which new RSA-sigaaturea can be computed
feasible to compute z modulo n without knowing th from certain gives RSA-signatures?, Journal of Cryptology, Vol. 5, No. 1,

fartorization of n, then it is feasible to compute a number r E {0,..., e- 1992, pp. 4 1-52.
Ianh from {z,y such that - [3] Okamoto T. and K. Ohta, Universal electronic cas, Advances in Cryptolloy-

I) and a number a coprime with n frCRYPTO '91, J. Feigenbaum ed., Springer-Verlag, pp. 324-337.
(mod n). [41 Rivent, R.L., A. Shamir and L.Adleman, A method for obtainin digital ig

natures and public key cryptomymtema, Comm. ACM, Vol. 21, Fenarpy 1971.
Rootinfeasibility: Let k > I and let x, to zk be k different el- pp. 120-126.

ements of C. Then it is infeasible to compute numbers ri. rk E [5] Veugen P.JI.M., Some mathematical and computational apects of electronic
0,.. ,e -- 1 not all zero, and a number s coprime with n such that cash,43-6.ter's thesis, Eindhoven Univerity oiechnclogy. November 2991, pp.

.. ' A (mod n). t The + operator denotes the union of two disjuact sets. The symmetrical
difference + of two sets A and B is defined as the union of A \ B and B \ A.

235



AN ATTACK ON XINMEI' S DIGITAL SIGNATURE SCHEME

Yuan-Xing Li

(P.O.Box 145, Dept. of Information Engineering,
Beijing University of Posts and Telecommunications, Beijing, 100085 P R.China)

SMNARY

Xinmei [1] first proposed a digital signature C,-(EZ,+1iSG)P,
scheme based on error-correcting codes. Later,
Harn and lang 1 2] modified hinmei scheme to C.P-i-E. 1 t8G.
improve the security and performance of it.
Recently, Alabbadi and Wicker 131 eryptanalysed Suppose that we know k signature- message- error
the Xiamei scheme and H- I's modified scheme , pattern triplets ((C,N,,E 1 ,)) , thea we
pointed out that under a chosen message attack, can produce a matrix equation:
the private keys of these schemes can be obtained
in polynomial time. Furthermore, in this paper, CPTuCIP-1-Ei, ...... CkP-,-zk]

we show that if the public keys W, H, J, and T
designed for the schemes satisfy that the -(SG)TIM .... Nk]

condition: the matrix 1i,H T I or I J, TI is
nonsingular, then the private keys are easy to be If k messages M,, .... ,k are linearly independent,

infered in polynomial time under a known then
signature attack. Finally, some examples are given
to illustrat our conclusions. (SG) TCPTIM, ...

1. Descriptions of Xinmei signature scheme: This step can be fulfilled in O(kV) operations. So

the total computation complexity of this attack
User A of the scheme chooses an (n, k, d) binary is O(nW).
Goppa code C with a kXn generator matrix G, an
(n-k)× n parity check matrix H, and t- error This attack is also effective to Hams- Waags
-correcting capacity. The public keys of the modified scheme.
schema are

To avoid this attack, the scheme designer must
J=P-1G'S-1 =P-1 W, pick suck public keys I,H,J, and T that they
W-G*S-1, T-P-11Hr, and H, t, t.. satisfy the requirement: matrix [W,H'] or I J, TI

is not full-rank.
While the private keys are SG and P. Where G" is

the matrix Oich satisfies 3. !xnmples tomitted)
GG*=Ik, IVr is the transposed matrix of H.

The signature Ci of a k-bit message V , is as This work was supported in part by the China
follows: National Nature Science Foundation and the China

C1- (1,+,SG) P. National Information Security Key Lab Foundation.
where E, is an a- bit random vector with the
Hawming weight w(E,)-t.<t chosen by user a. REFERENCES

(1) Wang Xinmei: 'Digital signature scheme based
2. An attack on the scheme: on error-correcting codes,' Electronics Letters,

1990, 26(13), pp898-899.
If JW, FT] is fall-rank (then IJ,T] is full- rank (2) L. Harm, and D- C, Wang: 'Cryptanalysis and
too, vice versa), then modification of digital signature scheme based oa

error-correcting code,' Electron. Lett., 1992, 38
P. 1W, H9 IJ, T]', (2), pp157-158.

(3) V. Alabbadi, and S.B. Wicker: I Security of
the computational complexity of calculating P is Xinmel digital signature scheme,' Eleetreu. Lett.
0(n). The next step is to got the other private 1992, 28(g), pp890-891.

key SG, knowing P, under a known-signature attack
As
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ASYIPTOTIC BOUNDS OU THE RTS OF RUNLZMGTH-LDITZTD
CODZS

Shih-Hsuan Yang and Kim A. Winick
Electrical Engineering and Comuter Science Department

University of Michigan, Ann Arbor, MI 48109

Swhere X1 is the largest positive eigenvalue of a (k+1) 2

Runlength-limited (RLL) codes are widely used in by (k+1) 2 transition matrix which can be computed from
magnetic and optical recording systems to aid in bit the graph. It is also shown that R(0,u) is given by
synchronization and reduce the effects of intersymbol
interference. Asymptotic lower bounds on the size of R(Oma)- mba PogA(zy.1)-.ah(zy)]
these codes as a function of minimum distance have been OaLIS1
recently reported by Kolesnik and Krachkovsky. These and is equal to the maximum entropy of the Markov source
lower bounds are generalized to include cost- generated by assigning transition probabilities to the
constraints. Asymptotic upper bounds for the size of edges of the graph.
runlength-limited codes are also investigated, and two
separate bounds are presented. Finally, the maxim rate _As I fmdn n in •4 ef nLL.-n
at which information can be transmitted across a
noiseless channel, using sequences produced by a Two asymptotic upper bounds are derived for the maximum
nondeterministic graph, is lower bounded. The bound is size of a runlength-limited code as a function of its
derived using generating function techniques, minimum distance 8. Let R(8) equal the maxim=u rate at

i which information can be transmitted across a noiseless
channel using RLL-codes with minimum distance 8.

In order to minimize the effects of intersymbol Runlength-limited codes can divided into constant weight
interference and aid in bit synchronization, many subsets, and the code rate, R*(w), of the weight w
digital transmission and recording systems restrict the subset is computed using combinatorical arguments. It is
set of allowable binary channel sequences. A comonly shown that
used constraint imposes limits on the minimum and R(6)5 max mka*R(w).R*(8,w)1
maximum number of consecutive zeros, which may follow a 0•wS1
"1" in the binary channel stream. Sequences which
satisfy these runlength conditions are said to be (d,k) where R**(B,w) is the Mcgliece-Rodemich-Rumsey-Welch
runlength-limited (RLL), where d and k are the minimum linear programming bound for the maximum rate of
and maximum zero runlengths, respectively. (unconstrained) constant weight codes having minimum

Channels are in general noisy, and it may be distance 8.3 A second asymptotic upper bound is also
desirable to incorporate an error-correcting capability derived from upper bounds on the capacity of input-
into the communication or storage system at the expense constrained discrete memoryless channels. The simplest
of data rate. The error-correcting capability of a code version of this bound yields
is a function of the distance distribution between
codewords. The minimum distance between any two R)sCM2)
codewords, dmin, is a parameter of particular interest.
A fundamental problem in coding theory is to determine where C(8/2) is the capacity of a runlength-limited,

the maximum size of a code having a given dmin. This input-constrained binary symmetric channel, which has

problem has been studied extensively for unconstrained cross-over probability 8/2. A tight upper bound for the
codes and remains unsolved, although upper and lower right-hand side of Eq. (4) is then obtained using
bounds have been derived. Recently, Kolesnik and techniques developed by Shamai and Kofman. 4

!rrachkovsky have reported an asymptotic lower bound for
runlength-limited codes.

1 
They obtained their result Rnu,,dn on e Riza nf NNdte;nin Finitr Sta

Msing a sphere packing type argument combined with a Cn40
generating function technique. Asymptotic upper bounds
for runlength constrained codes, however, have not been If a distance constraint is not imposed, then the
reported. asymptotic rate of a RLL-code is given by the logarithm

The purpose of this paper is threefold. First, of largest eigenvalue of the graph's adjacency matrix.
Kolesnik and Krachkovsky's asymptotic lower bound is This result, is generally true for any finite state code
extended to include costly runlength-limited provided the graph is deterministic, that is, the edges
sequences. 1 ' 2 Second, two asymptotic upper bounds are leaving any given vertex have unique labels. A
derived for the maximum size of RLL-codes as a function nondeterministic graph having mi-vertices can always be
of the codes minimum distance. Third, the maximm rate mapped into an equivalent deterministic graph, but the
at which information can be transmitted across a new graph may have as many as 2m-l vertices. 2  Thus,
noiseless channel, using sequences produced by a when m is large it may be computationally difficult to
nondeterminisitc graph, is lover bounded, determine the largest eigenvalue of the new graph's

Sadjacency matrix. A new lower bound has been developed
for the maximum rate at which information can be
transmitted across a noiseless channel using sequences

It is known that (d,k)-RLL sequences can be described by produced by a nondeterministic graph. The lower bound
a finite state machine having (k+l)-states It is is expressed in terms of the largest signevalues of a
convenient to represent the finite state machine by p
graph with (k+l)-vertices. The edges between the pair of m2 by 2 matrices, and theme matrices are easily

vertices indicate the possible state transitions, and found from the original graph.
the labels on those edges give the corresponding output
bits in the RLL-sequence. Costs can be assigned to RLL- [1) .V.Yu.Krachkovsky, Generating Functions and Lower

sequences by attaching a cost to each edge in the Bounds on Rates for Limited Error-Correcting Codes,"
133 Trans. Inform. Theory, 32,pp. 778-768, (1991).

graph. 2  We show that the maximum rate, R, at which (21.Z. A. Khayrallah, "Finite-State Codes and Input-
information can be transmitted across a noiseless Constrained Channels," Ph.D. Dissertation, University of
channel using only those sequences with average cost per Michigan (1969).
bit less than o6 and minimum distance greater than 8, is (31.R. J. Nctliece, 3. R. Rodemich, H.C. Rumsey, Jr. and

L.R. Welch, "New Upper bounds on the Rate of a Code via
lower bounded by the Delsatte-MacWilliam Inequalities Inequalities,"1333

3(&, r)ZR(0. ix) -min (bagX(x~yz)-a1o16(xy).81og(z)1 Trans.Inform. Theory, =L PP. 157-166, (1977).
(41 .8. Shamai and Y. Kofman, "On the Capacity of Binary
and Gaussian Channels With Run-Length-Limited Inputs,"

133 Trans. Commn., 3L pp. 504-594 (1990).
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RUNLENGTH LIMITED TRELLIS CODES FOR

PARTIAL RESPONSE RECORDING CHANNELS1

b~y
Mignon Belongie2 and Chris Heegard3

Summary output of the channel (and at least one pair
Partial response models for recording of codewords has distance df,). An important

channels go back many years [1]. This method issue is the number of states, both in the
of channel modeling has led to an interest original constraint and in the final code. The
in developing trellis codes geared to such number of states in the constraint determines
channels [2-7]. This talk describes a the complexity of the decoder; we decode these
comparison of certain techniques for code codes by finding the signal satisfying the
construction that combines run-length constraint that is closest to the received signal.
limiting constraints with constraints that (It is possible that a received signal could thus
improve the free distance (and thus the noise be decoded to something that isn't actually a
tolerance) over common models for codeword from the encoder, the probability
magnetic recording channels. Three partial of making an error of this type is no more
response channels are considered, "1 - D", "1 than that of picking a codeword that is
-D 'and "1 +D - D2 - &". incorrect.) The number of states is important

We consider two techniques to define for encoding and uncoding. A table is
codes and find encoders with run-length presented that summarizes of the codes that
constraints and coding gain. In the first we have found.
constraint type, a convolutional code is used -

to constrain the locations of the transitionsof the signal 141. In this case, a convolutional [1l H. Kobayashi and D. T. Tang, "Application of
Partial Response Channel Coding to Magnetic

code over the ring of integers modulo q, Zq, Recording Systems," IBM Journal of Research
is specified. The code is used to constrain and Development, Vol. 14, pp. 368-375, July
the sequence of transition times, modulo q; 1970.
the sequence must be a member of the fixed [21 A. Robert Calderbank, Chris Heegard and Ting-
convolutional code. It has been shown how Ann Lee, "Binary Convolutional Codes with
this is an effective technique for finding codes Application to Magnetic Recording," IEEE
with a non-trivial d constraint (i.e., d > 0) [4, Transactions on Information Theory, Vol. IT-32,
71. The other construction is based on a recent No. 6, pp. 797-815, November 1986.
result of Siegel and Karabed, [5-71, and shows (31 Jack K. Wolf and Gottfried Ungerboeck, "Trellis
more promise in the d=O case. Their result Coding for Partial Response Channels," IEEE
shows that matching the channel null with Transactions on Communications, Vol. COM-34,
a null in the codebook leads to a coding gain. pp. 765-773, August, 1986.

In this talk we present a comparison of [41 Chris Heegard, "Trellis Codes for Recording,"
runlength codes we have constructed. The 1988 IEEE Military Communications Conference,

resulting combined constraints are specified San Diego, October 23-26, 1988.

by labeled directed graphs. Using 151 Razmik Karabed and Paul Siegel, "Matched

Mathematica, we automatically construct a Spectral Null Trellis Codes for Partial Response
codhemativencagraph specimat constrant and Channels," IEEE Transactions on Information
code given a graph specifying a constraint and Theory, Vol. IT-37, May 1991.
a rate less than or equal to its capacity. Thus, 161 Mignon Belongie and Chris Heegard, "Pairwise
the main problem is finding interesting Charge Constrained Run Length Codes," 1991
constraints. A constraint is said to have a Conference on Information Sciences and Systems,
certain free distance df,,, for a given partial John Hopkins University, March, 1991.
response channel, if the distance between any (71 Mignon Belongie, "Run-Length Codes Based on
two runlength sequences satisfying the Variable Length Graphs," PhD Thesis, Cornell
constraint have distance at least dr,, at the University, January, 1992.

1. This work was supported in part by NSF grants NCR-8903931, NCR-9207331 and IBM.
2. JPL, Pasadena, CA (formerly School of Electrical Engineering, Cornell University, Ithaca, NY).
3. School of Electrical Engineering, Cornell University, Ithaca, NY.

238



ON TRELLIS CODES FOR PEAK SHIFT MAGNETIC RECORDING CHANNEL

Ephriam Zehavi and Aaron Biriashvili
Deparnmat of Electricawlmftneri

Tedhmon - Israel lttute of Tedmbolog
Hada 32000, brad

Peak detectors are a common practice in standard high bit shifts has occurred at the end of the i -th phrase. The set
of legitimate peak shifts is S'-(O, 4... ,.... ).. Weassume

density magnetic recording systems [1]-[3]. It has been here that lei ) is an independent identically distributed

noticed that one of the major impairments in these systems is (i0.d.) sequence with some probability distribution.

the so-called bit shift (peak shift) [1]-[5). In this talk we The output phrase length is in the set (d-2t+i, ..., k+2t+l). At
the receiver the decoder produces a maximum likelihood

propose a new oding technique for 1re g peak shlfts, estimate of the sequence U which we write as

A coded system that operates over a multi- peak (bit) shift In the talk we will analyze the main properties of the codes,

channel (PSC) is best formulated in terms of phrase lengths, the error correction capability of the proposed system, and
practicpl decoding techniques. An optimal decoder as well aswhere a phrase is uniquely defined by a consecutive b d e wileinruc.Itrsigupr
sub optimal decoder will be introduced. Interesting upper

sequence of bits starting with none, one or more zeros (a0") and lower bound on the maximum data rate that can be

and terminating with the first single one (1'l) [6]. Any transferred as a function of the convolutional code rate that

binary sequence of zeros and ones is uniquely decomposable is used is also worked out and discussed.

into a concatenated sequence of phrases. For example it will be shown that the maximum information
iwnto w codingscatenaed isdescris sequence orate that can be transmitted using this technique over a
The new coding scheme is described as follows. A sequence nosis aneisbudy

of phrases U =(...Ui,...), Ui eS = d+l,..., k+) is mapped noiseless channel is bound byn-ko n-to
to the sequence of symbols V= (..., Vi, ... ), Vi eGF(q), R((d+I+t)--n)) S R - R((d+Y--n-)).

according to Here, R) is the solution to the equation
Vi = Ui -(d+l) mod q. (1) k+1

The sequence V is passed through a rate ko/n systematic I, 2-iR(x)= 2- xR(x).

convolutional code over GF(q) that converts ko input i--d+l

symbols into n output symbols. The encoder output Bifamom
sequence C is mapped back to sequence of phrases in S

according tD [1] P. H. Siegel, "Application of a Peak Detection Channel
Uio+r , r =0, ..., ko-1 Model", IEEE Transactions on Magnetics, VoL MAG-18,f Ur Nov. 1982, pp. 1250-1252.

X In +r = QCi ko+r +d+1 , r -k0, .... n-1 i [2] P. H. Siegel, "Recording Codes for Digital Magnetic

The combined coding and mapping defines a trellis code Storage", IEEE Transactions on Magnetics, Vol. MAG-

with (k-l-d)V encoder states, where v is the constraint length 21, No. 5, Sept. 1985, pp. 1344-1349.
of the convolutional code. Note that the parity c phrases [3] R. Wood,"Magnetic and Optical Storage Systems:

Opportunities for Communications Technology", Int.

of the trellis code are in the set (d+1, ..., d+q). Conf. on Comm., ICC-89, pp. 53.1.1-53.1.8, Boston, MA,

The output of the trellis encoder is passed through a peak June 1989.

(bit) shift channel (PSC). A r- position bit shifts cause the "l" [4] E. R. Katz and T. G. Cambell, "Effect of Bitshift
Distribution on Error Rate in Magnetic Recording",

symbol terminating the phrase to wonder by r positions to IEEE Transactions on Magnetics, Vol. MAG-15, No. 3,

its right (right shifts) or to its left (left shifts). The bit shift May 1979, pp. 1050-1053.

effect, either shrinks or expands the input phrase. Of course [6] S. Shamai (Shitz) and E. Zehavi, "Bounds on the
the phrase lengths are not modified if no bit shift has taken Capacity of the Peak Shift Magnetic Recording

Channel", Trans. Info. Theory, Vol. IT-37, No. 3, Pt. I,,
place. We restrict our discussion to d z 2, k ý.d+q. Therefore, pp. 863-871, May 1991.

in this case additional phrases are neither generated nor

existing phrases are destroyed, and the parity check symbols (d, k) U D EnoderV

are not violating the (d,k) constraint. Source

Let Xi stands respectively for the i -th channel input phrase (d+l)1(D) (d+1)1(D)

length and Yi for the corresponding channel output phrase EMW ý

length. Then, the peak shift channel is described byYi = Xi + el"ei-I• (3) UT•() Decoder, Y(D)I

Here ei is a random variable taking on (0, ±1,.....,.... 4)

values designating whether a left (-j), a right (+,) or no (0) Figure l:Description of the Coded System using D-Transfotm
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A CLASS OF DC-FREE SUBCODES
OF CONVOLUTIONAL CODES

M. Nasiri-Kenari and C. K. Rushforth
Department of Electrical Engineering

University of Utah
Salt Lake City, Utah 84112

Ab= controlling the value of the running disparity. We denote the running
disparity prior to the encoding of input block n by Ru1 .

We describe a class of dc-free subcodes of convolutional codes It can easily be verified that by complementing the value of a
that satisfy certain runlength constraints and that also possess error- wmbo
correcting capability. The running disparity and the maximum we complement all m output bits in block n. This property enables us
runlength of these codes are bounded by quantities that are to control the value of Ra through the following encoding procedure:
independent of the free distance. Decoding is accomplished using a 1. Choose aln= 0 and compute the disparity of the m output bits in
Viterbi decoder for the underlying convolutional code.

block n; denote this disparity by r•.
1. Introduction 2. If R,_,.r, < 0, encode the m-2 information bits; R, = P•+ r. .

Deng and Herro [1] describe a method for constructing a dc-free 3. If Rk-X*n=O, choose the value all., to reduce the runlength and
coset code from a given block code. Their codes satisfy then encode the m-2 information bits; if aln = 0, R. = Rk+ r3 ;

otherwise R. = R3 _- r ."
and • W2 J 4. If Rk-.r. > 0, change a,., to I and then encode the m-2

information bitsm R= R.ih- rT.

K5 <2W + [J-1 The disparity r. of the m output bits at time nis upperbounde by
or m; moreover,

Kr.2{W+[W J}-1, R• <m+ -

where R is the maximum running disparity, K+I is the maximum and
runlength, W is a quantity that is greater than or equal to the minimum K s 2m + [ -- - 2
Hamming distance of the code, and I x] denotes the largest integer 2 (2)
less than or equal to x [1][2]. Thus, these bounds tend to increase as
the error-correcting capability of the code increases. respectively.

Using a procedure similar to that of Deng and Herro [ 1], we have
developed a method for finding a subcode of a convolutional code that 3. EZAMgk
has a spectral null at dc and at the same time satisfies certain runlength
constraints. We describe this construction procedure and state the We obtained a family of convolutional codes of rate 3/4 that
basic properties of the codes it produces in Section 2. We describe satisfy condition (1) by performing row operations on the generator
some representative codes obtained using thisprocedurein Section 3. matrices of the corresponding codes given in Table 11.1 of [3].

These codes have constraint lengths ranging from 3 to 9 and free
2. Construction of the Codes Hamming distances ranging from 4 to 8. The dc-free subcodes

obtained by applying our construction procedure to these codes have
We begin with a convolutional code with rate (m-l)/m whose m-1 rate 2/4, with upper bounds on Rmax and K equal to 6 and 7,

input sequences and m output sequences are (a 1.)..(am.) and respectively.

[b.i} ... (b.} , respectively. The (m-l)xm generator matrix is

Using an approach similar to that described in [1], we have
GI(D) G2I(D) ... GI(D) ] developed a procedure for constructing dc-free codes with error-

control capabilities. The codes produced by this procedure are
G(D) G(D) G2 (D) ... G2(D) I subcodes of a convolutional code with bounded running disparities

Viterbi decoder for the underlying convolutional code. Whereas the
2m_ _ (D) G 2(D)j bounds in [I Iincrease with the minimum distance of the code, our

• "" M- bounds are independent of distance. The codes given in 111,
where however, generally have higher rates.

References
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Without loss of generality, we take the input satisfying (1) to be input
1. We use input bit a Ln not for transmitting information, but for
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Giovanni Cherubini and Sedat 61M

IBM Research Division, Zurich Research Laboratory
CH-8803 Raschlikon, Switzerland

ABSTRACT sequences of length n. This set is partitioned into M subsets, each
subset containing 2 kl sequences. The sequences within a subset

Concatenation of outer conventional rate-k/nc binary convolu- correspond to paths through the 1 - D channel trellis that start
tional coding with inner rate-k/n special trellis coding for binary from a common state and end, after n transitions, in a common
partial-response I-D channels is investigated. In the considered state Sequences within a subset are separated by a minimum
scheme, the code sequence generated by the convolutional code is Euclidean distance of dmn.. The subsets are then assigned to the
time-interleaved prior to trellis encoding. Decoding for the outer branches of a combined encoder and channel trellis with v states
convolutional code takes into account the reliability of individual according to Ungerboeck's criterion [3]. There are 2k2 brnches
code symbols provided by the inner trellis-decoding stage. The leaving from and entering into each trellis state. Therefore, in the
trellis code is designed to achieve large minimum Euclidean dis- encoder for the trellis code, kl input bits select one of 2ki parallel
tance. The reliability of the decoded symbols is obtained in a com- transitions between two consecutive encoder states, and k2 input
putationally efficient way. The construction of the trellis code is bits dewtermi a state transition in the encoder trellis.
based on the partitioning of a set of noiseless channel-output
sequences into subsets which are assigned to the branches of a The free Eucidean distance of the innner trellis code is given by
combined encoder and channel trellis. An algorithm for con-
structing the subsets of channel-output sequences is discussed. dhre = min {' dmin.d'mun}, (2)
Trellis codes with various rates, minimum distances, and complex-
ities are described and the performance achieved by concatenation where d'nu is the minimum distance of error events of length
with different convolutional codes is presented. It is shown that greater than one trellis step. An algorithm for constructing the set
substantial coding gains can be achieved by this method as .om- of channel-output sequences is discussed.
pared to the maximum-likelihood sequence deteLtion of uncoded
binary signals. For computation of the reliability information relative to the

symbols bn, either maximum-a-posterion symbol estimation or the
soft-output Viterbi algorithm (SOVA) can be used [2]. In the case

SUMMARY k2 = I and dri < d'1in, a simple algorithm is obtained. At each
decoding step, the reliability of the ki symboLt on the parallel

It is well kniown that large coding gains can be achieved by con- transitions is computed by using the associated branch metrics.catenated coding [1]. When two concatenated codes are employed The reliability of the remaining symbol is obtained by the SOVA.
in conjunction with time-interleaving, decoding for the inner code
takes place first. If decoding for the outer code is based on soft Trellis codes with various rates, minimum distances and complexi-
decisions, increased immunity -7Rinst noise in the order of 2 dB ties are presented. Their concatenation with diffent convoluional
can be obtained over decodiro -. mes using hard decisions only codes is investigated. Overall performance is measured in terms of
[2]. the asymptotic coding gain (ACG) over the baseline system [4],

This paper investigates concatenated coding for binary trans- which is expressed in dB as

mission over partial-response channels described by the time-dis-
crete transfer function I- D. A conventional rate-kc/nc binary ACd = 10I I0 1o(0)
convolutional code is employed as an outer code. The inner S = 1lo1o8soR-
rate-k/n trellis code is designed to achieve large minimum Eucli-
dean distance and is constructed so that the reliability of the where dl is the free Hamming distance of the outer convolu-
decoded symbols is obtained in a computationally efficient way. tional code, and R=(kck)/(ncn) is the overall code rate. For

example, concatenation of a 32-state, rate-2,'3, dJ = 6 convolu-
The sequence of information bits is mapped into a sequence of tional code with a 4-state, rate-3/6, d, = 24 &tres code gives
binary symbols by convolutional encoding. The binary symbols are R = 1/3 and ACG = 7.8 dB. Concatenation of a rate-3/4 convo-
then time-interleaved and the obtained sequence (bo),bn e (0,1), lutional code with 32 states and dPL =5 with the trel'i -ode of
is input to the trellis encoder. The trellis encoder provides a the previous example gives R = 3/9ind ACG = 7.5 dB.
sequence of binary channel-input signals (an),ane 1 - l,+ 1U. At
the output of the channel,

Zn = %n- l +w , (I) References

where (wn} is a sequence of white Gaussian noise samples. I I G. D. Forney, Concatenated codes, M.LT. Press, Cambridge,
Decoding for the inner trellis code is performed using the Massachusetts, 1)66.
sequence of unquantized channel-output signals J1z). In this [21 J. Hagenaoer, P. Hoeher, and J. Huber, "Soft-output Viterbi
decoding stage, reliability information associated with the binary and symbol-by-symbol MAP decoding: algorithms and appli-
symbols ba is computed employing the combined encoder and cations," submitted to IEEE Trans. Conwur., 1991.
channel trellis. The sequence of reliability information is then [3] G. Ungerboeck, "Channel coding with multilevel/pbase
deinterleaved and used to perform soft-decision decoding for the signals," IEEE Trans. lIrorm. Theory, Vol. IT-28, pp. 55-67,
outer convolutional code. Jan. 1982.

141 J. K. Wolf and G. Unga xcck, ""rellis coding for prtl-
A v-state, rate-k/n trellis code is constructed as follows. Let response channels," IEEE Trans. Cowmnu., Vol. COM-34,
k = ki + k2. Consider a set of noiseless I - D channel-output No. 8. pp. 765-772, Aug. 1986.
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Abstract
A coset of a convolutional code may be used to generate a zero- The decoder trellis for the precoded (l-D) partial-response channel

run length limited tellis for a 1-D partial-response channeL It is is also shown in the figure.
well known that the free Hamming distance dH of the convolutional
code a-•d the free squared euclidean distance of the coset, d.,
measured at the channel output, are related byd 4, _ dH. In this 0 0 0 0 0+ 0+ 0+ 0+
talk we present coasts for which d4 is larger than the free Hamming
distance of any convolutional code with the same rate and constraint
length. We also describe how the new bounds, described in [1,2, 1 1 1+ 1+ 1+ 1+
on the maximum zero-run length of cosets may be used to ensure l T I

a short zero-run length at the channel output. Analytical arguments, Ct ioma code treflia o- o- o-
supported by results from computer search, suggest that cosets with
large free squared euclidean distance also have short maximum zero- Decoder ftis..-
run lengths.

Introduction
We exploit the underlying linearity of the decoder trellis toSeveral authors (among them Wolf and Ungerboeck [3], an calculate 4fm (14 in the example), or a lower bournd on it. The

Calderbank, Heegard and Lee [4]) have described recording sys- resulting algorithm, which is related to one described by Zehavi and

tems in which the recording channel is regarded as a partial re- Wolf [5], was used i , find cnsits with large deie A few examples

sponse channel with transfer polynomial of the form (1 - D)N, are provided in t fie table below.

where N E {1,2}. In [3], the binary information sequence is ap i nt ae l

encoded by an error-correcting code; sent through a channel pre- Rate log2 of # * Best Max
coder and subsequently through a (1 - D) partial response chan- decoder comparable zero-run
nel. The precoder essentially inverts the channel transfer func- states Hamming length
tion. The overall channel accepts a binary ({0, 1)) input sequence distancex = (.... j.-l, :x, xj+j .... ) and produces a ternary Q - 1, 0, 1)) out-
put sequence y = ( .... .i-1 yi,yi+l,,... .), where lyiI = xi for all i 1/3 5 >24 13 2
and the signs alternate. 2/4 3 >8 6 3

Codes for such channels should have 2/4 6 >14 10 3
(1) large free squared euclidean distance, to,, where the squared 3/5 2 6 4 5

euclidean distance between two output sequences y, Y is defined 3/5 4 >8 6 5
as Ey, -%2 , and 7

(2) short maximum zero-run length, defined as the maximum number 416 3 6 4 1 7

of consecutive zeros in a code word. 7/9(Punct.) 3 _>4 3 8

The squared euclidean distance between any pair of noiseless
output sequences is at least as large as the corresponding Hamming
distance between the original convolutional code words. In [31, a References
binary convolutional code with large free Hamming distance is used
for error correction. In order to satisfy requirement (2), a coset of [1] K. J. Hole, "Cosets of convolutional codes for symbol synchroniza-
the code is used rather than the linear code itself. tion and error control," Department report 64, Depamnment of Infor-

matics, University of Bergen, June 1992.
New Codes [2] K. J. Hole, "Runlength limited enor control codes of high rates,"

We present new codes for such channels. As in [31, the new codes Department report 58. Department of Infonnatics, University of
are cosets of convolutional codes. For example, consider the (3,1) Bergen, February 1992.
convolutional code with constraint length 1 and parity-check matrix [31 !. K. Wolf and G. Ungerboeck, "rlellis coding for partial-response

channels:" IEEE Trans. on Commanication, vol. COM-34, pp. 765-
H (D) 0 1773, Aug. 1986.

D 0)1 [4] A. R. Calderbank. C. Htegard. and T. A. Lee, "Binary convolutional
codes with application to recording," IEEE Trans. on Iformation

The convolutional code has free Hamming distance 3, as can be Theory. vol. IT-32, pp. 797-815, Nov. 1986.
seen from the trellis of the convolutional code in the figure. We obtain [5] E. Zehavi and J. K. Wolf. "On the performance evaluation of trellis
one coset of the code by adding the vector (010) to each branch label. codes," IEEE Trans. on Information Theory, vol. IT-33, pp. 196-

202, Mar. 1987.
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ABSTRACT (approximate) maximum a posteriori (MAP) estimation of the transmit
symbols ak (3], Viterbi algorithm path-metric computations are per-

This paper deals with Reed-Muller (RM) coding and concatenated soft- formed both forward and backward in time. The quantities Yk are then
decision decoding for binary patial-response class-IV (PRIV) channels. obtained by suitably combining forward and backward difference
Block interleaved RM codewords ar transmitted with precoding over metrics. It is apparent from (2) that signals with even and odd time
the PRIV channel. In the receiver, soft-decision decoding is accom- indices can be processed independently. For practical reasons, two
plished in two stages. An inner decoder accounts for the precoded trans- known even- and odd-indexed transmit symbols ak am inserted between
mission of binary symbols over the PRIV channel. Approximate interleaving blocks to provide starting points for the forward and back-
log-likelihood ratios for individual code symbols are determined by a ward recursions. In the outer decoding stage, the transmitted information
new bi-directional symbol estimation algorithm. The obtained soft infor- bits are recovered from the deinterteaved values yk by an efficient sub-
mation values are deinterleaved and passed to the outer decoding stage. optimal soft-decision decoding algorithm for RM codes recently
With sufficient interleaving, these values represent the appropriate described in [4.5].
metrics for soft-decision RM decoding. An efficient suboptimal A binary RM code R(rm), for 0 < r < m, exhibits the code parameters
decoding algorithm based on the generalized multiple concatenation
(GMC) stnucture of RM codes is employed. Real coding gains over r
uncoded transmission with maximum-likelibood sequence decoding were [n =2 k= W('i') . d = 2'1()
determined by simulation. Results are presented for various RM code i=O
parameters and degrees of interleaving. Encoder and decoder reaizatliin
as well as complexity issues are addressed. A comparison with other Codewords can be generated either according to a well-structured k x n
coding schemes known for PRIV channels shows significant advantages generator matrix or as codewords of length n -I of a cyclic code
of the scheme considered here in terms of coding gains versus decoding extended by adding one even-parity check bit [6]. The first interpretation
complexity. implies a generalized multiple concatenation (GMC) structure, defined

by the iterative construction
SUMMARY

R(r+ lm+l) = luluv,1: us R(r+lm), vs R(rjn)) (4)
Coding techniques for binary partial-response class-TV (PRIV) channels
with time-discrete transfer function 1- D2 have been studied, e.g., in The GMC structure has been exploited to devise the soft-decision
[1,2]. In [I], convolutional codes are used in conjunction with precoding. decoding algorithm [4,5] employed in the outer decoding stage.
The free Euclidean distance between sequences of noiseless channel- Encoding could be based on the same structure, but a systematic encoder
output signals is then essentially given by the Hamming distance of the would then not be easily obtained. The extended cyclic-code interpreta-
convolutional code employed. With the matched spectral-null codes tion of RM codes is preferred as a basis for systematic encoding by
described in [2] gains in free Euclidean distance are achieved by sending simple shift-register circuits. The two interpretations of RM codes lead
constrained sequences with zero spectral energy at the null frequencies to different orderings of the code symbols. The reordering required to
of the PRIV channel. rearrange the code symbols in the extended cyclic code for decoding by

In this paper, we investigate the application of Reed-Muller (RM) the GMC-based decoding algorithm is explained.
block codes. Information bits are encoded by a systematic RM encoder, Simulation results are presented which show significant real coding
block interleaved, and then transmitted over the PRIV channel with pre- gains obtained over uncoded binary PRIV transmission with optimum
coding. In the receiver, concatenated soft-decision decoding [3] is maximum-likelihood sequence decoding. We find, for example, that with
employed. The inner decoding stage accounts for the precoded tras- a R(5,9)-A [512,382,16] code a real coding gain of 4 dB is obtained in
mission of binary symbols over the noisy PRIV channel and derives soft
information values for these symbols. These values are deinterleaved and terms of Eb 0 at a bit-eror rate of 1(- 7 . In this cas, only 23 elemen-

passed to the outer decoding stage for soft-decision RM decoding. The tary arithmetic operations are needed for RM decoding per information

systematically encoded information bits are then immediately available bit. Interleaving plays a lesser role for RM codes with large Hamming
from the recovered RM codewords, distance. With convolutional encoding as described in [1], a similar real

We denote the interleaved RM code symbols by bk, k=...1,1,2.... coding gain could only be achieved with a R=3/4,v=8 convolutional

and represent these symbols in the bipolar form bk s (- 1, + 1) with ith code and a 512-state Viterbi decoder. With binary spectral-null codes
mapping logical 0 -* -1, and logical I -+ +1. The precoder generates [21, coding gains of 4 dB cannot be achieved even asymptotically. The

the binary transmit symbols ak =- bk ak-2. The output signals of the approach pursued in this study for RM codes can be used for convolu-

noisy PRIV channel become tional coding as well. Further investigation is needed.

Zk~-S 2+Wk.(I) efereaceszk = ak - &k-2 + wk , (!)m
(11 J. K. Wolf and G. Ungerboeck, "Trellis coding for punial-response cha-

where wk accounts for additive i.i.d. Gaussian noise. If sufficient inter- neis,' IEEE Trans. Commun., VoL COM-34. No. 8. pp. 765-772, Aug.
1986.leaving is employed, the channel-output signals containing information [21 R. Kambed and P. H. Siegel. 'Matched spectral-null codes for partial-res-

about one particular code symbol bk become essentially independent of potue channels.' IEEE Trans. Inform. Theory. Vol. 37. No. 3. pp. 818-855,
the other spread-out code symbols belonging to the same codeword. May 1991.
Hence, the log-likelibood ratios 131 J. Hagenaer. P. Hoeher, and 1. Huber. 'Soft-output Vimrbi and symbol-

by-symbol MAP decoding: algorithms and applications," submitted to IEEE
p(,,=Ibk = 1) Trans. Commun., 1991.

Ok = In _= =+ (2) [41 G. Schnabl. M. Bossern, and H. Dietrich, 'Reed-Muller coded modulaion
p(z'_Ibk =-1) using a new soft-decision decoding algorithm." in Coded Modilauion and

Bandwidrh-Efficient Transmission, Proc. of 5th Tinmera Intl Workshop on

where z±= = ... z0, zI, z2.... denotes the infinite sequence of observed Digital Communications, Sept. 1991, edited by E. Biglieri and M. Luise,
(Elsevier. Amsterdam, 1992). pp. 195-200.

channel-output signals, represent appropriate metrics for soft-decoding of iS] 0. Schnabl and M. Bosset. Soft-decision decoding of Reed-Muller codes
RM codewords, as generalized multiple concatenated codes," submitted to IEEE Tram.

In the inner decoding stage, soft information values yk - k are corn- Intorm. Theory, 1991.
puted by a new algorithm for pmecoded-symbol estimation in the pres- [61 F. J. Mac Williams and N. J. A. Slone, The Theory of Error-Correctig
ence of intersymbol interference caused by the PRIV channel As for Codes, (North-Holland. Amsterdam. 1977).
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A Class of Byte Error Control Codes for Memory Systems
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1 Introduction R = N -K> 24+1i,
Single bit error correcting and double bit error detecting ( SEC-DED) R =N -K > b+ [og 2 (N -2b + e)1,

codes are widely used incomputer semiconductor memory system organised and R =N -KŽ [log2[(2' -I){N(b +1) -b
2 --c}/b +2'fl. 0

in a onie-bit-per-chip manner. This is because in this orgamization sany failure The first inequality in the theorem corresponds to Shigleto bound, the
in one chip can corrupt, at most, one bit per codeword. Recý!nty some systems second and the last ones to Hamming bound [2]. Roughly speskiag. the second
adopt ab-bit-per-chip organizationwhereb > 2 I11. A chip faillurin these bound is tighter than the last when Nis relativelyiunafl,sand vice versa.
systems causes the word read-out to have a b-bit block, called 44f,~ in error- 4 Code Construction Methods
Therefore, SbEC-DbED codes, capable of correcting all single b-bit by'te errors Two cntruction methods of SbEC-(Sb+S)ED codes are given in this sec-
and detecting double b-bit byte errors, have found applications in this kind of tion The first one derives co-des of arbitrary byte length and code length,
system. Among the predominant errors, however, are the soft errors induced while the second one lndack flebility for code length. The second one, how-
by a particles, which are said to be apt to manifest themseles as sinil ever, provies more ecient codes than tefrtoe
bit errors still in byte organized systems. Consequently these systems need Construction Method I
protection against a single bit soft error lined up in a codeword with another The following procedure derives SbEC-(Sb+S)ED codes from. 54'EC codes
existing single byte hard error dae tona chip failure.[1 hr l=b-i

From the standpoint mentioned above, this paper proposes anewdelssof 1)LtP= HW2..I]deoeheNx 'paiycckmrxofn
linear cdes, caled singe b-bit yte arm orrectig andEsicode. Givente theWcodeoe.ength tNe'coinleegths', anceers ndbc a areVdee dnedndinnthe

single bit error detecting codes, or SbEC-(Sb+S)ED codes. This class of codes sm a si eto ,s htN 'a-)+c.I '=1 nS'Ccd
can correct all single byte errors and detect any error that corrupts both a shoudme reay de as anScin2 siml SECt code.%-1 +c.Ifb , nS Ccd
single byte and a single bit in a codeword. shoul be reare (N' s a) smatri SE code112 .- iisotnebyH

In the later sections, bounds and construction methods of SbEC-(Sb+S)ED 2 nF N )mti t=[r1 . l]i bandb ~ r
codes ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~~[s ar iesdita hw ht oecdspopsdi hspae et 1'J i = 1, 2,.-,it, where [1s~,1f denotes the b! x Yj identity matrix I,,.

lowesre bouend ond bit islhongta oecderpsdi th. aerme followed by a b'-dimensional even weight column vecto f,
a loe on ncheck btlnh.3) Let anR"x (b + 1) matrix Uj = [ujie,... uildenote the collection of
2 SbEC-(Sb+S)ED Codes the same b' + 1 odd weight colurmn vectors uj's, for i = 1, 2, - , a. Take

Ihthis paper, codewords of Nbits lengthawe divided into nbytes, where U =[UiU2 ... U.1Jconsisting of those Uj's, where uj #u 3 for i# a,j E
all the bytes are b-bit wide except the last one which is allowed to have c-bit {,2~,i)
width ( 0< c :5 b ). The following notations are used in this paper. 4) Finally, the null space of the following matrix is an SbEC-(S&+S)ED
4, byte length of the ith byte, i.e., code of byte'length b=V +1, code length N=NM'+ nand check bit length

&j = bfor i =1,2, --- , a- I and b. = c. R =R + ": Al f11l 012 .. H. A 1
is code length in byte. LuJ U1  U2  ... U.J
N code length in bit, Le., N = b(n - 1) + c. Theorem 4.1 The codes obtained with the above procedure are SbEC-
K :information bit length. SS)Dcds
R :check bit length, i.e., R = N -K. K. Constructodes Meho
(N, K)code linear code of code length N and information bit lengthK. C ftrconM hd2

04vector composed of d O's. Theorem 4.2 The null space of the following matrix is an (N be +2 +3b+
d is omitted if there is no fear of confusion. 1, K = 42e) SbEC-(Sb+S)ED code:

Ittranspose of vector Z. I I . I I 1 0 0 0
(XY) concatenation of vectors/matrices Xand Y. I T r2  ... 711-3 T' 2  0 1 0 1 o1,
All the matrices and vectors in this pawe are over GF(2) and vectors are i r 7 ... T2(q'') T2 ('-2 ) 0 0 1 1 o01,

row vectors unless referred to otherwise. When the parity check mawrx of an 06 04 04 * I 04 04 06 04 06 11, 1J
(N, K) SbEC-(Sb+S)ED code is expressed as H =(HaH2 ... Hit),where Hiis whereqI=e, I is the bx bidentity matrix,O0is the b x bsero marx is
an (N -K) x b matrix for i= 1, 2, ---. the vector composed of d I's, and theb x bmatrix Tis the companionamatrix

SbEC-(Sb+S)ED codes are a class of single b-bit byte error correcting codes, of a Primitive Polynomial of degree b (11 [31. 0
which can detect any double byte error such that, at least, one of the two byte 5 Evaluation
errors has Hamming weight one. Fig. 1 shows examples of a correctable Foenryeregho2rtecntucinmto 1soni tepeiu
and a detectable error of S4EC-(S4+S)ED codes.Fomybtleghb>2thcnsrtinehdIsowinhepvou

section provides SbEC-(!4+S)ED codes which meet the first bound in Theo-
correctable error: detectable error. rem 3.1. For the practical code parameters of b4=4 and K = 64, in particular,

Iu Ulm Inut UlmI Ul Theorem 4.2 gives an SbEC-(54-+S)ED code of check bit length R = 13, while
byterro J~j bte Arro bi I ror the previously known SbEC-DbED codes requires, at least, 14 check bits 141.

U~~ ~ ~ 0811llI1U ll luIUL 1 Conclusion
Fig. 1. Examples of a corrctbl error andr a detectable one This paper has proposed anew cleass of error control codes, SbEC-(Sb+S)ED

for b4=4 and N = 15. codes, capable of correcting all single byte errors and detecting any error

In the linear cuse, the definition of the codes is equivalent to the following that corrupts both a single byte and a single bit in a codeword, suitable for

theoem.semiconductor memory systems organised in a b-bit-per-chip manner.
Theorem 2.1 A linear (N, K) code with parity check matrix H = References

(Hi H12... H.11 is an SbEC-(Sb+S)ED code iff (1] T. N. Rao and R FNaiwara, Ettor Control Codinig for Computer Systerniu,
Vi, j C- (1,2,...,a}j ( #ij), Vel e GF(2)", e2 E GF(2)'i, Prentice-Hall, 1980.

lei eri 06 0 j Hell + Hje'2 0 o', 121 F. J. McWilliams and N. J. A. Sloane, The Theory of Error- Correctint
and Vi,j, k e {1, 2, --n (i 0 k 0 i), Vei e GF(2)1, e2 E GF(2)61, e3 E Codes, North-Holland, 1977.
GF(2?', 131 S. J. Hong and A. M. Patel, "A General Class of Maximal Codes for

e3 has Hamming weight on,- - H ell + Hje2& + H~e'3 0 oA. 0l Computer Applications, " ISEE T1rans. Comnpel., Vol.C-21. pp.1322-1331,
Dmc 1972.

3 Bounds 141 C. L. Chem, "Symbol Error-Correcting Codes for Computer Memory Sys-
Theorem 2.1 Linear (N, K) SbEC-(Sb+S)ED codes satisfy tems, "IEEE Trans. Compel., Vol.41, pp.252-256, Feb. 1992.
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CORRECTING SINGLE PEAK-SHIFTS with PERFECT m subcodes, each having the desired error correcting properties
(d,k)-CODES .9] Since at least one of these subcodes has size at least I C/m,

this construction is efficient if the order of the group G is
* ** sufficiently small. In the framework of this construction we

V.I. Levenshtein and A.J. Han Vinck reduce the problem of finding perfect (d,k)-codes of reduced
length N capable of correcting single peak-shifts of size t to the

V.I Levenshtein, Keldysh Institute for Applied Mathematics problem of finding "good" weight sequences in Abelian groups
Miusskaya sq. 4, 125047, Moscow, Russia, Fax: 7-095-9720737. and introduce the concept of perfect t-shift N-designs.

We give explicit constructions of perfect t-shift N-designs
A.J. Han Vinck, IEM, Ellernstr. 29, 4300 Essen. Germany, for t=l and any N and for t=(p-1)/2, where p is a prime, and

Fax:31-201-3206425, Email MEMI0O.at.DEOHRZIA. N=-(pr-1)/(p-I). Moreover, we find the necessary and sufficient

conditions or the existence of perfect 2-shift N-designs.
ABSTRACT. We consider codes, consisting of sequences We consider the problem of finding the minimum

redundancy r of systematic codes which are contained in the

0 1 0o 2 1 .. 0aN1 where dia 1<k, constructed perfect (d,k)-codes of reduced length N capable of
correcting single peak-shifts of size t. This problem is connected
with the existence of a particular ordering of perfect t--shift

and call them (d,k)-codes of reduced length N. We introduce a' N-designs. We show that the lower bound r > [logq2tN+1)] is
definition of arbitrary (d,k)- and perfect (d,k)--codes capable of attained in some cases, where fx] is the smallest integer at least
correcting single peak-shifts of given size t. For the construction x and q=k-d+l. Furthermore, for any (d,k)-code with n q-ary
of perfect codes we use a general combinatorial method information digits we give a method of finding the minimum
connected with finding "good" weight sequences in Abelian number of q-ary check digits such that the resulting systematic
groups, and introduce the concept of perfect t-shift N-designs. (d,k)-code is capable of correcting single peak-shifts of size 1.
We give explicit constructions of such designs for t=l, t=2 and For an ideal multibit peak-shift channel, decoding errors
t=(p-l)/2, where p is a prime. Our construction is not only that do not occur in the Nth substring do not propagate to
effective, but also universal in the sense that it does not depend subsequent blocks, as the length of the code word does not
on the (d,k)--constraints. It also allows to correct automatically change. However, if a decoding error occurs in the Nth
those peak-shifts that violate (d,k)-constraints. Furthermore, substring, the first symbol of the next block is in error and thus
our construction is naturally extended to (d,k)--codes of fixed we make a decoding error in this block. Only if again in the Nth
binary length and allows the determination of the beginning of substring a decoding error occurs, we may speak of error
the next code word. The question whether the designed codes propagation. By appropriate code selection we may avoid this
can be represented as systematic codes with minimal phenomenon. On the other hand catastrophic error propagation
redundancy is considered as well. In particular, for any occurs whenever random errors are involved. These errors ruine
(d,k)-code with n q-ary (q=k-d+l > 2 ) information digits we the structure of code words. They insert new phrases or delete
give a method of finding r q-ary check digits such that the existing phrases in a code word and thus synchronization
resulting systematic code is capable of correcting singe regarding the beginning of the first symbol of a code word is
peak-shifts of size 1, where r is determined uniquely by completely lost. One way to solve this problem is to fix the
qr-i(r-1) < 2n+1 < qr-2r. This code is perfect if 2n+1 = qr-2r. length of the codeword to a certain value. We construct codes

with a fixed binary length L by considering the union of all code
INTRODUCTION words of binary length L belonging to the (d,k)-codes of reduced
In high-density magnetic recording systems Run Length length N, L/(k+1) < N S L/(d+1). The code words of fixed
Limited (RLL) sequences are used to increase density and binary length start with d zeros and end with a symbol equal to
control self clocking[l]. The read-out mechanism detects 1. These code words can be stored without merging digits.
changes in magnetization and thus from the RLL sequence we
can derive a so called (d,k)-sequence, where d+l and k+1 References
correspond to the minimum and maximum length of the RLL [I]K.A. Schouhamer Immink, "Coding Techniques for Digital
substrings, respectively. A (d,k)-sequence is represented by Recording," Prentice Hall, 1990.
consecutive zero symbol runs of length i, d<i<k, between pairs of [2] S. Shamai and E. Zehavi,"Bounds on the Capacity of the
one symbols. Read-out circuitry imperfection and clock jittering Bit-shift Magnetic Recording Channel," IEEE Transactions
may cause misdetection of transitions and is supposed to result on Information theory, Vol-37, May 1991, pp. 863-872.
in peak-shifts left or right in the (d,k)-sequence. [3]V.D. Kolesnik and V.Yu. Krachkovsky, "Generating

Shamai and Zehavi [2] give bounds on the capacity of the Functions and Lower Bounds on Rates for Limited
bit-shift magnetic recording channel. Kolesnik and Krachkovski Error-correcting Codes," IEEE Trans. on Inf. Theory, May

[3] obtained asymptotic bounds on the achievable rates of 1991, pp. 778-788.
bit-shift error-correcting codes. Fredrickson and Wolf ý4] [4] L.J. Fredrickson and J.K. Wolf, "Error Detecting Multiple

introduced a class of single bit-shift detecting codes. Co es Block (d,k) Codes," IEEE Trans. Magn., Vol. MAG-25, pp.

designed specifically to cope with a single bit shift and multibit 4096-4098, Sept. 1989.
shifts of a single position are discussed by Kuznetsov and Vinck [5] A.Kuznetsov and A.J.Vinck, "Single Peak--shift

and by Ytrehus in [5,6], respectively. Ferreira and Lin [7] give Correction in (d,k)--sequences," IEEE Int. Symp. Inform.

code constructions based on the representation of constrained Theory, June 24-28, 1991, Budapest, Hungary, p.256.

sequences as integer compositions. Abdel-Ghaffar and Weber '610. Ytrehus,"On (d,k) Constrained Error-controlling

[81 extends the results given in [4,6]. We discuss the design of Block Codes," to be published. See also Abstracts of papers,

en- and decoding for the multibit peak-shift channel. Int. Symp. Inform. Theory, San Diego, CA, Jan. 1990,

We give a definition of a multibit peak-shift and a general p.124.
definition of a code capable of correcting single peak-shifts of [7] l.C. Ferreira and S. Lin, "Error and Erasure Control

size t. We concentrate on codes C consisting of (d,k)--sequences, (d,k) Block Codes," IEEE Trans. on Inform. Th., Vol. 37,

and call them (dk)-codes. For (d,k)--codes with k-d)2t we September 1991, pp. 1399-1408.
introduce the concept of a perfect code capable of correcting [8]K.A.S. Abdel-Ghaffar and J.H.Weber, " Bounds and
single peak-shifts of size t. We remark that the problem of Constructions for Runlength-limited Error--control Block

constructing maximum (d,k)--codes is reduced to the same Codes," IEEE Trans. on Inform. Th., Vol. 37, May 1991,

problem for (d,k)-codes with a fixed number N of substrings. pp. 789-800.
We give a universal and effective construction of [9] V.I. Levenshtein, "Binary Codes Correcting Spurious

(d,k)--codes capable of correcting single peak-shifts of size t. Insertions and Deletions of Ones," Probl. Peredachi Inform.,
The construction is universal in the sense that it does not Vol 1, pp. 12-25, 1965.
depend on the (d,k)-constraints and, in particular, allows to
correct single peak-shifts of size t which disturb these
constraints. The main idea of th, construction consists of using a
finite Abelian group G of order m to partition any code C into
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Codes on curves and their geometry

J.W.P. Hirschfeld

University of Sussex, Brighton, U.K.

Linear codes with 'good' parameters can be constructed from algebraic curves over finite
fields. Since Goppa's original paper in 1981, there has been a constant flow of research on
(1) asymptotic properties of these codes, (2) behaviour of these codes on different types of
curves, (3) efficient decoding.

The construction gives linear q-ary [n, k, d]-codes satisfying
(a) In - (q + 1)1 _< 2gvl,; (b) k = m - g + 1; (c) d > n - m.
Here g is the genus of the curve and m is a positive integer satisfying n > m > 2g - 2. An
important consequence is that d satisfies n - k + 1 _Ž d > n - k + 1 - g.

The length n of the code is at most the number of rational points on the corresponding
curve C. So it is of interest to study the codes arising from a curve C with a 'large' number
of rational points, that is, points defined over the ground field F,. The known classes are
(1) modular curves; (2) Hermitian curves; (3) Suzuki curves; (4) Ree curves.

The main feature of the modular curves is that they provide a sequence for which
limn/g = V - 1. This leads to the asymptotic result bettering the Gilbert-Varshamov
bound. The number of Fq-rational points on a Hermitian curve is qVi + 1; the number of
Fq-points on a Suzuki curve is q1 + 1; the number of F5-rational points on a Ree curve is
q3 + 1. in these last three cases as well, interesting codes are obtained. A common feature
is the great symmetry that these curves enjoy, in the sense of having a large group of
automorphisms.

The geometry of these codes can be explored from two points of view. Their large
automorphism group of the curves reflects many interesting geometrical properties. Also a
linear q-ary In, k, d]-code can be considered as a set of n points in the projective space Pk-1
with at most n - d of these points in any hyperplane. This connects coding theory problems
on the maximum value of parameters with combinatorial problems in finite projective
spaces on the maximum size of subsets subject to certain intersection conditions.
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Algorithms Analogous to Algebraic Geometric Codes

Gilles Lachoud

Laboratoire de Ma•thmatiques Dlscrtu du CMS

Luminy Came 930,(13288 - Marseille Ceder 9 - FRANCE

elliptic curves. The Coxeter-Todd lattice, the Leech lattice can
We describe polynomially constructible (PC) algorithms b conscte in tis way; and one gets in high dimensions

based on curves with many rational points, namely these some lattices densest than these pr'eviously known.

curves which are used in the theory of algebraic geometric

codes, but involved here in some other contexts. We shall

develop the followiDZ results: asymptotlcal bounds for sphere packing.

If we have a family of lattices P(n) c R2 with n -* -,

multiplication algorithms then Minkowski showed that there exist families with

asymptotic exponent limr sup X(P(n)) z - 1 ; but in fact it is
D. and 0. Chudnovsky discovered that one can use very difficult to construct asymptotically good families of

curves with many points in order to define fast bilinear lattices, i.e. with finite asymptotic density exponent. By the
multiplication algorithms in large extensions of a finite field. use of algebraic curves with many rational points, several

If we have a bilinear multiplication algorithm B(n) authors (Lytain, Quebbemann, Rosenbloonm, Tefnsman,

expressing the product of two elements in GF(qn), the relativegecs Viadut) gave PC constructions of families of asymptotically
multiplIcative complexity of 8(n) is defined as good families of lattices and of sphere packinga.

m(B(n))
P(B(n)) -

n

where m(B(n)) is the number of multiplications by non- asymptotlcal bound* for spherical codes

constant terms needed in order to perform B(n). Then, Consider spherical codes X on the unit sphere of R" with

following Shparlinsky, Tsfasman and Vladut, there are angular distance p. The number

families of algorithms with aqymptotic multiplicative

complexity pq - Hlm inf p(B(n)) rather small and in any case R - log2 -
finite, for instance Pc 35/6.

Is called by Shannon the reliability of such a code, and he

gave a lower bound for the asymptotic reliability of families of

dense lattices such codes. Then there are PC families of spherical codes

whose reliability is at least one half of the Shannon lower
Let P be the set of centers of a packing of equal non-

bound (Lachaud, Stern). There are also families with
overlapping spheres in the euclidean space RW. Denote by 8(P)

asymptotic kissing number > 2/15.the density of P and by

8(P)

the density exponent of P. Mlkies and Shioda have given a

general process of construction of dense lattices based on
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ALGEBRAIC GEOMETRY TOOLS IN CODING THEORY

S.G. Vladut
Institute for Problems of Information Transmission

Russian Academy of Science
19 Ermolovy Street

Moscow, 101447, Russia

November 2, 1992

This talk is devoted to some applications of al- merator for some of these codes, which de-
gebraic geometry to coding theory other than al- pends on certain calculations with the trace
gebraic geomaetry codes. The general scheme of formula for Hecke operators;
these applications is converse to the Goppa con-
struction, which associates a code to some alge- 9 direct computation of the weight of certain

braic geometry data. Here, on the contrary, some subcodes of second order Reed-Muller codes

problems in coding theory give rise to certain al- (without using the MacWilliams identities),

gebraic varieties over finite fields, so that these which reduces to the study of a family of su-

problems can be formulated as questions about persingular Artin-Schreier curves.

these varieties (usually concerning their ratonal
points). One schould mention that usually the al-
gebraic geometry problems arising in this way are
rather subtle; nevertheless there are some cases
where it is possible to solve them using power-
ful technique of modern algebraic geometry whih
leads to rather interesting results in coding theory.

In this talk we consider the following results:

"* complete determination of the covering ra-
dius of BCH-codes of large length (both prim-
itive and non-primitive) ; this uses the Lang-
Weil bounds for the number of rational points
on the variety over a finite field;

"* complete determination of weights of codes
orthogonal to certain binary and ternary
cyclic codes (the Melas code, certain classi-
cal Goppa codes, the Zetterberg code), which
reduces to counting rational points of certain
elliptic and hyperelliptic curves;

"* complete determination of the weight enu-
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DECODING OF ALGEBRAIC-GEOMETRIC CODES

Michael A. Tsfasman
Institute for Information Transmission Problems

Moscow and Centre National de Recherche Scientifique
Marseille, Russia

November 2, 1992

A decade ago the problem of decoding
algebraic-geometric codes looked hardly tangible
and rather far from algebraic geometry. Both
proved to be wrong.

The break-through, started by Justesen during
his visit to Moscow in 1988, last year reached the
point of decoding algebraic-geometric codes up to
half the designed minimum distance.

This illustrious achievement is due to the work
of many mathematicians, including Vladut, Sko-
robogatov, Larsen, Havemose, Elbrond Jensen,
Hoholdt, Porter, Krachkovskii, Pellikaan, and
Shen, the final result being obtained by Ehrhard,
Feng, Rao, and Duursma.

The algorithms we have now are both of reason-
able complexity and rather easy to understand.
However they do tangle several specifical difficul-
ties of algebraic geometry nature.

In this talk the principal points of these decod-
ing algorithms will be described for the simplest
example of the curve being the line, with the dif-
ficulties of the general case being pointed out on
the way.
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DECODING ALGEBRAIC-GEOMETRIC CODES UP TO
(D-1)/2 ERRORS

Dirk Ehrhard
University Duesseldorf

Germany

November 5, 1992

ABSTRACT

We present an equivalent form of the decoding
algorithm in [2]. It achieves the designed min-
imum distance in Decoding Algebraic-Geometric
Codes. For a wide class of such Codes the algo-
rithm is described in an elementary way with a
minimum of Algebraic Geometry concepts.

1. V.D. Goppa, Codes on algebraic curves, So-
viet Math. Dokl., vol. 24, pp. 170-172, 1981.

2. D. Ehrhard, Achieving the designed error
capacity in Decoding Algebraic Geometric
Codes. To appear in IEEE-Transactions on
Information Theory.
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CHANNEL CODING STRATEGIES FOR CELLULAR RADIO

Gregory J. Pottie A. Robert Calderbank
Electrical Engineering Dept. Mathematical Sciences Research Center
University of California, Los Angeles AT&T Bell Laboratories
405 Hilgard Ave. 600 Mountain Ave.
Los Angeles, CA 90024 Murray Hill, NJ 07974

ABSTRACT frequencies, the code will provide frequency diversity protection
against fades in the signal level. The diversity protection lowers

To improve re-use of timelfrequency slots in a cellular radio sys- the signal to interference ratio threshold required for reliable
tern, it is desirable for the average interference levels seen by all operation, permitting re-use of all slots in neighbouring cells. As
users to be made approximately equal. We provide constructions in CDMA systems, interference levels will now directly depend
based on orthogonal latin squares that guarantee different sets of on the number of users, with some back-off from the maximum
users to interfere in successive slots. We illustrate how this may required for acceptable performance. The reduction in the number
be combined with convolutional coding to provide large perfor- of users implied by the use of a rate 1/m code, m an integer does
mance improvement with low delay in a slow hopped system. not materially affect the capacity provided m is reasonable, since

coding can take the form of occupying m slots with reduced
SUMMARY power. The interference power is unchanged from the case of

transmitting at the nominal power using I in m slots. Another
In mobile cellular radio, the dominant impairments are multipath benefit of coding is increased resistance to noise, and conse-
fading and interference from other mobiles. In conventional quently the average transmitter power requirements are reduced.
TDMA systems, mobiles are assigned slots which they keep from
frame to frame. The interfering mobiles are assigned slots in the Compressed speech presents a challenging channel coding prob-
same way. As interference levels vary widely between slots, the lemn Delay is a critical parameter, with the maximum acceptable
result is that some mobiles suffer from persistently poor SNR. delay on the order of 20 to 40 ms. For 8 kb/s speech with a 20 ms
Systems are generally designed for 90% or 99% worst case condi- delay, there are only 160 information bits. In this time, reasonable
tions. Therefore, the result of this uneven interference distribution frequency and interferer diversity must be achieved, along with
is overly conservative restrictions on frequency re-use between coding gain. We analyze a slow frequency hopped TDMA
cells, and thus reduced capacity. approach involving convolutional codes and differential QPSK.

For slots of 8 to 16 information bearing signals, it is very difficult
If instead the slot assignments were arranged such that different to estimate the signal to interference ratio (C/I) in the presence of
interferers were encountered in successive frames or slots, then rapid multipath fading. Due to the uncertainty in this estimate,
the worst case error statisitics would improve, particularly in soft decision decoding is in some cases outperformed by hard
combination with channel coding across the slots or frames. A de&sion decoding combined with an erasure-declaring mecha-
number of recent papers [1,2,31 have proposed randomizing the nism. Moreover, for two antenna branches, selection diversity
interference with beneficial results. We provide specific construc- performs quite well relative to combining based on C/. Our
tions that lead to good performance with low delay. results indicate that a conventional TDMA system with coding is

inferior to the CDMA system proposed in [4) at all reasonable
The allocation of time/frequency slots to different users in the outage probabilities, if re-use of all frequencies is attempted in
same cell, and to users in neighbouring cells is a combinatorial every cell. However, a slow-hopped system using the method of
problem of some delicacy. We begin by considering a frame to be orthogonal latin squares yields as much as a factor of 2 in
an n x n array where the rows correspond to frequency slots, the increased capacity depending on the particular assumptions made
columns to time slots, and the array entries to different users, about the propagation environment.
Each user in each cell has an individual hopping pattern, and the
symbol denoting that user occurs exactly once in each row and Unequal error protection may be of use with compressed speech,
column of the frame, as for example in frequency-hopped sys- since not every bit has an equal effect Ln the perceived quality of
terns. Thus, it is possible to accomodate n different users in each the reconstructed speech. We present an example of how this
cell. The combinatorial problem is to allocate hopping patterns in might be achieved with low delay and minimal extra complexity
neighbouring cells so that two users in these neighbouring cells cost. We also discuss coding in slow fading environments.
interfere in at most one time-frequency slot We show that if n is a
prime power then there are n-1 ways of allocating time-frequency [I) B. Oudnawdbm, J. SkoWd. ud JX Ugbmd, A conmpuison of CDMA md
slots with the desired interference properties. The construction is T"DMA Syes,"4 Proc. I992 IEEE Vedc TcIh. Conr., Drover. May 1992.
based on mutually orthogonal latin squares. Combinatorial pp. 732-735.designs associated with latin squares lead to allocation strategies 121 K. Saouka, Block Coded 16-QAWTDMA celularadio sysem usiemcyclical dow frequency hopping*,. Proc. 1992 MEE Vbuic. Tecb. Cori..
for TDMA systems and for TDMA systems with frequency diver- D , May t992, pp. 40540S.
sity. (31 N.R. LivneI et al., requcy hoIpping CDMA for digital radio,- Proc.

Intl. Commqilere Symp.. Hlerzlij. srel, Dec. 1991.
Use of these allocation strategies results in independent interfer- (4) K.S.Gilhouuenetal.,'On thecaaityofacefularCDMAsylem, IEEE
ence levels across slots, and therefore channel codes may be used Trrms Vehic. Tech., May 1992, pp. 303-312.
to provide diversity protection against the resulting variations in
signal to interference ratio. If in addition the slots are at different
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A Comparison of CDMA and Frequency Hopping in a Celiular Environment

Michael I. Mandell and Robert J. McEliece
Caifornam Inrtitute of TeclmolM, 116-81, Pa•aden, CA 91125

Abstract very low code rates because using a low rate code a relatively

72s paper compares the perormance of Direct Sequence small number of users would occupy the entire system band-
Code Division Multiple Accpes (CDMA) and D tequency width and thus result in a small amount of traffic. It turns

Hopping (PH) schemes in a cellular multiuser en. out that, from an information theoretic viewpoint, that the
Our multiuser channel model incorporates the effects of ability of CDMA to use low rate codes is an advantage over
propagation, frequency selective fading, and interference the lower interference power in the PH system.

among users in the presence of a constrained system band- Since the information theoretic results are obtained
width. The CDMA and FH systems are compared usiWg over arbitrarily complicated coding schemes, and thus, ar-
BPSK modulation. The main point of contrast between bitrarily long delays, we investigate the performance of spe-
these systems is that the orthogonal hopping patterns in a cific coding schemes and the effects of a finite, controlled,
FH system result in a decreased additive interference power, delay using interleaving. These results are obtained primar-
however the frequency spreading nature of CDMA results in ily through simulation. Making some assumptions about
the ability to combat fading. An information theoretic anal- the vehicle speed and transmitter frequency, we evaluate
ysis is presented, which shows that system capacity is larger performance using a finite amount of interleaving delay by
for CDMA than for PH. Hence, for this channel, with muf- taking into account the actual amount of correlation among
fident coding the CDMA system can achieve a higher level channel samples as seen from ce codeword symbol to the
of performance than the FH system. However, it is unclear next. We have evaluated the performance of several rep-
what level of complexity would be required to achieve such etition codes as well as an (8,4) bi-orthogonal block code.
performance, and what effect such complexity would have These coding schemes perform far below informatio the-
on the practicality of the s em, oretic capacity, and yield performance curves for FH and

CDMA that cross with FH performing better higher levels
of traffic with relatively high probability of bit error, and

Summary the CDMA performing better at lower levels of traffic, with
In this paper we compare the performances of direct se- relatively low probability of bit error.
quence Code Division Multiple Access (CDMA) and Fre-
quency Hopping (FH) in a cellular multiuser environment. References
We assume that there is a fixed system bandwidth, B, and
a fixed data rate, R, at which each user communicates. The [1] Wallace, Mark S., "High Capacity Digital Cellular
normalized traffic of a system, p, is defined to be the number Commcations Through Slow Frequency Hopping
of users per sector, N,, divided by the ratio of B to R. We CDMA", Proc. 29th Annual Allerton Conference on
find that the FH system sees less interference power than Communication, Control, and Computing, pg. 21, 1991.
the CDMA system, however, the FH system is susceptible (21 Verhulst, D., M. Mouley, and J. Szpkrgs, -Slow P•e-
to frequency selective fades whereas the wide band nature quency Hopping Multiple Access for Digital Cellular
of CDMA offers a level of diversity to such fading. Thus, a PRadiotelephone', IEEE Journal on Selected Areas in
tradeoff in performance exists and the FH system performs Communications, vol. SAC-2, no. 4 pp. 563-574, July
better at higher levels of traffic with relatively high proba- 1984.
bility of bit error, and the CDMA system performs better [3] Simon, M.K., J. K. Omura, IK A. Scholtz, and B. K.
at lower levels of traffic, with relatively low probability of Levitt, "Spread Spectrum Communications', Vol. 2,
bit error. MD: Computer Science Press, 1985.

At this point, we consider the use of coding and present [4] Jakes, W. C. Jr., 'Microwave Mobile Coimunica-
an Information theoretic analysis. Assuming that there is no tions', New York: Widey, 1974.
cooperation among the users in the system on the level of [5] Proakis, John G., "Digital Communications', New
coding, the capacity of the system is defined to be the largest York: McGraw Hill, 1989.
possible value of normalized traffic, p, for which each [6] Gilhousen, K. S., I. M. Jacobs, R. Padovani, A. J.
in the system can communicate reliably at rate R. The ca- Viterbi, L. A. Weaver, and C. E. Wheatley, -On The
pacity of FR and CDMA are computed and we find that
the CDMA system has a larger capacity. This is due to the Capacity Of A Cellular CDMA System', IEEE Tras.
fact that the the FH system does not allow for the use of Veh. Tech., vol. 40, no. 2, May 1991, pp. 303-312.
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CAPACITY OF COHERENT FREQUENCY-HOP SPREAD-SPECTRUM COMMUNICATIONS

Giovanni Cherulini' and Wayne Stark2
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2University of Michigan, EECS Department, Ann Arbor, MI 48109-2122

ABSTRACT

The capacity of a coherent frequency-hopped (C-FM) spread-spectrum The maximum in (1) is over all distributions of the random vector X'm.
system is investigated. The channel comprises an M-ary phase-shift We do not allow this distribution to depend on the random vector L(n),
keying (M-PSK) modulator, a frequency hopper with phase-continuous i.e., the encoding process is independent of the frequency slot used Io
carrier, the tansmission medium, a nonideal phase-coherent frequency send each symbol. In addition, we observe that each symbol is used with
dehopper, an M-PSK demodulator, and a carner tracking system. Addi- the same probability in most codes of practical interesl Thus we restrict
tive white Gaussian noise is considered. 'The analysis focuses on the ourselves to the computation of the mutual informatdi for a uniform
effect of imperfect recovery of the carrer phase on the demodulation distribution of the input symbols. Since the channel is not memoryless,
process. The carrier tracking system includes a maximum likelihood esti- capacity is not trivial to calculate. However, bounds on the entropy of a
mator of the phase error and a first-order digital phase-lock loop. The random process which is a function of a Markov process are known
phase error is modeled as a Markov process. An expression for the state [6,7). Since (Yn, 4,, On) is a Markov process, it follows that (Tn) is a
transition probabilities of the phase error process is given. Using bounds function of a Markov process. If we let
on the entropy of a function of a Markov process, lower bounds to the
capacity of C-FH channels are derived. The input symbols are assumed H(Y) = F I_ H(Y(X) (3)
uniformly distributed and the encoding process independent of the fre- -- a
quency slot selected to send each symbol. Numerical results obtained
for various values of M and of the number of frequency slots are pre- H(Y I X) = -I H(Y(n- I X(X)) (4)
sented. n -+_ n

SUMMARY then the following bounds can be applied, for n = 1, 2.

In this paper, the capacity of a frequency-hopped spread-spectrum com-
munication system with coherent demodulation is investigated. It is and
known that large gains over systems employing noncoherent demodu-
lation are attainable if trellis coded M-ary phase-shift keying (M-PSK) H(Ynln_ Y.... .•. * .xnb .... -XI) S H(YiX)
and coherent demodulation with maximum-likelihood sequence detection (6)
are adopted [I]. In frequency-hopped spread-spectrum systems, however, S H(ry, lr ...1 . r.x - xI).
a major obstacle to coherent demodulation is represented by the diffi-
culty for the receiver to maintain phase coherency between the carrier of which can be computed by using the known state tiusition probabilities
the incoming signal and a locally generated waveform, of the phase error process. If, in addition to YR, 4I is also available to

In early work on coherent frequency-hopped (C-FH) sread-spectrum the decoder, the capacity becomes
communication systems, ideal carrer Uacking was assumed [2,3]. In
more recent work, it was proposed to generate the C-FH signal by = im MIX I (X(.).; y(n) L(n)) (7)
phase-modulating the harmonics of a reference sinewave [4,5]. The l- C a -

carier tracking system recovers the phase of the reference sinewave to
dehop the received signal coherently, provided the phase relationships Expressions similar to (5)-(6) can be used to bound the capacity given
between the reference sinewave and each of its harmonics are known, by (7).
The feasibility of such a method has been demonstrated for low signal- Numerical results showing lower bounds to the capacity of a C-FM
to-noise ratios and binary PSK modulation. channel ar presented for various values of M and of the number of fre-

We extend the approach described in [4,51 to a channel that corn- quency slots.
prises an M-PSK modulator, a frequency hopper with phase-continuous
carrer, the transmission medium, a nonideal phase-coherent frequency
dehopper, an M-PSK demodulator, and a carrier tracking system. Addi-
tive white Gaussian noise is considered. The carrier tracking system Rere-ces
includes a maximum-likelihood estimator of the phase error between the
transmit and receive reference sinewaves, and a first-order digital phase- [11 G. Ungerboeck, Charannd coding with multilevelihue signals,"
lock loop. The analysis focuses on the effect of imperfect phase recovery IEEE Trans. Inform. Theory, Vol. IT-28, pp. 55-67, ian. 1982.
on the demodulation process. Assuming that the frequency of the refer- [2] M. K. Simon and A. Polydoms, "Coherent detection of frequency-
ence sinewave is perfectly known, it is shown that the phase eor (OR) hopped quadrature modulation in the presence of Jamming - Part 1:
can be modeled as a Markov process. The state trnsition probabilities of QPSK and QASK modulations, " IESE Trans. CommwL, Vol.
the process (On) are evaluated. COM-29. pp. 1644-1660, Nov. 1981.

We consider two channels: one for which the input to the decoder is [3] W. L. Stark, "Coding for coherent frequency-hopled spread-
just the channel output sequence rn and one for which in addition the spectrun communications in the prmnce of jamming," Proceeding
frequency-hop pattern 4, is known to the decoder. The capacity of the of the 1982 IEEE Military Communications Comference, Vol. 1, pp.
charnel which outputs the sequence r. only is given by 14.2.1-5. October 18-20 1982.

[4] 0. Chefubini and L B. Milstein. "Performance analysis of both
hybrid and frequency hopped pitue-coherent spread-spectnun

n a 1 I(fl).r(3)) (1) systems - Part I: An FH system," IEEE Trans. Cmmun., vol.
COM-37, pp. 612--622, June 1989.

where X(n)=(XI,X 2,....Xm) is the vector of charnel Input symbols, [5] C. M. Su and L B. Mlistein, "Analysis of coherent frequmecy
y(n) - (Yt, r2..... r.) is the vector of channel outputs, and I(X('); (n)) hopped spread-spectrum receiver in the presance of Janmmng," 1EEE
is the average mutual information between the random vectors X)n) Ed Trans. Cownnun., vol. COM-38. pp. 715-726, May 1990.
y(n), which can be expressed u the difference between the entropy of [6] J. L. Birch. "Approximations for the entropy for function of Madmv
() and the conditional entry of ) given X(), Le., chains," Annuas of Mathmatical Ssawgics, voL 33, pp. 930-938,

1962
([71 T. M. Cover aid J. A. Thomas, "Eements of Inwformao Teocy,"

/ •(n). r(fiý - H(Y= n - H(•~n1 I P (2) Wiley Intersciee, New York. 1991.
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ERLANG CAPACITY OF A POWER CONTROLLED CDMA SYSTEM

Audrey M. Viterbi and Andrew J. Viterbi

QUALCOMM, Incorporated
10555 Sorrento Valley Road

San Diego, CA 92121

For any multi-user communication system, the measure of its Also, in conventional systems a fraction of the time or
economic usefulness is not the maximum number of users frequency slots must be set aside for users to transmit requests
which can be served at one time, but rather the peak load that for initiating service and a protocol must be established for
can be supported with a given quality and with availability of multiple requests when two or more users collide in
service as measured by the blocking probability. This is the simultaneously requesting service. In CDMA systems even
probability that a new user will find all channels busy and the users seeking to initiate access can share the common
hence be denied service, generally accompanied by a busy medium. Of course, they add to the total interference and
signal. Adequate service is usually associated with a blocking hence lower the Erlang capacity to some degree. We
probability of 2% or less. The average traffic load in terms of demonstrate that this reduction is very small for initial access
average number of users requesting service resulting in this requests whose signaling time is on the order of a few percent
blocking probability is called the Mang capacit of the of the average duration of a call or message.
system.

In virtually all existing multi-user circuit-switched systems,
blocking occurs when all frequency slots or time slots have
been assigned to a voice conversation or message. in code
division multiple access (CDMA) systems in contrast, users all
share a common spectral frequency allocation over the time
that they are active. Hence, new users can be accepted as long
as there are receiver-processors to service them, independent
of time and frequency allocations. We assume that a sufficient
number of such processors are provided in the common base
station such that the probability of a new arrival finding them
all busy is negligible. Rather, blocking in CDMA systems will
be defined to occur when the interference level, due primarily
to other user activity, reaches a predetermined level above the
background noise level of mainly thermal origin. While this
interference-to-noise ratio could, in principle, be made
arbitrarily large, when the ratio exceeds a given level (about 10
dB nominally), the interference increase per additional user
grows very rapidly, yielding diminishing returns and
potentially leading to instability. Consequently, blocking in
CDMA is defined as the event that the total interference-to-
background noise level exceeds a given threshold and we
determine the Erlang capacity which results in a given
probability of this event (e.g. 1%). We emphasize, however,
that this is a "soft blocking" condition, which can be relaxed as
will be shown, as contrasted to the "hard blocking" condition
wherein channels are all occupied.
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CODING DECREASES DELAY OF MESSAGES IN NETWORKS
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Ermolovoy 19, Moscow GSP-4 Hertzena 67, St. Petersburg
101447 Russia Russia
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We consider an application of codes correcting errors References
and erasures for decreasing delay of messages in networks
with datagram service. Let any message consists of k [1] N. F. Maxemchuk, "Dispersi'" routinge,
packets and the sender adds r redudancy packets in such Proceedings IEEE Conf.Commun. ,San Francisco,
a way that all n = k + r packets together form a codeword 1.7, N.Y., 1975, vol.3.
of some Q-ary code with minimum Hamming distance d, [2] L. Kleinrock, Communication nets, NY, Dover, 1984.
where Q = 2n and m is the length of any packet in bits.
Then the receiver can recover a message immediately after
obtaining the first n - d + 1 packets, because he consid-
ers the rest d - I packets, which are not yet arrived, as
erasures and corrects them. In particulary, the receiver
can recover a message after obtaining the first k packets,
if Reed-Solomon codes are used (1].

Denote by tj the delay of the i-th message and as-
sume that the delays t1,t 2 , ..., t. are independent iden-
dically distributed random variables. Denote by ti:f,
the i-th order statistic of the sample (t1 ,t 2 ,...,tn), i.e.
l:n _5 t2:n... :5 tn:n. Then the delay of a message equals
T = t k:k for ordinary procedure and equals T(R) = W(') for
described above procedure when R-S code of rate R = k/n
are used.The superscript R shows also that one had to re-
calculate the packet delay, because the a terage customer
arrival rate A increases in 11R times. We suppose (see
[2]) that the average packet delay equals

IE t] = a/(1 -p), (1)

where p = A/p is the utilisation factor and a is some
constant depending on a given structure of network and
fixed proportions of input flows. We also assume that the
delay of any packet is exponentialy distributed. It ib well
known that for this distribution the average value of the
k-th order statistic equals

nIE [ :. J t i- .
i-n-k+l

Using this fact and the assumption (1) and by putting
R = 2p/(l + p), one gets that the procedure of encoding
messages certainly gives a gain if

l+p
2 In 1-- < C+lnk,

where C is the Fuler constant. We generalize this resilt
for: networks with "impatient" messages; nonreliable net-
works; networks with "time-out" procedure.
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The Performance of Frequency Comb Multiple Access(FCMA) In
Interference Limited and AWGN Environments

T.J. Stevenson Student Member IEEE, ILW. Yates Senior
Member IEEE, University of Technology, Sydney, Australia

AbstracL The performance of FCMA is analysed in environments P " (-1) (n
where the dominant sources of interference are firstly, the multiple u- 1E (

access noise of other users and secondly, AWGN. Ultimately,
multiple access noise is the limiting factor in performance. The Equation (1) then enables BER to be plotted versus both active
intended transmission to the selected addressee is always symbol user numbers and channel utilisation(t), where for FCMA,
synchronous and phase coherent Thc interferers are observed in r = Xk / N (bits / hertz).
one instance when they are symbol s) chronous and phase
coherent and again while symbol synchronous but noncoherent in When signatures with controlled overlap are used, for example
phase. The symbol synchronous phase coherent interferers are where any two signatures have at most one element in common,
found to represent the worst case performance. there is a minimum number of simultaneous users X before errors

occur in the absence of AWGN.
Summary. FCMA was first proposed by Stevenson et al [1), as a
,tw form of multiple access for packet satellite communications. Performance in AWGN was also investigated. It was assumed that

maximum likelihood detection was used together with signatures
In the proposed system, users share the resource on a having at least one common element Yates [31 and Wu [2]. The
nonorthogonal basis, as is done in variants of Code Division system was assumed to be symbol synchronous with all users'
Multiple Access, such as Frequency Hopped Multiple Access frequency combs aligned in phase. The derivation is from first
(FH/CDMA) and Direct fequence Multiple Access (DS/CDMA). principles but is omitted here due to space limitations.
However instead of user signatures occupying a time varying
narrow band (FH/CDMA) or the full bandwidth continuously A comparison of simulation and analytic results for the above case
(DS/CPMA), signatures consist of quasi-orthogonal combs of shows close agreement and establishes an upper bound to
frequencies. For this reason the scheme is termed Frequency Comb performance. The claim that this is an upper bound is justified by
Multiple Access (FCMA). Signature combs interleave one another the fact that inphase interferers give worst erosion of distance
over the available bandwidth and provide the basis for both between symbols.
multiple access and information transmission. FCMA belongs to
the same family as Random Multiple Access (RMA)[2], with the Simulation results indicate that noncoherent interferers have a
difference that code signatures are restricted to combinations of significant performance margin over coherent interferers. This is
discrete frequencies which are on for the complete symbol an intuitively satisfying result, as noncoherent interferers would
duration. This is in contrast to RMA, where signatures are generally occur in practise. Because of the distance properties of
combinations of energy elements, from the (symbol) the signature set chosen, the system is power limited(AWGN
time-(available) bandwidth plane. dominated) when X < (n+)). When X >= (n+]), there is a value

of E4NA at which the system becomes dominated by multiple
A unique feature of FCMA, is the manner in which addressing and access noise. For n=3 a value of E,/No > 15 dB was required and
information conveyance is jointly accomplished. for n=5 a value of EbINo > 19 dB.

Applications for FCMA include: satellite multiple access in which
Each user has a look up table giving the signature sets of all other the traffic is bursty and a guaranteed level of performance is
users in the system. The transmitter can then be programmed to required, ie low data rate VSATS; control channel for DAMA;
use the signature sets of any other user in the system and hence to emergenry maritime communications; networks in which the active
communicate with any other user. user pculation is a fraction of a much larger potential user

population; mobile communications; indoor wireless; environments
The selected addressee has a receiver tuned to its own signature requiring frequency diversity; delay intolerant systems eg speech;
set There is also considerable advantage in being able to monitor inquiry response traffic using short packets.
other channel transmissions, as this will determine if the intended
addressee's receiver is presently being interrogated and hence As signatures convey both address and data information, there are
reduce the possibility of collision. In FCMA, this is a significant no address overheads and very short packet- are viable, since rapid
aspect of communication, as opposing schemes, such as Aloha, acquisition can be achieved using a short preamble provided an
experience collisions whenever two users share the channel FFT receiver is used. System design involves choices for three
simultaneously, whereas with FCMA, this only occurs when two parameters N, n, and k. Considerable flexibility is therefore

messages are simultaneously directed to the same user. available to meet particular traffic requirements and constraints.

[11 T.J. Stevenson and K.W. Yates, "A New Multiple Access
Performance is first considered in a multiple access noise only Scheme for Packet Satellite Communications", ISSSE'89, Erlangen,
environment, where there are (X-l) interferers and ii is assumcd West Germany, September 1989.
that signatures are generated by randomly selecting n frequencies
from an available pool of M, the results can then be easily checked [21 W.W. Wu, Elements of Digital Satellite Communicationi,
by simulation. The resulting BER when each user has M=2' vol.2, Computer Science Press, 1985.
signatures and thus conveys k bits per symbol is:

ILL-1 N- M[3] K.W. Yates, "Waveform Encoding in Spread Spectrun
2 F L"(. l - 1|--'/ " .)--1) (!) Systems", presented at the 23rd URSI Conference, Prague, 1991
21-1 ,+1 t( J /(not published).
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Analysis of a Hybrid 2. T = 3 gives the best performance out of all (NcT)

Random-Access System with codes for both Blocked and Free -Access RAS's [2]. Thus,the search for BRAS's can be considerably narrowed, since
Multi-User Coding (Throughput) large T offers no advantage at all.

3.The upper bound of (Nc, T) codes [4]tends to get loose as
Rumaih M. Al-Rumaih and Peter Mathys NC diverges from T, which might suggest that the capacity

of (Nc, T) codes should be a function of Nc. Note that for
practical reasons large Nc is not desirable in our case.

Department of Electrical and Computer Engineering

University of Colorado
BoulderColorado 80309-0425 rig() Throughp.t for coded & ,ncoded B~ocI.e-occ.,, •S

Abstract 0.
The performance of hybrid random-access sys- 0.50. . - "s

tems (HRAS) which use a combination of multi- 0...- 5.
user codes (MUC) and collision resolution algorithms
(CRA) to accomodate the bursty transmissions of 0.0.
many independent users on a single communica- 0..
tion channel is analyzed. Besides the computation
of the system throughput , another contribution 0 30

of this paper is the determination of the proper- 0.25

ties which a MUC must possess such that resulting
HRAS performs better than a system which is only 0202 3 5 a --.
based on CRA's. a

I. Introduction n
We aim at combining the collision resolution(CR) and the Fig(2) throughput for coded & uncod*d Fre-access RAS

Multi-user information theory (MUIT) approaches [1] by
using a Hybrid Random-Access System (HRAS) which uses
both a collision resolution algorithm (CRA),e.g., as de- " .....
scribed in [2] , and a multi-user code (MUC), e.g., as de- ....... .. . .
scribed in [3]. The intutive underlying idea is that small
collisions among T or less users (e.g., T = 2 or T = 3) T 05

are "resolved" by using MUC's and large collisions (which
are assumed to occur very infrequently) are resolved by us- 0--,
ing CRA's. A notable improvement of the IRAS over one
which uses only CRA's occurs if the roundtrip delay is large. 03

Even though the delay performance is of primary interest
when adding coding to a CRA, throughput analysis is nec. -
essary and yields some initial results about how much gain
coding might offer. References

II. Blocked and Free-Access HRAS's [I] R.G. Gallager, "A perspective on Multi-Access Chan-
nels." IEEE Trans. Info. Theory, vol. IT-31, No. 2, pp.The analysis was done for the Basic Blocked and Free. 124-142, Mar. 1985.

access channel access protocols(CAP) given in [21 using

the capacity of the T user real adder channel 14] as an [2] P. Mathys and P.Flajolet, "Q-ary Collision Resolution
upper bound for the rate of (Nc,T) codes (a T active Algorithms in Random-Access Systems with Free or
out of Nc) and the codes given in [3j as a lower bound. Blocked Channel Access," IEEE Trans. Info. Theory,i vol. IT-31, No. 2, pp. 217-243, Mar. 1985.Fig(l) and Fig(2) show the maximum stable throughput for
HRAS's(7.3) )' , 'te- and lower bounds) together with [3] P. Mathys, "A Class of Codes for a T Active Users
the maximum stable throughput for the uncoded RAS's Out of N Multiple-Access Communication System,"
X,,,f2l versus Q (after a collision, each transmitter involved IEEE Trans. Info. Theory, vol. 36, .. ,. 6, pp. 1206-
flips a fair "Q-sided coin") for blocked and free-access sys- 1219, Nov. 1990
tems respectively. 141 S.C.Chang and E.J. Weidon, Jr.,

III.Conclusions "Coding for T-User Multiple-ALcess Channels,"
IEEE Trans. Info. Theory, vol. IT-25, No. 6, pp. 684-1. Maximum stable throughput can be substantialy im-69,Nv17.

proved (e.g., witb Q =3 for free-access RAS Acri 0.4016,
whereas for free-access HRAS(7,3) Aci, = 0.664 ).
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Slow Frequency Hopping Pattens Derived from
Polynomial Rtaidue Clam Riag

P.Udays and M.U. Sid'iq
DearmntofactrncalFgneigIda sttute of Tecnoog

Kanpur, 206016 (INDIA)

1.0 Introduction dsone frequency hopping patterns. Let w(0) = w,(() W,((0.
srFrequency hopping in one of the common techniques for whete w1(f0 Mi '2(f are relatively prime polyncomials of"reading t signal spectrum in digital data communication

"Iluamount of frequency spread a far more tha theee 1 adn rsetvl;n=n 1  2  hnP~wO
minimum bandwidth necessry to transmit the digital d~ata om i n 2reptvl;n=n+u2 hnFo a

Thsfact makes it feasible for many users to share a common be represented as internal direct sim of ideals isomoarphic to
channel. This paper as concerned with construction of new rinm aw(C)] and Pw )3 Let e,(() and e2(() be
flaimilies of slow frequency piqpatterns derived from ri p1 P2 1
sequences over a given semi-4 reidue class polynomial ring orthogonal idempotent polynomials in P-[w(C)3 corresonding
P' w(j)] (GF(p)((Ifw((): Set of polynomiash over GF(p) tornsP1w() ndP'wP).o h

modulo w(f)). where w(C) is a polynomial of degree n over t ringas Ps1 w (Q 2n !fw()] Then elements o h
GF~p. Te fequn lirar ina sow requncyho idals< 4f >1and< ed >mutually annihilatke each other

spea eqtuengvHS y stem i onsia t sow fargequncyzumppin [4]. Thus elements of the cosets of the ideal < e1 (C)> in
frequency carriers which are chosen to be orthogonal to each nwflaealdstnt eun edeie nsc a
Other over the traniusmiaon time duration T. The carrers ane r[() r l itnt eune r de nsc a
obtained by subdividing the entire bandwidth into contiguous that elements of a sequence belong to a distinct coast. Since
frequency slots. For multiple-access purposes, each user is these cosets are mutually exclusive (there is no common
provided with a distinct hopping ptenof period L. Each element among these cosets), ideal generalised Hamn
symbol in a hopping pattern is dwranfrom the firequnc correlation properties follow naturally. Constructionofsw
library and determines the frequency band within whc hopping sequences makes ueof otimal frequency hoppn
transmission takes place. seuneuvrlclrn sdeivdn[1.Flongewfmis

Correlation requirements on the patterns: v e oa ig eie ~] olwn o

Normally in frequency ho Pi systems, it is reqwired 1. A family of p`2 sequences of period L = paL1 over
that mutual HAMMin correlation twee sequences should be P;101whrw(C)Ilbyu'g eunc vrF:w()
small. In SPISS system., one or more symbols we trasittweeed+ 2  yuig euneovrPw()
within one frequency hop (slot) and a hit would mean total lows of period pmL-, where w,(() is an irreducible factor (af degree
of. data. transmitted in that ho f,].Ths ap!rt from no) oil w(()- Theme seqences satisfy ideal gioneralised Hamming
minimisinf mutua armn correlationbewnpatr, elis propertes.
hits resulting fro7m peec all the patterns in thX2se
should be minmimxsd. Th1s prompt us to define genoaie 2. A family of jm sequences of period L = ps1-1 over
Hamming correlation functions whinch depend on all the ,nn+2 yuigpoecicdnesqecsoe

sqecsin a family, unlike Hamming correlaitions which p 1W I~1 nb snpoecicdnesqecsoe
dpnononly on two sequences. m1lfjeahopeidpL1ThgnrlsdHmig

Let Sa, m = 1,.,n, be n seqiuenceas aleghL over P () aho eidp'1 h eeaie amn
certain alphabet .4then the tenealised HaImmin crossý- cross and auto correlations for any sequence in the family we
correlation function concerning mn sequence is given by given by

UH(1v2 .,,, 1 ri, ,)L-1 PIT~ '- m 1 a t -p~t for r.=OE~ ghSi{SU; i + frall j~m), GHC 1 v2 ...
1-0 jo-4 otherwise

where ghi is a function given by GHOC,(r,,v2 ,...,v5 a p-1 for all r , rj
gh(a;blb b )- if aE ijj, , b,) A code generation scheme, based on the direct, sum21" ' a 0 otherwise deomposition a( semi-local rnne. for slow happinmultipleThe corresponding autocorrelation function is given byv. access coemimucation systems agivenwhrtuss

GR 1(,'2,-1rd 1E I {Sfr;S1i+for all j) can have different frequency divesity.

For gr jne patrns fo FHS5 REFERENCES:
system. shou hve ideal GH poperties (Croescorrelationuaap"
function is equal to serco for all values oftvi. Ud)obaie frPlpoe!d V eune

obanedfo inieeringTanu W
2.0 Main Results [2) U. . imnJ. K. Omura, ROT cholts, B. K. levit,

The frequency hopping patterns are obtained by SredSpectrum Cammumicatioeis, Vol. 1, Cosnputer

amostngwih ac sybo ainth rngP 5((1 [3) Bernard Sklar, "Digital Communications", Qaqiter 10,
frequency f. belonging to frequency library. Properties of Prentice-H&H ~ Ciglwod ifas 1968.

orhgoa ielsO Pi( )] and the internal direct ama Clos Plnmal Rings:Thory ahdippicationms, PtLD

representation of the ring Paw(f)J hav bow in& us of to Themsis, Deparment of Mociuical Mignsering. LIT,
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BOUNDS ON THE CAPACITY OF AN AWGN CHANNEL WITH

INTERTRANSITION CONSTRAINED BIPOLAR INPUTS

Shlomo Shamai (Shitz) and Naftali Chayat

Department of Electrical Engineering
Technion - Israel Institute of Technology, Haifa 32000, Israel

We present lower and upper bounds on the capacity of an AWGN References
channel, the input to which is a bipolar (±l) waveform with a con-
straint that the minimum duration between transition is no shorter [1) S. Shamai (Shits) and N. Chayat, "Bounds on the Informa-
than Tmia. tion Rates of Binary Intertransition Constrained Inputs over the

This model is used to characterize certain magnetic recording chan- AWGN Channel", EE Report No. 864, Technion, Haifa 32000,
nels where bipolar signaling is preferred due to the hysteresis phe- Israel.
nomenon of the magnetic media and the minimal intertransition dura- [2J I. Bar-David and S. Sham. (Shitz), "On Information Tran-
tion constraint is imposed as to mitigate the heavy (possibly nonlinear) fer by Envelope Constrained Signals over the AWGN Channel",
intersymbol interference effects. IEEE Trans. on Inform. Theory, Vol. 34, No. 3, pp. 371-379,

The upper bounds are based on Duncan's formula that interrelates May 1988.
the average mutual information to the average minimum mean-square

error (MMSE) of the causal optimal estimator. To this end the MMSE [3] N. Chayat and S. Shamai (Shitz), "Extension of an Entropy

of suboptimal linear and nonlinear estimators is studied [1] and the Property for Binary Input Memoryless Symmetric Channels,"

guard-time random telegraph signal [2] is also considered. IEEE Trans. on Inform. Theory, Vol. 35, No. 5, pp. 1077-1079,

The lower bounds are found by considering bipolar runlength lim- p 1989.

ited (d, 0o) codes where d (integer) is related to the minimal intertran- [4] S. Shama! (Shitz), L.H. Ozarow and A.D. Wyner, "Information

sition constraint by d = Tmi,/A and where A stands for the duration Rates for a Discrete-Time Gaussian Channel with Intersymbol

of the bipolar channel symbol. The asymptotic (d - co) expression Interference and Stationary Inputs," IEEE Trans. on Inform.

for the entropy of the max-entropic (d, co) bipolar sequences is invoked Theory, Vol. 37, No. 6, pp. 1527-1539, November 1991.

along with a recent extension of Mrs. Gerber's Lemma [3] (to account

for any binary input-output symmetric channel) to yield the lower

bounds, which are optimized with respect to d > I (or equivalently

A = Tmoth/d). Pulse amplitude and pulse width modulated signals are

also considered in the context of lower bounding the capacity [1].

It is concluded that the capacity behaves as 1/N. (nats/sec) for

SNR = Tr.i./N 0 C < I and as TQln R) (nats/sec) for SNR>

1, where N. denotes the power spectral density of the AWGN.

Lower bounds on the capacity with the aforementioned constrained

inputs in the presence of a mildly band-limited (in scales of TQ,) chan-

nel filter are presented. Explicit expressions are found by generalizing
the recently introduced Shamai-Ozarow-Wyner lower bound on the

capacity of a dispersive discrete-time Gaussian channel with iid in-

puts [4], to account for dependen, inputs and incorporating in the

generalization a convexity property which is implied by the extended

Mrs. Gerber's Lemma.
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Abstract RI + R2 < (

We consider a frequency non-selective slowly time-varying Rayleigh T 1 +R 2  )E . l+_____

fading code-division multiaccess (CDMA) additive white Gaussian -•EExp Ai(1 + R(- p) 1(1+R-(-p )),

noise (AWGN) channel. Assuming that the signature waveforms are R 2  )) \ + 2 "

time-limited to the symbol interval, we find the capacity region of where Ak = WkTa 2 /2No is the average received signal-to-noise ratio of

the two-user symbol-synchronous channel. If the signature waveforms user k, and p is the crosscorrelation of the signature waveforms. The

span several symbol intervals, we have to further assume that the fad- expectation is taken over R2 = 1a2i12 which is exponentially distributed

ing process is constant over the duration of every codeword. In that with mean a2. 0

case, we find the capacity and the optimal input power spectral den-

sity (PSD) in a parametric expression similar to that in the classical In the special case when the signature waveforms are identical, the

water-filling argument. capcaity region reduces to the following expression.

Summary Corollary 1
If the signature waveforms are identical (i.e., p = 1), the capacity

We consider a frequency non-selective slowly time-varying Rayleigh region becomes the set of all (RI, R2) E R 2 satisfying

fading CDMA AWGN channel +

y = Xiua(t)sl(t - iT) + X 2iG2(t)s 2 (t - iT) + n(t), (1) R_ S YC(A 1 ), R2 •

where the signature waveforms of the users, si(t) and 3 2(t), are unit- + A C(if-A2CAA2 2

energy functions strictly time-limited to [0, LT] for some finite L, and + F, + (1 - i)C(A) if A, = A2 = A.

n(t) is the zero-mean complex white Gaussian noise with independent T

real and imaginary parts, each with power spectral density No (i.e.,

En(t)n*(t - r) = 2N0 6(r).) The power constraints on the users require When the signature waveforms of the users span over several sym-

that every length-n codeword of the kth user has average power at bol intervals (i.e., s(t) E [0,LT]), the single-user channel becomes

most equal to WkT. We assume that the channel is a slowly time- Y EL- hiai-X,1 + Ni, where li = R.(jT) and R,(t) is the

varying channel in the sense that ak(t) = aki for t E [iT,(i + 1)T], k = autocorrelation function of s(t). Even in the single-user case, the ca-

1,2, and {ali} and {a2i} are two independent zero-mean stationary pacity of this channel is known only in a limiting expression. However,

m-dependent complex Gaussian fading processes having independent if we assume that the channel is very slowly time-varying so that the

real and imaginary parts. The autocorrelation function of the fading fading process is a random constant over the duration of any code-
process {ak,,} is denoted by aRk(i) where ak2 is the power of {aki} word, the capacity of the single-user channel and the optimal input

(i.e., Rk(0) = 1.) Finally, we assume that the receiver has complete PSD can be obtained in a parametric expression similar to that in the

knowledge of the fading processes, but the transmitter knows only the classical water-filling argument.

statistics of the fading processes. Theorem 2

The corresponding single-user channel with s(t) E L2 [0,T] (i.e.,

L = 1) is equivalent to the discrete-time frequency non-selective The capacity of the frequency non-selective very slowly time-

Rayleigh fading AWGN channel 1' = aiXi + Ni. We have omitted varying Rayleigh fading single-user channel is equal to

the subscripts for the users in the single-user case. Since the receiver 1 , )

knows the fading parameters, the channel is equivalent to a stationary C T C(P(f)T(f))df
channel with output (Y,,a,) whose capacity is [1] where P(f) is the solution of

T() log 1 J T"R I A ExA) P(f)T(f) = F-1 ([cT(f) - +,

where the expectation is taken over R = jail2 which is exponentially A = P(f)df.

distributed with mean a 2 , and A = IVTa 2 /(2No) is the average re- JO

ceived signal-to-noise ratio. The function Ei() is the exponential- In the above equations, T(f) = i-, IS((f - k)/T)!2,
integral function and the last expression follows from 12, p. 574]. z

We extend the above single-user result in two directions: (1) the F(x) = 1 E --.

capacity region of the two-user channel with SO(t) E L2 [0,T], and (2) C(x) x- Exp() Ei (-)

the capacity of the single-user channel with s(t) E L2 [0, LT] and very A is the average received signal-to-noise ratio, and S(f) is the sp-ctrum

slowly time-varying fading process. of the

When the signature waveform are time-limited to the symbol in- signature wavefori.

terval, the CDMA channel reduce to a discrete-time frequency nol- This result can be viewed as a generalization of the water-filling

selective fading multiaccess channel, Yi = HAX, + N,, where result to the fading channel since if F(x) = x and C(x) = log[l+x]. the

A = diag[amla2i], ENiNH' = Hb,), X, = [XI,X 2,jT, and if is the above characterization reduces to the classcial water-filling argument.

crosscorrelation matrix of the signature waveforms. The capacity re-

gion of this channel is given by the following theorem. References

Theorem 1 [1] M. G. Robert. Entropy and Infrnialion Theory. New York:

The capacity region of the two-user multiaccess channel in (1) with Springer-Verlag, 1990.

sm(t).s 2 (t) E L2[0, T] is the set of all (R11, R 2 ) E R2+ satisfying [2] 1. S. Gradshteyn and I. M. Ryzhik. Tabk of Ir~d.L. Scr,. and

IC() R C(AI, P,loduct.q. London: Academic Press. Inc.. 1980.
RI <2
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THE CHANNEL CAPACITY IN THE PRESENCE OF IMPULSE NOISE

Kenneth J. Kerpez

Bellcore, Morristown, NJ 07960-1910

Impulse noise is bursty, high amplitude, low probability noise. and pt and o2 are the mean and variance of the impulse height
Impulse noise often occurs from man-made disturbances. Impulse density, Mn). It was found that any of the three lower bounds
noise is not well understood because it is not Gaussian. However, may be the tightest, depending on the parameters. The tightest
impulse noise is a significant impairment for digital transmission, lower bound to the differential entropy, h (N), is denoted as LB.
This paper analyzes impulse noise by information theoretic
calculations. In particular, the channel capacity in the presence of The bounds on the differential entropy wer used to bound theimpulse noise is bounded and computed. channel capacity. Upper bounds to the capacity were found by

using the data processing inequality for Markov chains and the
The signal and noise are assumed to be band-limited and sampled differential entropy of Gaussian noise. The lower bound to
at the Nyquist rate. Impulses are assumed to have independent capacity was found by using the entropy power inequality. It was
Poisson arrivals. Each impulse noise sample, n, is modeled by the shown that
probability density function 1In[2 e + e -UB _< _< + y.21 -

Js(n) = (1 - X)B(n) + X./v(n) 2  2
where X is the arrival rate of impulses, 8(n) is the Dirac delta where P is the received signal power. The capacity was also upper
function, and fv(n) is the "impulse height" density. Assume that bounded by the capacity of a channel with only additive white
fv(n) is a continuous function in a neighborhood about n = 0. Gaussian noise and no impulse noise.
Using the theory of generalized functions it was shown that if the The hyperbolic probability density accurately models the heights,
only source of noise is impulse noise, then the channel capacity is fv(n), of impulses observed on local copper telephone loops. The
unbounded. Thus, later results assume that there is always some hyperbolic density is: fv(n) = Cl In 3  if VL<5 I <nI1S 1VH, and
additive white noise. fv(n) = 0 otherwise; where C is a constant. The capacity bounds

Denote the probability density of the additive white noise as fw(n). were evaluated and compared for both Gaussian and hyperbolic
Then the density of the sum of impulse noise and additive white impulse heights. It was found that there is slightly less channel
noise is capacity with Gaussian impulse heights than with hyperbolic

fN(n) = (I - X)fw(n) + Xfv + w(n) impulse heights.

The capacity bounds were computed and plotted for a variety ofwith fv+w(n)=fv(n)*fw(n). Upper and lower bounds were signal and noise powers. It was found that the bounds on channel
derived for the differential entropy, h (N), of the impulse noise capacity are tight if the power of the additive white Gaussian noise
plus additive white noise. First, h(N) was upper bounded by the is large, or if the impulse arrival rate, X, is small. Most
differential entropy of Gaussian noise with the same variance, significantly, it was found that the capacity with additive Gaussian
h(N) <(1 /2)ln[2neo2] = UB, where c! is the variance of the sum white noise and impulse noise is practically the same as it is with
of impulse noise and white noise. A second upper bound to h (N) just additive white Gaussian noise and no impulse noise, as long as
was derived by using the non-negativity of the Kullback-Leibler the arrival rate of impulses is less than about I impulse every 100
distance, D (fN I I fw). A third upper bound was derived by samples. For parameters typical of high speed digital transmission
applying the concavity of the logarithm to the definition of h (N). on telephone loops, the difference in capacity with and without
It was proven that the first upper bound is always the tightest. impulse noise is less than 4 thousandths of a percent. In general,

Assuming that the additive white noise is Gaussian, three lower for most transmission parameters, impulse noise has almost no
bounds to h (N) were found. The first lower bound was found with effect on channel capacity, even if the additive white Gaussian
the entropy power inequality, it is: (1 / 2)ln[2neo2 ] < h (N), where noise power is small.
a2 is the variance of the additive white noise. The second and Formulas were derived for the bit error rate of an uncodedthird lower bounds were found by bounding the integral expression transmission system in the presence of impulse noise and additivefor the differential entropy, they are: white Gaussian noise. The bit error rate was plotted and compared

1- (l-X) 2 - X2 _._ 2(1- X) P: <h(N) to the channel capacity. It was shown that impulse noise can
i4aw 344•(a2 + =,) ;2n(2a2 + =,) greatly increase the bit error rate, but have almost no effect oncapacity. For parameters typical of telephone loops, the gap

and between the capacity and the uncoded bit error rate in the presence
l+ lln[2]_(l)2)2- _1 2Z(l-A.) 0!<h(N). of impulse noise is a hefty 40.5 dB, ata 0T7 bit error rate. This

2 42o, 1/2(o2 + o2) 42 ~ gap can be decreased to 9 dB or less by using interleaved linearblock codes to mitigate impulse noise errors, provided that the
Here, resulting delay can be tolerated.

2(02 02,) I

=e •+e) 2 e.+a! ,
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WORST-CASE POWER-CONSTRAINED NOISE FOR BINARY-INPUT CHANNELS

Shlotno Shainal (Shitz) Sergio Verdft
Dept. Electrical Eng. Dept. Electrical Eng.
Technio. Prictný Univenity
Haifa 32000, ISRAEL Princeton, NJ 06544, USA

The error probability and the capacity of binary-input additive-noise a t ±, ±3. -- if k is even.) When the allowed noise power lies stictly
channels are well-known if the noise is Gaussian. A basic problem in between oa. <02 < ok2+i, then a single span-2 lattice is no longer least
communication theory is to find the worst-case performance achievable favorable Instead, the worst-case distribution is the unique span-i mat-
by any noise distribution as a function of the signal-to-noise ratio. This tice which is a mixture of the span-2 lattices that are leas-favorable for
papar gives a complete solution to this problem for the two major perfor- Co2 and Ck2.i With respective weights (C2-_ 0a2.1(0?,t _ o?.,) and
mance measures: erro probability and capacity. Those results are ob- (ak - a2)I(ak2 - ork2.,). In particular, if SA'R > 0 dB(C02 < I). then the
tamned as an application of a general framework developed in [1] which worst-case noise is symmetric with nonzero atoms at -1. 0. +1, iLe.. the
applies to many oither performiance functionals of information-theoretic channel becomes a symmetric erasur channel. Tbus, the noise distriba-
interest besides error probability and capacity, such as divergence, cutoff tion that maximizes error probability puts all its mas on the intgers
rate, random-coding error exponent, and Chernoff entropy. Those gen- I-Al, Al- MI, where Al depends on the signal-to-noise radc and the
eral results show that the wofst-case performance functional is given by weight assigned to each of thos inegers depends (in addition to the
the convex hull of the functional obtained by minimizing only over signal-to-noise ratio) only on whether the integer is even or odd. Note
power-constrained noise distributions whinch place all their mass on a Iat- that for low signal-to-noise ratios, the worst-case noise cdf does not
tice whose span is equal to the distance between the two inputs. This become asymptotically Gaussian, as might have been surmised from
implies that the least-favorable distribution is, in general, the mixture of capacity considerations.
two lattice probability mass functions. This conclusion can actualy be
generalized to rn-smy input constellations on finte-dimensional Space, as Th worst-case capacity problem is
long as the input constellation puts its mass on a lattice. The proof of the
results presented in this paper can be found in is journal version [1J. C(a2)- min maxl(X;X-mN))-inax min I(X;X.N)

Consider the binary equiprobabl hypothesis tiesting problem: N x X N
EWN

2
JWa EI$

2
3~o

2

HI: Y -- l+1+N
where the maximum ranges over all distributions on f-1,1) and the

HO: Y - -1 + N second equality follows fronm the concavity-convexity of mutual informa-
tion in the respective arguments. it is verified in [1] that the least-

where N is a real-valued random variable constrained to satisfy an favorable -noise distribution puts its mass in the lattce
average-power limitation E[N15 02. For k -1, 2, -- let -4,.-2O0, Z+ 4 ... I wit rbability massfncin thatsatsfes

2 A (0.-l1)/3. The worst-caseprobability of error isP-PtP
C~k - o2log(l + P-1) +- log(l + -) I log(l + -) - log(l. + A-1) + Ak 0

p 2)+3 0,2 To- Po Pk Ph

_22 4 1 +3 C,,2 T W 1 rW
where pk is the mass at 2k. For low SNRs the least-favorable cdf

for 0,
2 

g 02!g 0,+. approaches a Gaussian shape whereas in the region SNR > 0 d6 the
h ~~~least-favorable distribution is inditngihal from a three-mass distri-

bution With weights (o2/S. I _02/4, 02/8) at (-2, 0. 2). The mnaximum
A single span-2 lattice achieves the maximumn probability of error difference between Gaussian capacity and worst-case capacity is 0.118

only when the allowed noise power is equal to ak, k - 1, 2, .- Those bit and occurs at 7.2 dB. whereas the maximum relative decrease is
worst-case distributions are symmetric and distribute their mass evenly 12.5% occuring at 6.7 dB.
ontk atoms. (Those atoms are located at 0. ±Z±4,- if k is odd and

References

101 1. S. Shamai (Shitz) and S. Verdu. "Worst-Case Power Constrained
Noise for Binary-Input Channels." IEEE Transactions on Iroonna-
tion Theory, pp. 1494-1511, Sep. 1992.

f101

0 6 
Is

Fit. 2. Ogmi (quppm wi) md -a cm Ooww m~s) chia
7u~ work Wn inpole p.1 by ft. Omoffie Na"a Rawwc undet C*Ddda&
Gram N00014490UJ-lf

262



ERROR EXPONENTS FOR THE IDEAL POISSON CHANNEL WITH NOISELESS
FEEDBACK

Amos Lapidoth
Technion-asrael Institute of Technology and

Stanford University, Information Systems Laboratory, Stanford, CA 94305-4055

Abstract

The ideal Poisson channel with noiseless feedback models a direct
detection photon channel, free of dark current (Qo = 0), in which a
causal feedback link informs the transmitter at every time t of the
channel output at all times prior to t. The paper discusses the cod-
ing for the channel, under peak power and average power constraints
on the input. A coding scheme for the channel is presented, and its
asymptotic error exponent is shown to coincide, at all rates below ca-
pacity, with the Sphere Packing error exponent, which, for the case at
hand, is known to be unachievable without feedback for rates below
the critical rate. An upper bound on the error exponent achievable
with feedback is also derived. It is shown that under a capacity re-
ducing average power constraint, the upper bound coincides with the
error exponent achieved by the proposed coding scheme; consequently,
in such a case the coding scheme is asymptotically optimal. Thus, the
ideal Poisson channel, limited by a capacity-reducing average power
constraint, provides a non-trivial example of a channel for which the
Reliability Function is known exactly both with and without feedback.
While our main concern is fixed transmission time coding schemes,
the subject of random transmission times is also briefly discussed; i.'
is shown that a slight modification of the coding scheme to one of ran-
dom transmission time can achieve zero-error probability for any rate
lower than the ordinary average-error channel capacity.
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A DIRECT GEOMETRICAL METHOD FOR BOUNDING THE ERROR EXPONENT FOR SPECIFIC

FAMILIES OF CHANNEL CODES -

PART II: THE CONFINING REGION LOWER BOUND FOR BLOCK CODES

Dejan Lazio, Vojin Senk

Faculty of Technical Sciences

Computer Science, Control and Measurements Institute

Trg D. Obradovita 8, 21000 Novi Sad. Yugoslavia

The introduction of a confining region that divides the
channel output space in two disjoint parts attains the wV(S, R) - min Id : E 3 (BR) S R) , (3)
sawe effect as the Gallager's exponent, but gives much
more Insight Into the behaviour of channel codes. More-
over, the bounds obtained are always tight at low code the 2 Itoff rate lover bound [i] on the expurgated fasi-
rates (for optimal codes they are always tight). ly S Is reduced to 4G(S,R) at all code rates less

than

Introduction citig = Ro -0 (4)

The channel error exponent (reliability function)
Is defined as Here, Ra is the code family cutoff rate, and d isff Is

the normalized Bhattacharyya distance of those code-
E(R) = 1a (R, N) , ld(x)-log2 (x), (1) words that are the only ones that influence the code

N-ia family cutoff rate bound. At low code rates (not grea-
ter than Rcritig) the cutoff rate bound is tight.

where R is the code rate, Pept(RN) is the smallest

possible probability of block decoding error for codes The confining region
of code rate R and length N used on the given channel.

The channel output space YN mSy be partitioned in
In Part I of this paper, the random coding argu- two using the confining region defined for the m'th

ment usually used in lower-bounding the channel error codeword as
exponent was discarded In favour of the one that uses
the known expected Bhattacharyya distance distribution -
of a code family. If the code family distance distribu- int . nt P[ym]
tion Is known, the error exponent obtained pertains to CS; ltr) -N N" }Z &y

this specific code family used on the given transmissi- amx {P[Lx]} I
on channel, and not to the channel itself. The code- (•'rB)

family that attains the channel error exponent is the
optimal one, and Its Bhattacharyya distance distributi- i.....N, (5)
on the optimal distance distribution. where ext - 4Z ext - A ( )

the exterior of the Bhattacharyya confining sphere in
The meneral excression for E(R) the available encoding space X, centered at the actual-

The distance distribution method in its final form ly transmitted codeword %m and whose radius is rB (ex-
gives the lover bound on the code family error exponent pressed in the normalized Bhattacharyya distance, that
in the form is defined in T, but not in yN). Upper-bounding the

)$- mn I,(4,R) . Ee(•BR.S) - R, (2) probability of error inside CS i(.) by the usual uni-

il-ej on bound, and outside it by the mere probability that
yCSInt (B), one obtains a significant improvement. For

where 2 denotes the code family, dB is the normalized the code families uniformly distributed over 1, this
(by N) Bhattacharyya distance, and d., and 4L are the procedure yields the Gallager's lover bound on the

channel error exponent, implying that these codes are
in thmuc and maximum normalized Bhattacharyya distances optimal. Moreover, the error exponent of these families

in the code. %(%,R) Is the expected normalized Bhat- Is known at all code rates, since it is known below

tacharyya distance distribution exponent of 9, and Rcritil* and also coincides with the space-partitioning

E(dBR,3) is the lover bound on the error effect expo- upper bound on the channel error exponent at high code

nent (see [I] for precise definition of these expo- rates.
nents).
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UNIVERSAL DECODING FOR MEMORYLESS GAUSSIAN CHANNELS

WITH A DETERMINISTIC INTERFERENCE

N&zi Me'Aav
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Haift 32000. ISRAEL
Abstract moooncly oreas integervalued seueceinsying k., -*m and

In (1] universal decoding schemes for finite-lpliabet. finite-state channels k.1n I3-*) as n--. Our decoding rule will select a meosage zdithamazinmix
wer proposed and shown So be optimal in die ses of attaining die highest poss- th ico
ble randomn Coding eniexponent. when the channel input vectors are Chosen rnom-W~ y.~
dourly under a uniform probability distribution. In other wands, the average error max *~ iIYO
probability over die ensemble of randomly selected codewords, decays at the M (4y.) A (2)
faestest exponential rate. In the special case of DMC's, the proposed universal q(,e)
decoder selects a codeword dthatrum~mies die empirical conditional enaropy of among all M codeliook messages.
the channel input given the channel output.

We derive an analogous result for memorylesa Gaussian chumnels with an Theorem: Assume diat (z,) can be expanded to a series of bounded orftonormal
unknown deterministic interference fran a fatirly wide class. The empirical condi- functions with an absolutely sumnmab coefficient sequence (b1 )i k1. Let q (x)
tional entropy of die input given die output is induced by an auxiliary backward be Shy Gaussian PMOE f dig form
channel whose parameter are estimated from the given output vecto and each q-)X[ 3
one of die codewords. We also allow a morm geneail clas of input distributions q ax) - (2a 2Yrf e p-1-( * , (3
by slightly modifying die decoding rule. Similarly to [1]. it is shown that the pro- +- i 'z s

posed universal decoder attains the sumaneeror exponient as that of die ML decoder whr . in, and yl,. y . m .ae free paraneters to be chosen. Then
which is fully informed of die channel and the interfering signal. I

The proposed decoder is different from an heuristic approach [21, where die lint -lagP, ,(q A .n) = lrn -10ogP , (q A ) =-E (q A. (4)
channel and message we jointly estimated by the ML method. While the forme ~ a-w it -0-B

decoder is based on thle backward Channel as mentioned earlier, the latter
corresponds to the forward channel. For the simple special case where ther is no where P., (q A n) is the average eart probability asociated with (2).
interference and the only uncertainty is in the channel fading parameter, it is The proo alpears in [4).
demonstrated that the ermo exponent of the proposed ruile might be strictly better T'h inutv ntrrtt of (2 is that log u (xi) can be thought of as an
than that of die joint ML channel-and-message estimation approach. emiia eso of th muua inmaton between z an y. This, we select the

input ie that seems empirically "most depedenut" upon fth given output vector

Summaryy. 7ibis corresponds to the maximum mutual information (hMl) decoding princl-
Conide adisrei-une Susinmemarylschne awrzdb pit. It should be pointed out that if (z,)I is known to be composed from k < w

A, = az + Z + Wt. where x, is the desired channel input, a is an unknown fd-mt. i functions (#i4.thenthe theorem sppliewith kin in eq. (2) and m :9
n'parameter. w, is zero mean Gaussian white noise. with an unknown variance in eq. (3).

q. z is an unknowni deterministic interference. and yj is die channel outputs. We Ideally, one wishes to choose q(-) so as to maximize E(q A). However.
assume that z, can be represented by a series of given orthonormal hounded ftunc sic th maximizing PDP q () depends on the unknown channel. there is no way
tions, i.e.. z, L bi #i,,. where L?* lbi I < - and I #il I :SL for all i and by which the transmitiffCon Optimially ad=cq () nlessathere is afeedback chn-
t. < L <~ nel from the receiver to the transmitter. The choice of an input POP of the form

of eq. (3) can be also motivated by the fact that the capacity of die Gaussian cian-
Consider next. a codebook C - (x 1

.X2 .  ZN-- X) Of M - 2R 0ulifPro nel is attained by aGaussian PDF.
&Mle messages ~x,.. ......z) e R . i=1. 2...M. where R
is the coding rate in bits per channel use. Clearly, if the parameter a an d It turns out that die extension of the above theoremt to noomemoryiess Chun-

intrfeencsinalzi are known. the. best is the ML decoder., which in th saý n is not trivial. Consider, for example, a Gaussane channel with a linear inte-
sian case considered here, selects the message x` that minimizes symbol interference (ISI). characterized by y, = L#.AhiA .4 + W,. -Wh (h, )4

V.(,- z# - ax9'. Similarly to [11, the probability of amo uasociated with theis thC channel impulsee response and w, is a Gaussian whio noies The ddffcuhy
ML decoder will be denoted by P. . (C A ,). apf ws to be mnan qpprqmrlat defnition of die aixihay backward channel. We

-Since the design of a codebook C that minimizes P,,(C A ,n) undter an conjecture that an apmprqwaft deftition of die backward channel in this cae will
input power constrain is prohibitedly complex for large n, will shall adopt di be
random coding approach, where each codeword is randomly Chosen with respect r&h '
to some probability density fimci LPDP) q(x).Indepesidently of all other code- W (zIY.O~k) - C. (ek J6flxP (XZI -azj + YZtYI~
words. it is well known [31 that P.,(q.R~n)ME (P.,(CA~n)), where the 1-1 + 20J i.1 i-o j
expectatio is taken over ensemble of randomly selcte codebooks under q. where 0 a* ... ,. x~~ . fti) and C. (G.k ) is a normalization fatc-
decays exponentially for every R < R (q), where R (q) is a rate dependin on q tor Chowen such that the above PDP will integrate to unity.
and always less than die channel capacity. The exponential rate of the erro pro-
bability E(qAq)=-lutin._...J'logP4 ,,(q.R~f) is called the ranudam coding
error expowiett. Referellces

if the faingt parameter a and the interfering signal (r,) w e unknown, then
the ML decoder is obviously inapplicabe We next demonstrate a decoding pro- [11 J. Ziv, "Universail Decoding for Fuinie-Suse Cluuuuela." IEEE Trun.
cedure which is universal in the sewn of being independent of a anid (:1), and at ha/OLr. Theory, Vol. fl'31, No. 4. pp. 453-4M0. July 1965.
die same time attaining E(q A). In other words, let P,..(C As) denote the [2] N. Sehdi "Joint Data a Canne Estimation uinitg Blind Trellrs Seach
errar probability associated with the universalj ale for a given codebook C. adTecheique..," submitted to IEEE Treans. Commam.
let P~,,(q.Rn) -E (P. ,(CARn)).ThenP, ,(q A n) de ays exporentially (3] R. G. Gallager. I1a/rmadon Theory wid Reliabkt Coummaicaflim. New
at the same rate E(qR) as tat associated with die ML decoder. T1his is analo- Ya~k, Wiley 1%96.
goon to an earlier result by Ziv [1] for finite-alphabet. finite-sutat channehls

We now turm to presen t the proposed decoding rule. To this end, define an [41 N. Mehteav, "Untiversal Decoding for Memoryiess Gausiant Channels wih

audagz~ry backward channel of order k by the conditionlal PjDp a xieteministic Interference." submitted for pubilication.

the pometervector o(the kth order backward channel. Let (4 aabe any
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Consider the reliable transmission of information over a discrete- We proceed to examine specific examples of encoding/decoding
time memoryless channel with mismatched decoding, i.e., where the mechanisms motivated by the nature of the mismatch. It is demon-
decoding metric is not necessarily matched to the channel's charac- strated that the achievable reliable transmitted rate under mismatched
teristics. This is a realistic model for time-varying channels or when decoding may depend on the performance criterion (bit error vs. mes-
Lnplementation constraints dictate a given decoder which employs a sage error probability) and on the coding strategy (randomized vs.
specific fixed metric, deterministic), in contrast to the well-known behavior of the opti-

Hui [1] has derived a lower bound on the capacity of a discrete mal matched-decoding scenario. As an example, consider a BSC with

memoryless channel (DMC) with mismatched decoding, hereafter re- crossover probability of p < 0.5, where the decoder uses the mismatch

ferred to as Hui's capacity and denoted CH. Our first result in this metric adapted to a BSC with p' > 0.5 instead of p. In this case
work is an extension of this lower bound to an exponential family CH = 0 [1], however, by using a variant of differential encoding one
of channels. This wider class of channels includes, as special cases, can achieve a positive rate with respect to the bit error probability
DMC's, finite-state channels, Poisson channels and Gaussian channels. (while the message error probability goes to unity). Moreover, a ran-

Some of the results extend to exponential channels with memory (e.g., domized strategy (e.g. assigning to any possible message, with equal

finite-state channels), but in this case a single-letter characterization probability, a properly selected binary codeword or its complement)

of the achievable rates is not available, leads to a positive achievable rate with respect to the message error

Motivated by the matched decoding case, we prove that in the ran- probability. Thus, in several specific cases, with different error criteria

dom coding regime, Hui's capacity is the highest achievable rate under and/or randomized coding strategies, reliable rates exceeding C, are
mismatched decoding. This observation, as well as a sphere packing achievable.
argument for bounding the maximum possible number of disjoint mis-

matched decoding spheres, support Hui's conjecture (recently proved References
by Balakirsky [2] for binary-input channels) that CH is the ultimate

reliably transmitted rate. New bounds and interesting properties of [1] J.Y.N. Hui, Fundamental Issues of Multiple Accessing. Ph.D.
Cg are presented [31, and relations among CH,, the generalized average dissertation, Chapter IV, MIT, 1983.

mutual information (defined in terms of Gallager's bound in parallel
to the matched case) and the generalized cut-off rate are established. [2] V.B. Balakirsky, "Coding theorem for discrete memoryless chan-

nels with given decision rules," Lecture Notes in Computer Sci-
Some indicative examples of practical interest for continuous and ence 573, Proceedings of First French-Soviet Workshop on Alge-

discrete-alphabet memoryless channels with various mismatched met- bac Cdn, July 19 pp. 142-1W0.

rics are worked out. In particular, a two-dimensional AWGN channel

(with Gaussian inputs) subjected to a phase offset of 9 is considered. [3] N. Merhav, G. Kaplan, A. Lapidoth and S. Shamai (Shitz), "On

It is found that the deletedious effect of the phase offset 9 on C, man- information rates for mismatched decoders," submitted to IEEE

ifests itself in attenuating the signal power by a factor of cos2 9 and in Trans. on Inform. Theory, (EE Report No. 863, Technion, Elect.

adding an equivalent noise term with power of sin 2 # times the signal Eng. Dept., November 1992).
power. This expression mimics the behavior of the uncoded complex
channel with a phase offset.
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A Markovian Evaluation of the Frame Error Probability for the M Algorithm1

Jean Belzile and David Haccoun This technique has been applied for a rate R = - convolutional
Department of Electrical and Computer Engineering

Ecole Polytechnique de Montrial code of memory v = 19 with frame lengths varying from 6 to

P.O. Box 6079, station "A" 512 bits and number of paths varying from M=I to 64. Results
Montreal, Qc, Canada show that as a first order approximation, a sliding window decoder

H3C 3A7 [71 is a good approximation if M, the number of paths to be
explored is small. However if the number of explored paths

Abstract increases, then the number of incorrect subsets to consider must
also increase, making the sliding window inadequate.

A new Markov chain approach to the evaluation of the frame Using this technique a good upper bound on the frame error
error probability for the M-Algorithm is presented. Using this performance of the M-Algorithm can be calculated for a given code
model results for values of M=1 to 64 and frame length of L=64 to and some value of M. Once the frame error probability is known,
512 bits have been evaluated for a convolutional code of memory the bit error performance for the M-Algorithm can be approximated
length v=19 and rate R=1i2. Simulation results are compared to the
Markovian model showing that the technique is attractive for the by using simple arguments [51. Assuming that M b 2 then theperformance evaluation of suboptimal decoding algorithms for con- probability of resynchronization tends towards 0. It has been
volutional ces, observed through simulations that on the average the decoder willloose the correct path in the middle of the frame and that one half of

Su[mmarl the decoded bits in the erroneous portion of the frame will be in
L

Suboptimal decoding algorithms in general and the M-Algo- error, leading to an error event of bits per erroneously decoded
rithm in particular have received a significant amount of interest frame. A good approximation to the bit error probability is then
lately [1-5]. These algorithms are used to search large trellises L
where an exhaustive exploration is impractical. Their suboptimal "4Pf I
search is heuristically guided to minimize the number of paths to be given by Pb = L = 4P. This approximation is supported by
explored in order to achieve a reasonable bit error performance.
However theoretical analysis of these heuristics is complex and few extensive simulation results.
theoritical mandhods are available for precise evaluation on the In summary, the new Markovian based frame error probability
error performance of these algorithms, analysis for the M-Algorithm and a binary symmetric channel will

In order to establish an upper bound on the error performance of be presented. A comparison between simulation results and numer-

the M-Algorithm, the minimum number of path extensions required ical results shows that when the number of explored path increases

to include the correct path at each tree depth must be determined, then the number of incorrect subsets in the Markov model should
This problem has eluded analysis. also increase, increasing with it the complexity of the evaluation of

In this paper we present a new approach to the evaluation of the A-. However the extraction of the frame error probability remains
frame error performance of the M-Algorithm over a binary sym- trivial making the technique attractive for evaluating the error per-
metric channel and additive white gaussian noise. It is based on a formance of suboptimal decoding algorithms for convolutional
Markovian description of the decoding dynamics of the M-Algo- codes.
rithm and uses the column weight distribution of the code [6]. The
column weight distribution of a particular convolutional code rep- Referen
resents the number of paths with a certain Hamming weight at each
particular depth in the decoding tree. [1] ANDERSON, J. B. and LIN, C. F., "M-Algorithm Decoding of

The Markov chain consists of an "Initial" state, a "Lost" state Channel Convolutional Codes," in Conf. Proc., 20th Annu. Conf.
and a varying number of intermediate states. The "Initial" state rep- Inform. Sci. Syst., (Princandon, NJ), March 1986.
resents the decoder behaviour when the channel is error-free, typi- [2] SIMMONS, S. J., "Breadth-First Trellis Decoding with
cally at the beginning of the frame or when the channel has been
error-free for a sufficiently long period of time. The "Lost" state is Adaptive Effort," IEEE Transactions on Communications, vol.
an absorbent state which represents an error propagation event due 38, pp. 3-12, Jan. 1990
to the loss of the correct path and its ensuing lack of resynchroniza- [3] ANDERSON, J. B., "Limited Search Trellis Decoding of
tion. An intermediate state represents the accumulated channel tran- Convolutional Codes," IEEE Transactions on Information
sitions at a given incorrect subset depth since departure from the Theory, vol. 35, Sept. 1989.
"Initial" state. The transitions between the states of the Markov [4] CHAN, F., Algorithme de dtcodage adaptatfpour codes
chain are a combination of the correct path loss probability and the convolutionnels, Master's thesis, Ecole Polytechnique, Montrual
channel transition probability.

Using this model a transition matrix A may be constructed. For QC., Dec. 1989.
a frame of length L, the frame error probability is then given by the [5] BELZILE, J. and HACCOUN, D., "Bidirectional Breadth-first
transition probability from the "Initial" state to the "Lost" state in Algorithms for the Decoding of Convolutional Codes," IEEE

L Transactions on Communications, Feb. 1993.the matrix A
[6] BELZILE, 1. and HACCOUN, D., "Column weight

distributions of Convolutional Codes,"technical repportEPMI
1. This research has been supported in part by the Natural Sci- RT-91/10 Ecole Polytechnique de Montral, Aug. 1991.

ences and Engineering Research Council of Canada, the Fonds pour [71 GALLAGER, R. G., Information Theory and Reliable
la formation de Chercheurs and i'Aide A la Recherche of Qudbec Communication, Wiley, NY, 1968.
and by a grant from the Canadian Institute for Telecommunication
Research under the National Centers of Excellence program of the
Government of Canada.
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SYSTEMATIC FEED-FORWARD CONVOLUTIONAL ENCODERS ARE AS GOOD AS
OTHER ENCODERS WITH AN M-ALGORITHM DECODER

Harro Osthoff*, Roif Johannesson*, and John Anderson**

Department of Information Theory °* Electrical, Computer, and
University of Lund Systems Engineering Department

Box 118 Rensselaer Polytechnic Institute
S- 221 00 Lund Troy, New York 12180-3590

Sweden USA

Summary-In this paper we show that systematic terms of the free distance and the distance spectrum. A
convolutional encoders perform as well as nonsystematic rapid growth of the column distances is more important
ones when they are used together with M-algorithm de- than a large free distance.
coders [1]. We describe the algorithm and give a brief
historical review. The following curves show simulation As a bonus when used together with the M-algorithm,
results for the event error probability of the M-algorithm. systematic encoders outperform nonsystematic encoders
We compare an optimum distance profile nonsystem- in terms of bit error probability as shown in the next pic-
atic encoder (d,... = 22) and a quick-look-in encoder ture (framelength = 1024). The reason is that systematic
(dp6ee = 18) with a systematic encoder (djree = 13). All encoders are superior from a correct path loss point of
encoders have memory m = 20 and in the decoder 32 view.
states are extended at every time instant (M = 32). Bit Error Probability

Error Event Probability ,.. Mmoxy 20. M.2

mmory 20. Md32

S.... -...- s---mak
"- - -e* ---- qul-Ieoak-in

0.1 7

4.04 4t • -....

•, I.-01.0-

, ,, E •b .
50 .. 1 43 4.6 4.7 4.4 .,14 .1 * &E..bUlO

All curves show the same event error probability per-
formance.
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probability as our simulations show. The decoder com-
plexity is independent of the memory of the encoder. The
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ANALYSIS OF LIST DECODING FOR CONVOLUTIONAL CODES
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Summary-We analyse a list decoding algorithm [I] (M- packing type lower bounds. The random coding upper bound
algorithm [2]) for binary rate R = b/c convolutional codes. In is:
every decoding step, starting from [!!I J + I where t.J de-( L-10(1), R <1L..mp,
notes the integer part, the decoder selects the L most likely L-02(1) , Rcode sequences and calculates their successors. This procedure E[P(t,)] < L-0 (1) 0 L, R >
is continued until the decoder reaches the end of the tree or L-°03 (1), R> R~.,
the trellis, where e is the solution of the equation oR = G(O), G(a) is the
We study the distance properties and the probabilistic perfor- Gallager function for the BSC, and O,(1), i = 1, 2, 3, are val-
mances of the algorithm. We introduce a natural extension ues depending on R and e but not ott L. Using the expurgation
to the free distance of the convolutional code, viz., the L-list bound we get:
minimal distance dL. The L-list decoder corrects all combi-
nations of [d-'jJ or less errors. Using computer search we -101
found convolutional encoders having maximal L-list minimal P(t) < L i*52t2 - -1)0(1), R < Po,

distance. where 0(1) is a value depending on R and e, but not on L.Analogously to the Costello bound we derive the following The derivation of the lower bound for the L-list decoding
lower bound on dL for rate R = b/c binary convolutional codes: error probability is based on the corresponding lower bound
There exists a time-invariant convolutional code such that for block codes. For a given L and R there exists an integer t
(bound 1) such that the L-list decoding error probability on the t-th step

d - log2 L
d log2 (21-R - 1) + -- (R), satisfies the inequality

where o(R) does not dependent on L. P(4) > L-02{-°(N/''g)
For rate R = 1/2 this can be strengthend further (bound 2): ------

- -- bowds2 s m ~ ,
1 o g 2 ( L "+ ½ 2 1 0 . . d .. 6 1""

dL o log2 (1 2. --2o.o
109(V - 1) 19(2-1 bwmd&6,S s

The bound for rate R = 1/2 can be tightened if we choose .
and fix the first i + 1 matrices Gk, k =0, 1... i (bound 3): .. .

dL > 1og2(L -2' + 1) + 1 10og2 To,,jW2 -1) 2
-log 2(v2- 1) -2, 4. ,.

where / i

L > 2' :'" ,".10
and 1 d, o 1

0,ol (W)= W-"(v),,*

vevlO.,l Lower bounds for dL compared with dL for the systematic
ODP code with m = 29.

where WH(v) is the Hamming weight of v, is the weight en Rf.
merator of the i-th truncation of the code. References
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SUMMARY where [Hr](4p+2)x(v+l) is a ubmatrix of the syndrome former Hr, start-
Table look-up hamed decoding schemes for convolutionally encoded data iag with the (y + 1)tk column, and [e]K/,+4.+j is a (41V + 2)-blt block ofhave been designed for both block coding [51, and convolutional coding the - sequen. Each [e(,@1+4.+1 is an error pattern of suite length

[6, 2]. However, in the latter ca, ! most of the work was done for systematic correspnding to the s-addres [s]s,.+,.
.4.d Noseystematic codes o.rer better error correcting capability than Equation (5) provides the basis for table-driven correction of errossystematic codes if more than one constraint length of received blocks are During the correction table generation phase, aeror patleras of length at
considered [7]. Out approach to table look-up based decoding of nonsys- least (4&o + 2) bits are considered. The s-addresses ae calculated foe thetematic convolutional codes was introduced in [1, 3]. most likely error patterns Typically, we first coasiLr sangle bet ewroes.

A 1/2-rate convolutional encoder is characterised by two generator se- Next, two-bit errors are considered, etc. The bits in error can be located in
quences gU) = tM),•..., .. ,0), =1, ;, where v is the co.trisinti k any ofthe (4v+ 2) positions. The bit pair (e•) c,.)+ ) p inof the code, Le., the number of memory elements in a minimal reslisation the calculation of every bit of the *-address [g],"+,. This pair is called the
of the convolutional code [4]. The owtput conaeit len#h is defined as courection p , and is the location where correction will be applied. The*A = 2(i, + I) and is equal to the number of encoded bits affected by a sin- correction information for the correction pair is denoted by (c('), c(3)), and
gle input information bit [7]. An input information sequence u is encoded is stored in the table at address [skai+,. The table generation continues for
into two encoded output sequences vO}, j = 1,2, using v = uG, where higher order errors until all the entries in the table are filled.

1 = (1), V() ,1)v, -1), ...-) is the composite encoded sequence, also called Since there are more error bits than syndrome bits in equation (5),
a codeword, obtained by multiplexing the two encoded sequences, and G multiple error patterns of length (4, + 2) can generate the same (y -+ l)-bit
is the semi-ininit- code generator matrix [7]. s-address. All such patterns are syndrome-indistinguishable [4] (i.e. there

The encoded bits in 1/2-rate coding are generated at twice the input is a conflict). The size of the correction table can be increased so that
information rate. However, it is possible to find an encoding operation that conflicting error patterns can map to dierent (longer) s-addresses. This
relates blocks of input information bits to equal length blocks of encoded is known as the syndrome extension method [1, 3]. Let the s-address be
bits [1, 3]. extended by a bits to (ski,+,+.. Then the corresponding correction window

Proposition: For 1/2-rate convolutional coding with constraint length becomes (4a,+2)+2n bits long. The extension can be one-sided or two-sided.
V,, there exists a correspondence between equal length blocks of input infor- A two-sided extension results in a correction window [r]n.-..si+4++e. This
mation bits and the encoded bits. The length of these corresponding blocks extension of the correction window allows our approach to perform betteris 2y bits. (For proof, see [1, 3].) than minimum distance feedback decoding.

We can formalises this relationship as follows. Let [u]4,+i,-.=(u, During the error correction phase, an s-address is calculated based on
4+1, ... , u1+10-1) be a 2a,-bit block of the input information sequence, a block of the received bits. It is then used to access the correction table

and [v]u,2j+a,-.=(vu, vid+j, ...., ui+2.-,) be the 2&'-bit block of the car- to retrieve the correction information. The correction is applied to the
responding encoded sequence. Given the generator sequences SU), j = 1,2, appropriate pair of received bits and the s-address is recalculated. This is
for a 1/2-rate convolutional code with constraint length Y, we Aecme the the feedback step. If the new s-address is eero, the correction is assumed
reduced encoding an.tris as to be perfect. A new received bit pair is shifted into the correction window

and the process is ro-eated. If the new s-addres is not sero, the correction
is reversed and th,. r is allowed to pas. Feedback decoders suffer from

(1) () 9(1.) (2) error propagation and a.-ropriate mesuers need to be taken to avoid orcontrol it.
For illustration, consider the performance of a 1/2-rate, constraint length

4~h = () (2) 2,2, 2.2 (1 y = 7 convolutional code with table-driven decoder shown in Figure 1. A
96 Do .6 w binary symmetric channel (BSC) is assumed and a simple correction algo-

rithms is used. More sophisticated algorithms that promise better perfor-
(1) (2) mance are being studied. This corresponds t,: a table met up to correct aml

errors up to 4 bits and all ,6 and T-bit errorsathat do not have conlcting
where blanks denote seros. A 2&-bit input information block is encoded to address. The model is seen to be better than the simulation results. This
obtain the corresponding encoded block of length 21, bits as follows. is because the model does not account fot error propagation.

ma.

],+_ = [u],,,+a,._[G],,. (2)

For 1/2-rate convolutional coding with constraint length P', an encoded -
sequence obtained by equation (2) can be uniquely decoded if and only ifj -- 0-,

the inverse [G]]j of the reduced encoding matrix exists, i.e., [G]2,[G]j = .
[P]9, where m, is the 2v x 2&, identity matrix. A 2a,-bit input information
block is recovered by decoding the corresponding 2a,-bit encoded block as -, man
follows:

,,,- = [v]2,,,, ~.-,[G];. (3); -
It is desirable to And nonsystematic codes that can be decoded qui Uly

(e.g. Quick-Look-la codes [1). The decoding operation specified by equa-
tion (2) can be implemented as a look-up table (or ca be built into the aw-. bt a Otte
decoder hardware), and leds& to the definition of a new cas of convo- Figure 1: Table-Driven Error Correction Performance
lutlonal codes that allow fest decoding. We define 1/2-rate coavolutional R ere
codes with constraint length v, that have an invertible reduced encoding msa- [1] D.L. Bilser sad MA. VYek. A table-driven (feedback) decoder. In Proc. of
trix [G]0. as ineertiAt codes. Note that both systematic and noasysteamati IPCCC '91, Phemix, AZ, Marca 109l.
codes can belong to the class of invertible codes. [3] G.C. Clark, Jr. sad 3.B. Cain. Zro-Ctrm C,,inlo 4 Con.

The received sequence r can be expressed as r = v + a, where a is the i2] i.. Plea,.sa PreC, New York, dt$).
error sequence. The syndrome sequence a is data independent mad can be A. Plsh u e ss, New eah, f55t.
calculated one bit at a time as follows: [3] A. Dolia at ,L A, scient tae-driv, decoder foe oe-haM late emvs-

lutionl codes. In Pre. *ItSO A smse A CM Soutaest Coqerene, Raleigh,
at =< [e]Hu+u.+a,h >, (4) NC, Apt. im.

where < -,> indicaltes the vector dot product, [e]2t,3t+2.+l is a %2&o + 2)- [4] G.D. Forney, Jr. Coavolutional codes 1: Algebraic structure. I211 ?emma. an
bit block of the error sequence, and h is (&,+ l)th column of the syndrome 4Ino. 77haie , IT-16({):7T0-738, November 1290.
former HU described in [4]. Since each received blt affects (y + 1) syndrome [6] R.G. Galla"er. In•sr, etitI TI*" sand Relshts C.,i.im. Wiay, New
bits, it is sufficient to consider a fInts length syndrome sequence denoted York, I1O.
by (sm+,, and called the a-eddress. la order to fully compute [sjt+., 4&,+2 [C] J.A. Heller. Feedback decoding of convolutional code. In A.J. Vitei, ed.,
encoded bits are needed [1]. From equation (4), Ads. in Com.m. Sp•, vol. 4:261-278. Academic Pros, 196.

[et+, = [a]IN, 4+4t,+1[i](4s+2)x(,,+l), (5) [71 S. Lin and D.J. Costello, Jr. Error. Central C*Ab - Andembentob med Ap.
09600d-. Prentice-Hai Englewood CMh,NJ 01632, IOU.
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SEQUENTIAL DECODING ON MEMORYLESS SOFT DECISION
CHANNELS UNDER THE Pe-CRITERION

Ivonete Markman John B. Anderson
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Abstract The Pe-criterion is a recent analysis [1] of sequen- A numerical analysis is then performed for the BSC and some
tial BSC channel decoding based on the design condition that equivalent soft decision channels. For a fixed Eb1/No, the BSC
decoders may fail with a probability Pe > 0. The result is a and the semicontinuous channel are unique channels. This is not
definite boundary for the tree search region and a well defined so for the Q-ary output channels with Q > 2, where a family
estimate of path numbers searched. of channels exists for a given Ebt/No. Therefore, an additional

This work extends the criterion to the memoryless binary optimization is necessary, in order to find out the best Q-ary
input soft decision channels resulting from the quantization of output channel, in terms of minimum number of paths searched.
the AWGN channel output at the receiver, the binary input Q- Table 1 shows the results for Ebt/No = 4.323dB ( which corre-
ary output (Q > 2) and the binary input continuous output sponds to the crossover probability p = 0.01 in the BSC case)
(semicontinuous) channels [2]. We show that the use of soft and different values of R and Pe.
decisions implies a reduced search region compared to the BSC The results emphasize once again the importance of the use
case and that large savings in the number of paths searched may of soft decision in the decoding process, this time from the point
be achieved when soft decision information is available, of view of the number of paths searched. It is shown that large

Summary savings in path searching can be achieved, even when the most
simple form of soft decision is applied (Q = 3). In addition,

We initially derive the shape of the search region in a gener- it is shown that, as opposed to common belief [4], soft decision
alized distance versus depth diagram. The generalized distance savings are not necessarily related to an increase in the channel
is a function of the metric for the standard sequential decoding capacity, as compared to the hard decision channel (BSC). For
analysis [3]. In the generalized distance versus depth diagram, many cases, the best soft decision channel has eveu smaller ca-
the search region is bounded by the drop line, the set of points pacity than the corresponding BSC, even though it represents
outside of which the correct path in the tree wanders with prob- substantial savings in paths searched. Furthermore, the best
ability Pe or less. It is unique for each channel and each Pe, Q-ary output quantization depends critically on R and Ebt/No.
and independent of the code rate, R. Comparisons with the cor- The latter in turn shows that signal level and noise variance
responding drop lines for the BSC under the same value of Pe estimation, or equivalently automatic gain control (AGC), is
show the decrease in the search region resulting from the use of important in the design of limited search decoders.
soft decision ( figure I ) .

We can then estimate the expected number of paths that a Acknowledgment The first author was supported by f'NPq -
non-backtracking algorithm views within its search region, by Conselho Nacional de Desenvolvimento Cientifico e Tecnol6gico,
applying an analytical method based on difference equations Brazil.
[1,2]. A second derivation of it is obtained for the semicon- References
tinuous channel, using an integral equation [2]. [1] J.B. Anderson "Sequential Decoding Based on an Error Cri-
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no.5, May 1992.
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Figure 1: Drop Lines for the Binary Input Binary (BSC), Table 1: Number of paths searched for the Binary Input Bi-
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(AWGN) Output Channels. Conlinlrmo (AWGN) Output Channels ( Eb/No = 4.323dB).
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Abstract and the minimization is performed over the constellation of B paths.
Should there be C>1 classes, the minimization is first performed for

A class of algorithms performing Maximum Likelihood Sequence each class and then over the classes. When I has rank R<B, a R x R
Detection under various structural and complexity constraints is deri- sub-matrix is taken out from Zand the constraints in the minimization
ved (BSC or AWGN). Complexity is measured by the number of are also changed [1]. It is always possible, however, to find a set of A
paths used. By partitioning the S states into C classes and selecting B paths called active (or outer) such that
paths into each class, the signals closest to the received one shall be
selected and hence N =BC paths are used. This class of algorithms = -IA'IAj

has the name SA(B,C) (SA=Search Algorithm) and the Viterbi Algo-
rithm (VA) is the unconstrained solution denoted SA(I,S). where the dimensions are A x 1 and A xA respectively 1].
An analysis method concerning the probability of the first error event
at large SNR is developed for the whole SA(B,C) family and results To achieve the same asymptotic detection performance as the VA, it is
in an analysis tool named the Vector Euclidean Distance (VED) of necessary to have dmin dn. By considering

which the traditional Euclidean Distance (ED) is a scalar special case. efficient member of the SA(B,C) family (and also any other algo-
The smallest number of paths resulting in the same asymptotic detec- rithm), it is now possible to find the least B for which this inequality
tion performance as the VA is calculated for several classes of trellis is satisfied, having the notation B*. For the class of trellis codes built
codes. up from convolutional codes and antipodal modulation the result is

B* - fs/ which is asymptotic in the sense that the number of states is
Summary very large. By considering codes having from say 64 to 1024 states

the asymptotic result is good aslo for these. Yet another class of trellis
What limits the use of the VA is the number of states, S, which beco- codes, namely r=2/3 convolutionally encoded 8PSK (often referred to
mes very large if e.g. joint MLSD is applied to a whole system. By as Trellis Coded Modulation, TCM) the same result still applies. For
instead setting initially the number of paths to be traced in the trellis Continuous Phase Modulation (CPM) no simple rule in complexity
and the requiring that MLSD is to be performed, a family of MLSD reduction, S/B*, to establish asymptotic detection optimality is appli-
procedures is the result with the complexity as a parameter. Structural cable but substantial savings are demonstrated, see example below.
constraints can also be imposed but this will be at the price of an dd2 d2

increased number of paths. A structure can be given by partitioning 7 d.mnuu

the S states into C classes [2] and then in each iteration keeping B
paths into each class. Assuming M-ary transmission, the BC paths 6d
will be extended to MBC, from which BC are selected again, in each
recursion. This selection procedure is important and if the paths with
the smallest ED (Hamming distance) are selected, MLSD will be per- 5
formed for the AWGN channel (BSC). B=14

The probability of a first error event for the AWGN channel is [I] B= 2
p ( ) _ lQ 2 E b 31 2 73

where the SNR, Eb/NO is large and d,. is the (normalized and squ- 2
ared) ED between any two different paths in the trellis. The first termB B 2
is the traditional asymptotic error event probability for the VA 1
whereas the second is an increment due to the non-exhaustive search
of the trellis and is associated with the probability that the correct path 0 h
is lost after the selection procedure. The quantity d,2 - is determi- 0 0 0tmn0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8 2
ning the asymptotic probability of this CPL (correct path loss) and for 2 2 2 f
reasons given below called the VED. Figure. d,, in and d., . (actuallyd) for M-4,3RCCPM. SA(B,I).

The VED di2 for the most efficient member of the SA(B,C) family, The developed analysis tools are general so that coded systems and
SA(B,1), is associated with a B x B matrix X and a B x I vector I systems where the channel memory has been included in the system
whose entries are given by model (trellis) now can be exactly analyzed.

a (d di 2 - d?) i, j = l, 2 ... , B Rfr

i =i i = 1, 2, . B [1] T. Aulin "Breadth First Maximum Likelihood Sequence Detec-
tion", submitted for publication in IEEE Trans. on Information The-

where d2 is the ED between the correct path and contender #i. Also, ory, October 1992.

d• is the ED between contenders #2 and j. When has full rank, (2] T. Larsson "A State-Space Partitioning Approach to Trellis Deco-
de= m i, (/-y)'- (/-,) ding", Ph.D. thesis, Chalmers University of Technology, GOteborg,

Sweden, December 5, 1991.
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BIDIRECTIONAL SEQUENTIAL DECODING ALGORITHMS
Kaiping Li and Samir Kalel

Department of Electrical Engineering
The University of British Columbia
Vancouver, B.C., Canada, V6T IZ4

Abstract other stack is used for the backward search and is called the
In this paper, we present efficient bidirectional sequen- backward stack (BS). Starting from the root and final states

tial decoding (BSD) techniques. With BSD, the code tree is of the encoder, forward and backward search operations are
searched from the root and end states of the encoded tree si- performed simultaneously according to the regular stack al-
multaneously. It is shown by analysis as well as computer gorithm. The tree search is terminated whenever the best path
simulations that with BSD, the computational variability per on the forward or the backward direction merges with a path
decoded block can be substantially decreased. In fact it is on the opposite direction.
shown that the Pareto exponent of the distribution of the block With BSD, it is desirable to use codes that possess
computational effort with BSD is twice that with unidirectional the same distance profile on both forward and backward
sequential decoding (USD). Good codes suitable for BSD are directions. Using computer search techniques, we have found
found. Also, an efficient bidirectional multiple stack algo- good non-systematic rate-lf2 codes suitable for BSD.
rithm (BMSA) is proposed and analyzed. This BMSA offers It is shown by analysis and computer simulations that
a good trade-off between computational effort and error per- with BSD, the computational variability per decoded block
formance. can be substantially decreased. In fact it is shown that the

Summary Parewo exponent of the distribution of the block computational
Sequential decoding is a very powerful decoding tech- effort with BSD is twice that with USD.

nique for convolutional codes. The main drawback of se- The idea of bidirectional sequential search can be incor-
quential decoding is the variability of its decoding effort. As porated to the multiple stack algorithm (MSA) [4]. An cf-
a consequence of this variability, the decoding effort for a ficient bidirectional multiple stack algorithm (BMSA) is de-
given data block may exceed, in certain situations, the phys- scribed and analyzed. It is shown that this BMSA offers
ical limitations of the decoder, leading iLevitably to buffer very good performances in terms of both error probability
overflows and information erasures. In the past, several mod- and computational efforts.
ifications have been developed to reduce the computational
variability of sequential decoding [1-4]. In this paper, new References
decoding techniques which further alleviate this drawback of [I] F. Jelinek, "Fast Sequential Decoding Using a Stack," IBM J.
sequential decoding are proposed and analyzed. Res. Develop., vol. 13, pp. 675-685, Nov. 1969.

In a system using convolutional coding and sequential [21 G. D. Fomey, Jr. and E. K. Bower. "A High-Speed Sequential

decoding, information is usually transmitted in blocks, and Decoder: Prototype Design and Test," IEEE Trans. Commun.

each block is terminated by a tail of some known bits. Start- Technol., vol. COM-19, pp. 821-35, OCL 1971.

ing from the root node of the encoded tree, a conventional 131 D. Haccoun and M. J. Ferguson, "Generalized Stack Algo-

sequential decoder moves into the tree in t fo d rithms for Decoding Convolutional Codes," IEEE Trans. on

tion, one branch at a time, along the most likely transmitted nfm. Theory, vol. IT-21, pp. 638-651, Nov. 1975.

path. Decoding of a block is terminated whenever te dcoter 141 P. R. Chevillat and D. I. Costello, Jr., "A Multiple Stack
reacsthe Dennod e of thelo tree.Sintedwhene the fina encoder sAlgorithm for Erasurefree Decoding of Convolutional Codes,"
reaches the end node of the tree. Since the fl enoder state IEEE Trans. on Comm., vol. COM-25, pp. 1460-1470, Dec.
is known by the decoder, decoding can also be performed in 1977.
the backward direction. [5] L. R. Bahl, C. D. Cullum, W. Prazer, and F. Jelinek, "An

We propose in this paper an efficient sequential decoder Efficient Algorithm for Computing Free Distance," IEEE
that explores the tree simultaneously in both forward and Tram. on Inform. Theory, vol. 1T-18, pp. 437-439, May 1972.
backward directions. The bidirectional search idea has been [61 K. J. Lasen, "Comments on 'An Efficient Algorithm for
used for computing the free distance of convolutional codes Computing Free Distance'," IEEE Trans. on Inform. Theory,
(5, 61. Recently, Rouanne and Costello have applied the bidi- vol. IT-19, pp. 577-579, July 1973.
rectional stack algorithm for computing the distance spectrum [71 M. Rouanne and D. J. Costello, Jr, "An Algoritmn for
of trellis codes [7]. This idea of bidirectional decoding has Computing the Distance Spectrum of Trellis Codes," IEEE J.
also been applied to the M-algorithm [81, and to the decoding on SelectedAreas in Commn~., vol. 7, pp. 929-940, Aug. 1989.

of block codes [9]. The BSD algorithm proposed in this pa- (81] D. Haccoun and J. Belzile, "Bidirectional Algorithms for
per is based on the well known stack algorithm (1], and hence the Decoding of Convolutional Codes," 1990 IWEE Book of
it is called hldeclloen sowack algorlm (BSA). In the BSA, Abstracts of! Vormation Theory SympouiumSan Diego, p. 177,

two separate stacks we used. One is used for the forward Jan. 1990.
search of the tree and is called the forward stack (FS). The 191 F. Haninati, "Bidirecional Trellis Decoding," 19901EEE Book

of Abstracts of Informaion Theory Symposium. San Diego,
I O 31 beh 6Y,69 NW.• 36NOU, M M NW AMON&,CedMo p. 107, Jan. 1990.
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It is well known that the behavior of sequential decoding is lir- For the hard-quantized memoryless channels, the distribution of C
ited by its computational effort [1]. Let C denote the number of tree presents another interesting feature; the curves exhibit a stair-case ap-
nodes examined in order to make a correct decision. Then the distri- pearance before assuming the usual asymptotic Pareto behavior. This
bution of computation [1] is the distribution of C. Traditionally, the effect becomes more obvious as SNR increases. For low-to-moderate
performance of sequential decoders has been analyzed using random values of SNR, however, the curves present smooth appearance without
coding arguments which obtain results in the form of averages over the any abrupt changes. It is noted that this phenomenon is not appar-
ensemble of random tree codes [1]. Based on this analysis, it is well ent in case of the unquantized additive white Gaussian noise (AWGN)
known that the distribution of C is essentially Pareto distributed, a channel.
function of code rate, but independent of the code's constraint length,
K [1]. However, by their very nature, ensemble averages are not tied It is well known that optimal distance profile (ODP) and opti-

directly to LL, vioperties of a particular code and therefore, techniques meal free distance (OFD) codes make excellent choices for sequential

for the performance analysis of specific codes are highly desirable. and Viterbi decoding, respectively [1]. To compare the relative perfor-
mance of the two types of codes, several simulations were conducted.

In this paper, we investigate the performance of the Fano and It was verified that the ODP codes perform better than OFD ones for
stack decoders [1] using exact analysis methods based on importance all SNR conditions. The results of the study also indicated that sys-
sampling [2]. In contrast to the classical analysis, the simulation-based tematic ODP codes performed much better than the non-systematic
analysis presented in this paper uses no random-coding arguments and ones. However, this improvement in the distribution of C performance
is applicable to specific time-invariant convolutional codes. Hence, it was again, at the expense of increased error probability.
serves as a useful complement to the ensemble average analysis as one
can study the characteristics of sequential decoders for any given code
and operating condition. Throughout this study, we used the Fano metric [1] with the bias

term, B, equal to the code rate, Ii. Several simulations were conducted
Fig. 1 shows the computational effort of various convolutional in order to investigate a good value of B. Using some recently developed

codes operating over a binary symmetric channel (BSC) [1] and em- techniques by the authors [2] for estimating the bit error rate (BER),
ploying the stack decoder. The simulation results show an interesting the effect of B on BER was also considered. A summary of the results
effect; the computational effort improves as K decreases. This shows of this investigation will be presented.
the effect of the "remerging phenomenon" [1] on the computational
effort of a sequential decoder. In brief, for a code with small K, the The performance of the Fano decoder depends on the value of
incorrect paths traced by the decoder tend to merge more often with threshold increment, A (1]. Our simulations indicate that when A is

the correct path, thereby resulting in an undetectable error. Hence, increased initially, the computational effort (determined by considering
for a given SNR ratio, the distribution of C actually depends' on K. the forward looks) of the Fano decoder improves. As A is increased

However, as K increases, this dependency becomes less significant and further, the computational effort severely degrades. In contrast, the
the distribution tends to converge with the Pareto tail. Note that the distribution of the number of (distinct) nodes searchect in order to

classical analysis [1] shows no such dependence and/or characteristics, make a specific correct decision always degrades as A is increased.
100 This dependence, however, becomes less significant for higher SNR

ratios.

11 - P K19 Finally, the relative performance of hard-decision decoding ve.sus
-.-.... I,.i4 soft-decisions was investigated. An interesting result was obtained; the

- K-W computational effort over the unquantized and hard-quantized AWGN
10-3 X-6 channel is almost identical when the loss associated with hard decisions

W zis about 2.3 dB. It was also found that the BER's for the two operating
04 - K conditions were identical. Hence, it seems that if a sequential decoder

4 ....-... operates over an unquantized AWGN channel, then to achieve the

same performance over a hard-quantized AWGN channel, the decoder

-6 34 must generate an additional signal power of the order of 2.3 dB.
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Fig. 1: Sequential Decoding Computational Effort 'it is noted that in the ensemble average analysis, the path mergi•g phenomenon

Performance Over a BSC with SNR = 9 dB. is carefully avoided by the use of long constraint length codes.
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Abstract is added to the path metric. The second operation is metric
comparison which is performed in the priority queue after

This paper describes the use of the sequential stack algorithm every deletion or insertion.
to decode cyclic (or extended cyclic) block codes. Once a
block code is endowed with a trellis structure decoding with As a comparison, the complexity of several soft decision
any of the convolutional decoding algorithms is viable. Since techniques used to decode the (24,12) Golay code are listed
trellises for block codes are very wide a sequential algorithm, below. Simulations (AWGN channel with BPSK modulation)
working at moderate signal-to-noise ratios, is an effective were performed to measure the complexity and error
decoding alternative to the Viterbi algorithm. Using Wolfs performance of the stack algorithm. Based on these simulation
trellis, Chang and Yao's sequential stack algorithm, and the the sequential algorithm is the better algorithm for decoding
Fano metric the (24,12) Gokly code can be eficiently decoded the Golay code when the signal-to-noise ratio is at least:
Computer simulations show that by 6 d8 the sequeniial
algorithm is the most efficient (using Be'ery and Snyders'
definition of complexity) soft decoding algorithm for the Maximum(24,12) Golay code. Technique Complexity sr

Summary Correlaion Decoder 98303 2dB
Viterbi Algorithm 20473 3 dB

Owin to their algebraic properties linear block codes are Conway-Sloane (86) 1614 * 5 dB
t y decoded using algebraic techniques. Generally, these Be'ery-Snyders (86) 1551 * 5dB
algebraic techniques make hard decisions on the received bits Forney (88) 1351 * 5 dB
causing an inherent loss of 2 dB in error performance. On Snyders-le'ery (89) 827 6dB
the other hand, convolutional codes are decoded using the \ardy-Be'ery (91) 651 6dB
Viterbi algorithm or a sequential algorithm which use soft
decisions and hence have a 2 dB advantage over block codes. * [SIIe89] ** [VaBe9l]
"Therefore, the ability to extend the convolutional decoding
techniques to block codes would clearly be advantageous. As signal-to-noise ratios increase the sequential algorithm
By applying the Viterbi algorithm to a trellis [Wolf781 quickly becomes the most efficient algorithm for decoding
block codes can be decoded using soft decisions. Unfortunately, block codes. For high signal-to-noise ratios the algorithm
the width of this trellis grows exponentially with the number approaches its minimum decoding complexity of 292 addition
of parity symbols, thereby, making the Viterbi algorithm equivalent operations. The simulations also confirm that
inefficient. A solution to this problem is the use of a the sequential algorithm performs maximum likelihood soft
sequential decoding algorithm, decision decoding.

Given a trellis a convolutional decoding algorithm such as References
the sequential stack algorithm can be applied. A trellis for a
cyclic or extended cyclic code can be constructed by using [ChYa86] Chang, C.Y., and Yao, K., "Systolic Ana_
the code's shift register encoder [Wolf78]. The advantage of Architecture for the Sequential Stack Decoding Algorithm,
using the encoder is that the sequential algorithm can generate SPIE vol. 696 Advanced Algorithms and Architectures for
trellis states as needed raher than having to store the complete Signal Processing, 1986, pp. 196-203.
trellis beforehand. This investigation uses an improved
stack algorithm which stores partial paths in a priority queue [SnBe89] Snyders, J., and Beery, Y., "Maximum Liklihood
(ChYa86J. The priority queue is highly parallel and hence Soft Decodinj of Binary Block Codes and Decoders for the
most comparisons are done simultaneously making "ie Golay Codes, IEEE Trans. IT, Sept. 1989. pp. 963-975.
algorithm all the more efficient. The Fano metric, us -d
when decoding convolutional codes, is used as a measure i. (VaBe91] Vardy, A., and Be'ery, Y., "Even More Efficient
determine the best path through the trellis. Soft Decoding of the Golay Codes," Proc. IEEE ISIT,Budapest, Hungary, June 24-28, 1991, p. 190.
Following Snyders and Be'ery [SnBe89J complexity is

measured in terms of equivalent real number additions. The [Wolf78] Wolf, J.K., "Efficient Maximum Likelihood
sequential algorithm manipulates four pieces of information Decoding of Linear Block Codes Using a Trellis," IEEE
(viz. state, metric, path, and depth). Of these, the metric is Trans. IT, Jan. 1978, pp. 76-80.
the only real number and thus the two metric operations
solely comprise the complexity. The first operation is
metric addition which is performed when the branch metric
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Abstract if a codeword is selected the first time, it is transmitted (or stored).
Recently, a tree-structured polytopal vector quantization scheme Otherwise, only its label is transmitted (or stored). Therefore, the

referred to here as the Principal ('omponent Vector Quantization al- codebook is self-organized in the sense that, the first selected code-
gorithm (PCVQA), has been developed and has been shown to have word is shifted to the first position in the codebook buffer and all
the design complexity only linearly proportional to the codebook size. the codewords above this codeword are moved down. The decoder
This paper proposes an efficient technique to implement PCVRA so will reconstruct a codebook in the same order. Note that only the
that it can be made viable for the real-time environment, codewords that are transmitted (or stored) will be encoded by JPEG.

I. An Overview Thus, without considering the codebook design complexity, this ap-
Vector quantization (VQ) has been considered as a viable technique proach involves even less encoding complexity than JPEG does.

for still image data compression (1-2]. One of its advantages is that We then examine various numerical techniques, namely, the gradi-
although its encoding is a complex operation, its decoding is a sim- ent descent method, the power method, the eigenvalue shift accelera-
pie table look-up [3]. However, many VQ techniques, especially those tion, and the modified Aitken's 62 acceleration, for efficient estimation
clustering-based ones, are seriously hampered by complexity, particu- of the principal components which are essential to the implementation
larly design complexity. It is well known that the design complexity of of PCVQA. We show that the gradient descent method which uses
unconstrained VQ algorithms are exponentially proportional to both the Rayleigh quotient as an estimate for the largest eigenvalue has the
the codebook size and the dimension of input vectors. An effective same performance as the power method. The power method with the
approach to reducing the complexity is to consider constrained VQ eigenvalue shifted by one-third of the predicted largest eigeý.valae has
techniques. A receitly developed VQ technique, referred to here as more rapid convergence. And the eigenvalue shift by the Aitken's 6'
the principal component vector quantization algorithm (PCVQA), is acceleration has the most rapid convergence. Consequently, we em-
one such approach. ploy Aitken's 62 acceleration to implement the proposed compression

It was shown that the design complexity of PCVQA is only linearly scheme. This amounts to a complexity of only three to five times more
proportional to the codebook size [5,6]. The fundamental concept than that of JPEG alone, according to our simulation experience. This
of PCVQA rests on the use of principal component as the normal implies that the proposed image coding scheme can, in general, code
direction of the partitioning hyperplanes in designing a tree-structured a color image of 256 x 256 pixels in less than one minute.
polytopal VQ. Thus, the design complexity of PCVQA is critically III. Concluding Remarks
related to the complexity of estimating the principal components. We introduce here an image coding technique which combines

The objective of this paper is to develop techniques for further PCVQA, the self-organizing codebook and JPEG. Simulation results
reducing the implementational complexity of PCVQA. Of particular demonstrate that this technique can achieve better performance for
interests here are still image compression for real-time codebook re- still image compression than JPEG alone. Numerical methods for effi-
transmission in applications including HDTV broadcasting. The is- ciently implementing PCVQA are also studied. The proposed scheme,
sues addressed here are those of complexity, quality of coded images thanks to much reduced complexity, can be employed to construct
measured by peak signal-to-noise ratio, and transmission bit rates. codebooks that are to be retransmitted regularly in HDTV broadcast-

The proposed approach is to implement PCVQA in combination ing.
with the method of self-organizing codebook [7] and JPEG (Joint Pho- References
tographic Experts Group) [8] for still image compression. Simulation
results show that this approach can achieve better performance than [1] A. Gersho and R. M. Gray, Vector Quantization and Signal Com-
JPEG does alone. The price for achieving such good performance is pression. Boston: Kluwer Academic Publishers, 1992.
only a slight increase in the design complexity. The amount of such [2] N. M. Nasradadi and R. A. King, "Image Coding Using Vector
complexity increase is governed by the complexity of calculating the Quantization: A Review", IEEE Thins. Commun., Vol. COM-36,
principal components. pp. 957-971, August 1988.

Four numerical methods are examined here for calculating the prin- [3] K. L. Hehler, E. A. Riskin and R. M. Gray, "Unbalanced Tree-
cipal components, namely, the gradient descent method, the power Growing Algorithms for Practical Image Compression", Proc.
method, the eigenvalue shift acceleration, and the modified Aitken's 1991 IEEE Int. Conf. Acoust., Speech, Signal Processing, Vol.
62 acceleration [9]. 4 (Toronto, Canada), pp. 2293-2296, May 14-17, 1991.

This paper also considers a local search encoding scheme to fur- [4] S. C. Huang and Y. F. Huang, "A Neural Network Structure for
ther improve PCVQA's performance especially when the input vectors Vector Quantizers," Proc. IEEE 1991 Int. Symp. Circuits Syst.,
tend to be clustered as in the case of transform VQ. It known that in
coding high definition images, it is desirable that the input vectors ppC.256a50, Sinapore, June 1991.
to the vector quantizer be high dimensional to reduce the transmis- [5] S. C. Huang, Multila.er Perceptrons for Image Data Compression
sion bit rate. Thus transform techniques such as DCT (discrete cosine Dame, Notre Dame, IN, Dec. 1991.
transform) are needed to reduce the input vector dimension.

II. The Proposed Scheme [6] S. C. Huang and Y. F. Huang, "Principal Component Vector
The proposed image coding scheme is summarized here. It first Quantization," J. Visual Commun. Image Representation, Vol.

divides an image into 8 x 8 pixels of subimage blocks. The DC coef- 3, No. 1, March 1993 (to appear).
ficient of DCT is subtracted from each block and is coded separately. [7] L. Wang, M. Goldberg and S. Shlien, "Interleaved Image Adap-
A codebook is then designed by the PCVQA for the subtracted blocks tive Vector Quantization," Proc. 1991 IEEE Int. Conf. Acoust.,
which contain only AC signals. The self-organizing encoding method Speech, Signal Processing, Vol. 4 (Toronto, Canada), pp. 2305-
[7] is employed to interleave transmission (or storing) of the codewords 2308, May 14-17, 1991.
and labels. In this way, the codewords will be coded in a more compact [8] G. K. Wallace, "The JPEG Still Picture Compression Standard,"
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For each positive integer n, let ?I, be the set of all n*n matrices (ii) Let S be any nonempty subset of the unit square whose box-
of zeroes and ones containing at least one "1". We suppose that a counting dimension is less than two, and for any n let M

M e fl 3
black-white image which is not all white is represented as an be the matrix in which an element equals zero if and only if the
element M e nN for a large enough N. For lossless encoding of corresponding sub-square in the partition of the unit square into
M, we contrast two possible image compression methods. One n-Ixn-l sub-squares contains no point of S ; then, for any k, the
method, called template coding, is a multiresolution technique
which finds a string of templates (shapes) from a finite dictionary ratio B2[Mn,tJ/Bk[Mn,s] converges to zero as nr-*.
that can be used to successively reconstruct M starting from the
matrix 11] in nl ; the string of templates is then encoded template- Statement (i) tells us that template coding always yields
by-template. The other method is the classical image compression com performance at least as good as subpicture coding.
technique known as subpicture coding, in which M is partitioned Statement (ii) gives us a wide class of black-white images for
into square sub-blocks of a given size which are then encoded sub- which template coding outperforms subpictore coding.
block by sub-block.

We first discuss template coding of M. An integer parameter k We illustrate with an example. Template coding with
is fixed, 2:< k < N. If A is a square zero-one matrix of order > k, k=2 applied to the matrix
we define C(A) (the *core" of A) to be the largest square
submatrix of A lying in the upper left comer of A whose order is
divisible by k, and we define P(A) (the "projection" of A) to be "0 0 0 0 1 1 1 1
the matrix we obtain from C(A) by replacing each of the 0 0 0 0 1 0 1 0
submatrices in the partitioning of C(A) into kA submatrices with
a one or zero depending upon whether the submatrix does or does 0 0 0 0 0 1 0 0
not contain a "1". Template coding of M is performed in four 0 0 0 0 1 1 0 0
steps: (1) form the matrices {M: i = ,2,.., ) where MI = C(M), M 0  0 1 1 0 0 0 1
M2= C(P(MI)) ..... M = C(P(Mt-)), P(Mt) = [1]; (2) take the
template dictionary D to be the union of the set {0,1) and the set 0 0 1 0 0 0 1 1
of matrices in M4 that appear in the partitions of the MO into k~x 1 1 1 1 0 1 0 1
submatrices; (3) form the string of templates from D that are seen
as one horizontally scans each of the following in the order 1 0 1 0 1 1 1 1

described; the elements of the partition of Mt into kxk
submatrices, the elements of P(MI-l) not in MY, the elements of
the partition of Mr-1 into bkd submatrices, the elements of I00 ]
P(Mr-2) not in MT-l,.... the elements of the partition of MI into
kxk submatrices, the elements of M not in MI; (4) encode the yields MI Mtemplate string template-by-template, y0ls = ,M 1 0 1 n

In subpicture coding of A, we also fix an integer parameter k, I 1

I k < N. We form the string consisting of the elements of the
partition of C(M) into kxk submatrices (scanned horizontally)
followed by the elements of M not in C(M) (scanned on rl] 1
horizontally). We then encode this string entry-by-entry. Letting TI, T2 be the templates I I I respectively, weWe state our results, which indicate that template coding 01 101
is preferable to subpicture coding in a certain asymptotic sense. If obtain the siring of templates t = (TiT, 7T2. T1, T1, 7'2. T2. T. 7T2, TI,
M e f and n > k, let BAIM,t] (B[Mjs]) be the minimum total T2, T2, TI, Ti). (The first entry of t allows one to determine M3,
number of bits that are achievable in template coding (subpicture entries 2-4 allow one to reconstruct M2 from MA and entries 5-13
coding) of M with integer parameter k. Then statements (i) (ii) allow the recovery of M from M2. ) We have B2[M,t] = 13 bits.
hold: On the other hand, subpicture coding with k=2 applied to M

gives us the string (f O,QTa, T2, 0,Q, Ti.O.O, ,T2,0, Ti, Ti,T 2, Ti,
(i) Given any k and e > 0, there exists k* = k*(k,r) and N* = g wer u s the 2 T2 zr maTix, fro which one concludes

T,1) where 0 is the 2x2 zero matrix, from which one concludes
N*(k,e) such that Bk,[M,t] < (1+ e)BgIMs] for any n > N* and that B24M1s] = 25 bits.

any Me 7.

*Authors supported by NSF Grant NCR-9003106
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SUIPIXEL ACCURACY FOR DIGITIZED STRAIGHT LINES

Jack Koplowitz
Department of Electrical & Computer Engineering
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Potsdam, NY 13699-5720

Abstract

A straight line y = mx + b has as its digital representation onan where nq) is the number of values p can take on (and be relatively
integer grid the set of points [(xi, yi): xi = i, Yi =Lmxi + bi i = o, prime to q).
1 .... n). It is shown that for a uniform distribution on the set of lines,
the error in estimating the line from its digital representation is 0(log The measure u of all m having 5 2n/f(n) is
n/n).

u < [2n/f(n)] [4/n] = 8/f(n) (6)

Summary For q : 2n/f(n) we have that dmin < f(n)/n, from which the theorem

For a line y = mx + b the corresponding digital straight line is follows.
defined as those points on or immediately below the line y = mx + b, The expected error is of the same order as the expectation of
i.e. the set of points dmin. Hence we show the following.

((xi, yi): xi = i, Yi = Lmxi + bJ, i = o, 1,... n) (I) Theorem 2. O(log n/n)5 E[dmin] < 0 (log n/n)

Without loss of generality assume 0 Sm 5 1, 0 5b b5 1. The question Proof. From the proof of Theorem I we have that for any line
addressed here is if it is known that the edge is a straight line how well dminS 2/q, with q defined in (4). Thus from (5)
can we estimate the line from its digital representation. For simplicity
we define the error at x as e(x) = Imx + b -m'x -b', where m'x + b' is n n
the estimated edge, and the error e as E [dmin] 5 1 (2/q) (4/n) = 8/n Z l/q = O (log n/n) (7)

q=I q=l
e = maxx, e(x)), o!5 x: n (2)

To lower bound E[dm,] consider m e ma = (p/q,o <p< q:5n)
We assume a uniform measure on p and 0, the length ana angle with p and q relatively prime. The intercept b can range over an

respectively of the normal to a straight line, producing a non-uniform interval of width l/q without changing the digital straight line. The
measure on the set of digital straight lines. Generally this gives greater measure of all lines bounded from above by mx + a + l/q and below by
measure to digital straight lines with larger estimation error, affecting mx + a is.
the order of the error. The expected value of the error e will be shown
to be upper and lower bounded by 0logn/n). uq > 12q 2n (8)

The order of the error defined in (2) is the same as the order of which lower bounds the measure of all lines with that digital
dmin, the minimum distance to the line of points (x-, yi), i = o, I,...n, in representation.
(1). We first give a proof of the result that if an arbitrary small set of
lines can be neglected then the error in estimating a line from its For a line y =mx + b, m e m, and b e ba= = (k/q. k=o, 1,...q-1)
digitized representation has error 0(1/n). More precisely we prove the the ordered sequence (di = mxi + b - yi, i=o, I, ...n) is unique to the
following, triplet (p, q, b). Taking the set of digital straight lines determined by

these triplets we get
Theorem 1. For any function f(n), increasing arbitrarily slowly

with n, P{dmin < f(n)/n) > 1-8/f(n). E [dmin] k Z Z X E [dmin I pq,b] uq ? L E E (1/qXI/2q2n)

Proof: For aline y = mx+ b, let di =rmxi + b-yi, i =o, 1,...n, q pb q pb
where yi is defined in (1). Assume for the moment b = o. For m = p/q, n
o < p < q:5 n, p and q relatively prime, then di e(k/q, k = o, 1,...q-1). E [drin] k p (2q 2 n = (1/2n) E (q)/q 2  (9)
Equivalently, distances to the line for points on the array immediately q q=l
above the line are in the set (kq, k= 1,2, ...q). Thus bcannot be
increased by more than l/q, while keeping the digital straight the same. where 4p(q) is the number of integers p < q and relatively prime to q.
Similarly, for any b, its value can range only in an interval of width l/q, From (9) it can be shown E[dmin] Z 0(logn/n).
for a fixed digital straight line. Thus,

dmin - min, (di) < 1/q (3) References

Consider aline witho < m < 1. From number theory, m canbe [I] J. Koplowitz, "Maximum likelihood slope estimatio for
approximated by p/q, o < p < q S n, p and q relatively prime, such that reconmtction of digitized line segments," Proc. Conf.

hn- pq1 < I/o (4) Inform. 5d. and $Sf Princetm NJ, Mar. 1984, p. 43.

[2) L Dort and A.W.M. Smeulders, "Discrete reprentation of
For any m its corresponding q will be the maximum satisfying (4). For straight lines," WM Tramns. Pattern Anal. Machine nteil.
y = mx + b and y - (p/q) x + b, the maximum distance between them is vol. PAMI-6, pp. 450-463,1984.
maxx ({y-yi} < l/q. since o S x5 n - 1. Thus for any line dminS5 2/q.

[3] C. Berenstein, LN. Kanal. D. Lavine. and E.C. Olson, "A

The set of slopes with approximation p/q in (4) is a subset of the geometric approach to subplxel accuracy," Cm L WOMt
interval (p/q -I/qn, pq + I/qn). It's measure (assuming a uniform G A Im e Prmces., voL 40, pp. 334-360.1987.
distribution en 0) is bounded by 4/qn. Let m. denote the so of slopes
with fixed q in the approximation in (4). its eare o p [4) C. Berenstein and D. Lavine, "On the number of disital

SMght line sgments," = MW I m AnhL MAln
u(mq) < # (q) (4/qn) <4/n (5) Inell.. vol. PAMI-10, pp. 880-887. 1988.
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ENTROPY-CONSTRAINED SUBBAND CODING OF IMAGES USING A
PERCEPTUAL DISTORTION CRITERIA
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Abstract uation properties of the HVS than the squared-error metric.

A new perceptually relevant entropy-constrained coding This distortion measure is then incorporated in a straightfor-
scheme based on the just-noticable-distortion (JND) level of the ward manner into previously developed design procedures for
human observer is described and its properties demonstrated. ECSBC schemes based upon training data, as described in [1]
The JND at each pixel location is defined as the threshold of for the specific case of mean-square distortion.
detectability of the human visual system (HVS) to errors in re- The perceptual distortion measure is based upon the con-
producing that pixel. Because of the masking effect of the HVS cept of a just-noticable-distortion (JND) level at a given pixel
errors below the JND are rendered imperceptible. The JND location in the reconstructed fullband image when errors occur
is determined empirically as a function of spatial frequency, in different subbands. This results in a spatially varying percep-
local texture and local contrast. A distortion measure is de- tual threshold Ti(x) indicating the JND due to errors at pixel
veloped, making essential use of the JND, for a subband cod- site x in the i'th subband. The evaluation of Ti(x) is deter-
ing environment which attempts to mimic the subjective eval- mined empirically similar to the procedure described in [4] and
uation effects of the HVS. This distortion measure employs a depends upon spatial frequency (subband), local texture and lo-
weighted squared-error metric, where the weighting depends cal contrast. However, unlike the coding approach in [4], where
upon the JND value at each pixel position. It essentially as- the perceptual threshold was used to simply set the stepsize of
signs near-zero distortion to subthreshold errors and approxi- a uniform threshold scalar quantizer, in this work the percep-
mately squared-error distortion to superthreshold errors. This tual threshold is used to describe a distortion measure which is
perceptual distortion measure was incorporated into a previ- then used in the design of ECSBC schemes. By making use of
ously developed design procedure for entropy-constrained sub- the appropriately adapted ECSBC design procedure reported
band coding (ECSBC) schemes based upon training data. We in [1], a variety of scalar and vector quantization schemes can
demonstrate that, compared to use of the conventional squared- be investigated for encoding the subband components. This
error distortion, significant improvements in subjective image includes entropy-constrained vector quantization (ECVQ) [5]
reconstruction quality can be achieved at low average bit rates as well as entropy-constrained predictive vector quantization
using this perceptual distortion measure. (ECPVQ) schemes [6]. Optimum bit allocation is provided as

Summary an integral part of this design approach.

Image compression is a very important area of research to- A number of results are presented illustrating the superior
day, especially for use in bandwidth intensive applications such subjective performance associated with the use of this percep-
as high-definition television (HDTV) and multimedia systems. tual distortion measure compared to the conventional squared-
The aim of image compression, or coding, is to minimize the error distortion criterion. Suggestions for further extension of
average distortion, as indicated by a specified fidelity or distor- this approach are provided.
tion measure, for a fixed transmission rate. This can be ac-
complished by exploiting any redundancy present in the image, References
together with use of an appropriate quantization strategy. [1] Y.H. Kim and J.W. Modestino, "Adaptive Entropy Coded

While there has been extensive research directed toward Subband Coding of Images," IEEE Transactions on Image
characterizing the rate-distortion performance of various image Processing, Vol. 1, pp. 31-48, January 1992.
compression schemes, almost all of these studies have been based
on use of the mean-squared error fidelity criterion. For exam- [2] N. Jayant, "Signal Compression: Technology Targets and

ple, previously reported results for entropy-constrained subband Research Directions," IEEB J Select Areas in Commun.,

coding (ECSBC) have shown good quality image reconstruc- Vol. JSAC-10, pp. 79-818, June 1992.

tions, as well as excellent rate-distortion performance, using a [3] D.J. Sakrison, "Image Coding Applications of Vision Mod-
minimum mean-squared error distortion criterion [1]. Minimum els," in Advances in Electronics and Electron Physics, W.
mean-square error (MMSE), however, is not the best measure Pratt, Ed., Academic Press, New York, 1979.
of human psychophysical evaluation because it does not take
into consideration the relative vsiibility of coding artifacts. It [4] R.J. Safranek and J.D. Johnston, "A Perceptually Tinedincrasiglynecssay t deinedisorton easres Subband Image Coder With Image Dependent Quantize.-
is becoming increasingly necessary to define distortion mesure tion and Post Quantization Data Compression," Proc.
based on subjective evaluation criteria [2], which will allow min- ICASSP'89, pp. 1945-1%8, 1989.
imization of the perceived distortion, rather than mean-square
error, for a desired transmission rate. Determination of a per- [5] P.A. Chou, T. Lookabough, R.M. Gray, "Entropy-Con-
ceptually based distortion metric has therefore been a subject of strained Vector Quantiztion," IJEE Trans. on Acost.,
renewed interest in the image coding literature with early work Speech and Signal Proc., Vol. ASSP-37, pp. 31-42., Jan-
described in [3]. uary 1989.

In this paper we focus on the development and use of a [6] Y.H. Kim and J.W. Modestino, "Adaptive Entropy Coded
perceptually relevant distortion measure for use in a subband Predictive Vector Quantization," ISEE Trans. eo Sig.
coding environment which better mimics the subjective eval- Proc., Vol. 40, pp. 633-644, March 1992.
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Introduction Subband image statistics

Subband coding (SBC) is an attractive image coding Numerous still pictures (512 x 512 pel, 8 bit quanti-

scheme. For compression the subband signals must be zation) were filtered with separable quadrature mirror

quantized. Vector quantization (VQ) of the subband sig- filters (QMF). The resulting images were divided into

nals exploits the statistical bindings between the samples. blocks of size 4 x 4. In the baseband the sample mean

The performance of a particular vector quantiser is highly of the blocks was subtracted. These blocks were then

dependent on how well its codebook matches to the transformed by a principal axes transformation H into

source statistics. Investigations concerning VQ perfor- uncorrelated vectors with unit variances:

mance require multivariate source models. y=Hx with HTH=I-1, (2)
In this respect the SIRP models, which will be recalled in
the following section, have many interesting properties. where M denotes an estimate of the covariance matrix.
SIRP model sources can be efficiently quantized using lat- If the hypothesis of spherical invariance (I) is true, the
tice VQ which reduces implementation complexity drasti- vectors in the principal domain obey the pdf:
cally compared to VQ with unstructured codebooks. The I T
known designs employ contour-gain separated VQ (aim- pn(Y) = "_'f.(yTy). (3)
ilar to [1]) and a lattice structured codebook for quanti- det
zation of the contour vector. Thus the pdf of y depends only on the radius r = y

Besides, traditional VQ can benefit from SIRP models by of the vectors. This hypothesis has been tested with a
training with pseudo random data generated according to x2-test of goodness of fit. The results have shown that
the model [2]. the spherical symmetry is much stronger in the subbands

than in the original domain. It turned even out that
spherically symmetric distributions are better suited (by

SIRP models an order of magnitude) than those distributions related
to the common model of statistical independence in the

A random process is called a spherically invariant ran- principal axes domain.
dom process (SIRP), iff every joint probability density This gives rise to use lattice VQ in the subband domain,
function (pdf) in n variables Pn(x) is a function of the thus combining the advantages of subband coding with
quadratic form xTM-lx only: the performance of VQ, without the need for the storage

of many different codebooks.
pn(x) = NxTMlx), (1)

References
where M denotes the corresponding n x n covariance ma-
trix. The function f,, describes the shape of the distri- [1] K.T. Malone and T.R. Fischer, Contour-Gain Vec-
bution. tor Quantization, IEEE Trans. Acoust., Speech and
This means that all contours of equal probability density Signal Proc. ASSP-36, pp. 862-870, 1988
are multidimensional ellipsoids. In particular, all contour [21 Y. Du. SIRP-Model Based Generation of Image VQ
lines of equal density of any bivariate distribution taken Training Sequences, 13a4h GRETSi Symposiumr on
from two samples of a SIRP are ellipses. Signal and Image Processing, pp. 889-892, Juan-les-
Du [3] gave a comprehensive SIRP model for image sig- pins, France, 1991.
nals which uses generalized gaussian functions to describe
the univariate marginal distributions. He showed further [3] Y. Du. Ein sphirisch invariantes Verbunddichte-
that image blocks (after subtraction of the sample mean) modell zur Vektorquantisierung von Bildsignalen.
can be modeled as realizations of a SIRP. It will be shown Ph. D. Dissertation, Aachen University of Technol-
here that image blocks in the subband domain can be ogy, 1991.
modeled as SIRPs as well.
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We discu-s coding of 2D data using a recursive framework By Cholesky factorization, A = UT U. Equation2) gives
for noncausal Gauss Markov random fields (GMRF) defined
on "rnite lattices. This framework exploits to advantage the Ux= w (3)
stri.cture of GMRFs providing the means to achieve recur-
sive optimal processing, while preserving the noncausality where the covariance of w is 0,21. The Cholesky factor U is
of the field, not a full matrix. It is block diagonal with band N + 1. The

The compression scheme uses noncausal prediction cou- diagonal and the upper diagonal blocks of U are obtained
pled to vector quantization (VQ). The noncausal prediction from the iterates of a Riccati type equation. In [2], the con-
fits first a noncausal GMRF to the data, then whitens the vergence behavior of this iterative scheme is studied. For
data by an inverse filtering type operation, and finally vector practical purposes, one may stop it after less than 10 iter-
quantizes the prediction error field. In this paper, we ex- ations, considerably reducing the associated computational
plain the details of the noncausal prediction. Lack of space effort.
prevents us to discuss the parameter estimation algorithm
that is needed to fit a 2D model to the data, see [1]. 2D Coding

To code 2D data, we need the field parameter values
Ph, er, S c . In [1], we analyze the parameter space of GMRFs

Important in the coding of GMRFs is the issue of pa- and study their maximum likelihood (ML) estimation.
rameterization. This leads to the question of when is a We have used this to code two dimensional data. The
positive definite matrix the covariance of a GMRF? Partial basic structure of the (lossy) codec is the following: (i) The
answers are available only in very special cases. In general, global mean is subtracted from the 2D data, which is then
for GMRFs on finite lattices, it is not possible to answer the input to an ML - estimator; (ii) a Cholesky factorization
question directly. It turns out that the right way to pose it of A leads to the unilateral representation of the field;
is in terms of the inverse of the covariance matrix which we (iii) the field is whitened leading to the error field; (iv) the
refer to as the potential matrix, see (2] for details. error field is vector quantized; (v) lossless entropy type cod-

Let {f j}), 1 < i, j _< N, represent the 2D field on a finite ing can be used to achieve further compression. When ap-
lattice (taken as a square, for simplicity.) Woods [3]'s min- plied to image data, we have verified that we can get over
imum mean square error representation of a homogeneous a factor of 3 - 10 of more compression ratio than DCTfirst order GMRF (nearest neighbors) is based techniques. This procedure and modifications to it

are presently under study.
zi,, = Ah(zij-1 + Xij+l) + f(Xilj + zi+lj) + eij, (1)

where 81h and 3,, are the strengths of the neighbor hori- References

zontal and vertical field interactions, respectively. We call [1] Nikhil Balram and Jo08 M. F. Moura. Noncausal Gann
these the field potentials. Collecting all N 2 equations, tak- Markov random fields: Parameter structure and estimation.
ing care of boundary conditions (b.c.) (which here we as- Technical report, LASIP, Department of Electrical and Com-
sume Dirichlet zero boundary conditions, see (2] for general puter Engineering, Carnegie Mellon University, April 1991.
b.c.,) we get Accepted for publication after minor revisions, 45 pages, re-

Ax = e (2) vised February 1992.

where the potentials are collected in the matrix A = I & [2] Josk M. F. Moura and Nikhil Balram. Recursive structure
B+ HoC, and 0 is the Kronecker product. The N 2 vector of noncausal Gauss Markov random fields. IEEE Transac-

tions on Information Theory, IT-38(2):334-354, Marchx = vec[xi], where the N vectors x collect the intensities 1992.
of the pixels of the ith - row. I is the N 2 identity matrix,B = INv - •hHN and C = -$•,IN, H is an N 2 matrix of [3] J. W. Woods. Two-dimensional discrete Markovian fields.

B = N -#hH andC =-fl INH i anN2 mtri of IEEE Trans. Inform. Theory, IT-18:232-240, 1972.
zero entries, except the upper and lower diagonal (all ones,)
and IN and Hv are like I and H but of dimension N.

The noise e has correlation E. = .2A. Apart the nor-
malizing factor of o,2, the covariance Ex of x is then the
potential matrix A.

"Work partially supported by ONR grant # N00014-91-J-1001
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An Optimally Bit Allocated Wavelet Pyramid Image Coding System
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Abstract allocation problem can be formulated as
Reconstruction error properties for a wavelet pyramid image cod- - 3

ing system are described. It is shown that when optimal bit minimize co = Kj2-2'R + E FA K,2 -W (5)
allocation scheme is adopted, the reconstruction noises and the j=1 k-1

quantization noises of the wavelet pyramid coding system become J 1 3

regular, and the reconstruction noises can be approximated to subject to R = Ri+ E R, (6)
stationary white noises. Based on the error property analysis, "= k=1

an optimal bit allocation scheme with respect to the minimum where A3* (or Kj) denote quantization factors. The optimal so-
reconstruction-mean-square-error (RMSE) criterion is given. The lutions are obtained by using Lagrange multipliers:
system reconstruction distortion at a given bit rate R is proved to 4 = + -_(1 - 11 K1 '
be directly proportional to 2 -2N. Experimental results are given. R. 3 R+ I ) + -2 °(7)

Summary 3 4 K
4 1 1 A'

For a J stage discreLe orthonormal wavelet pyramid image Ri = R+ J - -(1 -)+-lo0 2 n-4, (8)3 42 A+•lg --- 8

coding system [2], let {Pj,(DJ)1 <j <i,(DJ)1<j<j,(Dj)<j<j)} be where K is given by

the wavelet decompositions of an input image P0 and letE J,3
{ei (e%<) <ji , (,d_)_,<J, (e)%<_jJ} be their quantization MSE's, K = (Kj)i H l (h•)i. (9)
respectively. Furthermore, let ej denote the reconstruction MSE j=1 h=1
at 3-th layer of the pyramid. Based on the orthonormality of the Furthermore, the minimum MSE of the system reconstruction is
discrete orthonormal wavelets and signal processing theory, the given as
reconstruction MSE at a layer is given as e(4) = mine0 = 25( 7)K22R, (10)

J 3 which is directly proportional to 2-".
i=j h.t A wavelet pyramid image coding system composed of 10-tap

W-QMF's and an optimally bit allocated uniform quantizer was
Theorem 1 In the wavelet pyramid image coding system, if the implemented and the experimental results are shown in Fig. 1.
quantizers which minimize the system reconstruction MSE at a
given bit rate are employed, then the quantization MSE's and the References
reconstruction MSE's at every layer of the wavelet pyramid satisfy [1) 1. Daubechies, "Orthonorral Bases of Compactly Supported
the following equations" Wavelets" Communications on Pure and Applied Mathematics,

= (2) Vol.41, No.7, pp. 909-996, 1988.
S e1  ( [2) S. Mallat, "A Theory for Multiresolution Signal Decompo-
= 4t(3) []S alt ATer o utrslto inlDcmoe/-k sition: The Wavelet Representation," IEEE Trans. on PAMI,

ej- 1 = 4ej = 4J-J+'tj, (4) Vol.11, No.7, pp. 674-693, July 1989.

where I < k < 3, 1 < j < J. Furthermore, if the quantization [3] P. H. Westerink, Boekee D. E., Biemond JJ. and J. W. Woods,
noises are cross-uncorrelated and white, then the reconstruction "Subband Coding of Image using Vector Quantization," IEEE
noise at each layer is also white. Trans. on Commun., Vol.36, No.6, pp. 713-719, 1988.

SNR (dB)
Theorem 1 indicates a kind of regularity about the quantization 35.0 1 i ,
noises and the reconstruction noises. The regularity is reflected 34.0 - f e

at least in three aspects: 1) The quantization MSE's at the same 33.0 -........ *d
layer of the wavelet pyramid are equal to each other, and also 32.0 *.31.0 .- ."::% ....... ............. :
equal to the reconstruction MSE at the same layer. 2) The quanti- 30.0 - ... :.......
zation MSE's or the reconstruction MSE's at two successive layers 29.0........
are related by a factor 4 in quantity. 3) If the quantization noises 28.0 ..... : ...............

are cross-uncorrelated and white, then the reconstruction noises 27.0
at all layers will he white. This regularity should be useful for the 26.0 . I

practical applications such as post-processing of the reconstructed 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
image, the progressive transmission and so on. Theorem I has
also simplified the estimation of the reconstruction MSE's or the
quantization MSE's, since only one quantization MSE is needed Fig. ( SNR versus bit-rates for 256 by 256 pixel image "Lena":
to know. (a) SBC+SQ; (b) adaptive DCT; (c) SBC+spatial differential

For I < k < 3, 1 < j < J, if we assign RM bits to each VQ; (d) SBC+adaptive DPCM; (e) Waveht+SQ+Huffman; (f)
component of sub-images and J to P, then teoientropy of Wavelet+SQ, where dashed lines are taken from [3].

ethe optimal bit
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ROTATIONALLY INVARIANT TRELLIS CODES FOR QAM
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SUMMARY tition of Z2 under an isometric labeling [4,51). The code

Rotationally invariant (RI) trellis codes are im- C is the orbit of an isometry graph over U. This im-

portant whenever the modulation signal set has a rota- plies that the graph of the encoder is embedded in the

tional symmetry and the transmission system can intro- isometry graph, since all codewords can be generated as

duce a phase rotation. Rotational invariance means that the action of the isometries on the "all zero's" sequence.
a trellis code is dosed under rotation of the individual In other words, if the isometry graph is only labeled

elements of the signal set onto which it is mapped. In with the b's (i.e., let A be the identity map), the resulting
this paper we look at this "rotation" as an "isometry graph must be reducible to the graph of the encoder for
sequence" under which the code is invariant. We con- C. For example, consider the following class of rotation-
centrate on trellis codes that can be described as the orbit ally invariant trellis codes [5]: let the generator G be thecenagraue on treisodesthat canuenes dcribed a the oses ofrate 1/2 convolutional code over Z4 (the integers mod-
of a group of isometny sequences acting on the cosets of ulo 4) given by [1 - D, Gp(D)]. The input sequence is
a lattice partition in Euclidean space, also over 24, but the output is taken as (m,p) E 22 x 24,

An isometry, T, of a trellis code, C, is a map alooe 4btheuptisakns(m)E 2xZ,
such that if cl and c2 are codewords in C, isca - where m is the most significant bit generated by the 1 - D
c211 = JiT(cf) - ArI, VC1,c2 E C. The distance func- term, and p is the output from Gp(D). The outputs of the

c211 IITci)- Tc2)I, V 1,c E . Th ditane fnc- code are then mapped to the 8 cosets. Two specific ex-
tion is the Euclidean distance on the individual com-
ponents of e;-ch codeword, given by the one-to-one amples will be presented: a 4-state code with generator
maponetswoeech codeword, labels byd the modulatoone s [1 - D, 2 - DI, that has a free Euclidean distance of 3map between codeword labels and the modulation sig- anan8steimtygrpndn8-aecoewh

nal set. A coordinate isometry is an isometry such that and an 8-state isometry graph, and an 8-state code with
V i, II[T(ci) - T(c2)]JJI = II[cI - c2]11 . Note that the shift generator [1 - D, 2 + D + 2D2 1, that has a free Euclidean
operator is an isometry that is not a coordinate isometry. distance of 5 and also an 8-state isometry graph. Theopertorc dlater code is equivalent to the 8-state RI trellis code used
A symbolic dynamic group, S, is a subshift M over a finite in the CCITT V.32 standard (61, while the first demon-
group, that itself forms a group in sequence space by ap- strates an example where the isometry graph is larger
plying the group operation coordinate-wise. The group than the graph of the encoder.
S is guaranteed to be a subshift of finite type, conjugate
to a full shift, which in part implies that it is generated REFERENCES
by a deterministic, labeled directed graph that admits a [11 B. Marcus, "Sofic systems and encoding data," IEEE
sliding window inverse [2]. Transactions on Information Theory, vol. IT-31, no. 3, pp.

To describe a geometrically uniform trellis code 366-377, May 1985.
C 141, begin with the set of isometries, U, that map cosets
of a particular constellation partition onto themself. This [21 B. Kitchens, "Expansive dynamics on zero-
set forms a finite (non-abelian) group under composition. dimensional groups," Ergodic Theory and Dynamical Sys-
Describe a symbolic dynamic group, S, over U; S is gen- tems, vol. 7, pp. 249-261, 1987.
erated by a graph that is referred to as an isometry graph [3) D. Slepian, "Group codes for the Gaussian channel,"
of the code. The trellis code, C, is then the orbit of an ini- Bell System Technical Journal, vol. 47, pp. 575-602, Apr.
tial sequence co (a sequence of points in Euclidean space), 1968.
under the action of S. The code C can then be viewed as a [41 G. D. Forney, jr., "Geometrically uniform codes,"
generalization of a Slepian group code 13, 41. Note that if IEEE Transactions on Information Theory, vol. 37, pp.
Co is a constant sequence, the encoder can be obtained by 1241-1260, Sep. 1991.
taking the action of each edge label of the graph of S on
the "point" co. However, the resulting graph will in gen- 151 E. Rossin and C. Heegard, "Rotationally invariant
eral not be minimal, (i.e., the graph that generates C may codes with a linear structure", in Proceedings 26th Confer-
be smaller than the graph that generates S). Rotational ence on Information Sciences and Systems, Princeton Uni-
invariance now corresponds to the orbit of a symbolic versity, Mar. 18-20, 1992
group S that includes the "all rotations" sequence. [61 L. F. Wei, " Rotationally Invariant Convolutional

We demonstrate these ideas by concentrating on Channel Coding with Expanded Signal Space - Parts I
maps of the form Ac + b, where c E C, A : C - C is an and II," IEEE Journal on Selected Areas in Communications,
invertible matrix and b E Z2 x Z4. These maps, which vol. SAC-2, pp. 659-686, Sep. 1984.
operate on the labels of the QAM constellation, form a
group of 32 elements, U. Each map in U induces an [This work was supported in part by NSF grant NCR-
isometry on the QAM signal set (the standard 8-way par- 8903931 and NCR-9207331.1
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On 900 Rotationally Invariant Lattice Codes
J. A. Sheppard and A. G. BurrI

Introduction In the encoder. some of the data bits generate a code word from
the constituent linear binary code, which is used to define theA key step in the design of a lattice code is the design of an n- sequence of subsets to be transmitted. The remaining bits are

dimensional constellation - having selected a suitable lattice. mapped directly onto points within the required subsets.
the designer must choose a finite subset of points, perhaps with
some translation or rotation, to define a ast of code words with Rotational Invariance to achieved by regarding the subsets as
the required properties. rotations of 2Zn + t, ý, rather than translations. Data bits
It is wel known that the SNR performance nd -rmapped onto point numbers will clearly be unaffected by 90code is parly deteoin e b the shperformape of the r megionso rotations, and only the bits used to determine the subsetcode is partly determined by the shape of the region of n-space sequence need special attention.
occupied by the code. The maximum shape gain is given by an
n-sphere, but this is diffIcult to implement and leads to a It can be shown that if the constituent binary code contains the
constituent 2-dimensional constellation with a high peak to words UI. I...,) and (0, 1. 0, 1....) then a 906 rotation of all the
average power ratio 151. Various other techniques have been symbols will result in another valid code word. It Is also possible
suggested. Including Voronol Constellations 11. 21 and Shell to list the 2 k words of the binary code so that a 900 rotation
Constructions 131. but none of these works address the problem corresponds to a cyclic shift of 2(k-21 places down the list. Thus
of rotational invariance. the data bits can be used to specify the position in the list of new

In a practical system. the receiver must recover th ort s binary code word relative to the previous word. and the lattice
In prctcalsysem th reeier ustreove th crrect Phase code becomes rotationally Invariant.

of the constellation. If phase symmetries exist then the receiver
may lock to the wrong phase. Thus the code must either have no
phase symmetries, or be immune to any rotations resulting from COnstruction B Lattices
such symmetries. The latter type. known as Rotationally In a Construction B lattice code, the two dimensional
Invariant codes, are attractive since phase symmetries can make constellation is divided into sbxteen subset, and two binary codes
phase recovery easier and mor reliable are used to define the sequence of subsets. Rotational

This paper outlines techniques for designing rotationally invariance can be achieved with two sets of word-level differential
invariant codes using Leech and Sloane's constructions A and B encoding, using similar techniques to those outlined above.
141. These lattices are either optimally dense or offer a good However, space does not allow a detailed explanation here.
performance/complexity trade-off in up to 32 dimensions, and
their simplicity relative to other lattice constructions makes them Conclusions
worthy of considerations in higher dimensions. Techniques for designing 900 rotationally invariant construction

A and B lattice codes have been outlined above. These haveConstruction A Lattices potential applications both in the design of lattice codecs, and In

Construction A forms a lattice from the union of cosets of the multidimensional trellis codes.
lattice of even integers, in which the coset leaders are the words
of a linear binary code. If this is offset by the vector (• • ... • References
then thepontslieonthehalfinteger grid.Zn . ..+ . Thus
a two dimensional constituent constellation consists of four II J. Conway and N. J. A. Sloane. A fast encoding method for
subsets of points: 2Zn + (1 ý, 2 n + . (0, 1), 2Zn + (3. 1 + lattice codes and quantizers. IEEE Transactions on
(1. 0). and 2Zn + + (, 1l).This Is illustrated in iigure 1. ln ,ma 7heony. 28:8204-4. 1983.

121 G. D. Forney. Jr. Multidimensional constellations--partil:
Voronol constellations. IEEE Journal on Selected Areas in
Communications. 7(6):942-058. Aug. 1989.

131 P. Fortier, A. Rutz. and J. M. Cloffl. Multidimensional signal
... .. sets through the shell construction for parallel channels.

IEEE Tlfnsactions on Communications. 40(3):500-512, Mar.
1992.

141 J. Leech and N. J. A. Sloane. Sphere packings and errorExample 01 2-dimensional constellation correcting codes. Canodian Journal of Mathemiatics. 23:718-

745, 1971.

. . . . . . . .. ........ 151 L-F. Wei and 0. D. Forney. Jr. Multidimensional
. ""constellations--partl. Introduction. figures of merit, and

-.. .. generalised cross constellations. IEEE Journal on Selected
Areas in Communkntlons. 7(6):877-892. Aug. 1989.

Four subsets of points.
Figure I - Decomposition of 2-D Constellation.

lCommunicagg on Research Group. Department o0 Electronics, University of York. Hesllngton. York. YOI 5DD. England.
Telephon.. +44 904 432396. Fax: +44 904 432335. e-mail: jaa~ohm.york.ac.uk
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A SEMI-ALGEBRAIC CONSTRUCTION TO ACHIEVE ROTATIONALLY INVARIANT CODED
QAM ON THE BASIS OF MULTILEVEL CONVOLUTIONAL CODES

Werner Henkel and Michael Koch

Deutsche Bundespost Telekom, Research Centre
PO Box 10 00 03, D-6100 Darmstadt, Germany

M. Koch is now with Siemens AG (OV), D-8000 Miinchen

1 Introduction of code (2).

In order to account for carrier phase instabilities especially on V/o)31(2) : A(2
) =/J(). G(2) = P)- GO) = AM11 .

satellite or mobile links, several proposals have been made to de- (IA-): Info series, Gb): Forney generator matrix)
fine rotationally invariant coded modulation. They were based on As this equation has to be fulfilled for arbitrary Ij(), J(2) appears
multidimensional or nonlinear convolutional codes, on separate en- as a function of PI). A possible approach for the construction of
coding of the I- and Q-coordinates, or on multilevel block codes, code (2) is to define the components of 1(2) = (j(2), •2) ..... 0{2.)))

especially with Reed-Muller codes as component codes. as shifted versions of 10) (assuming 0) = 1):

This contribution describes a semi-algebraic approach with mul- h(2) - 1(). DJh (kt1) - 1 h - 1,..., kt•,j& E {0.... ,) - 1).
tilevel convolutional codes that leads to schemes with consider-

ably low complexity. The construction guarantees 90*-invariance L(j) is the constraint length of code (j) (not multiplied with k(A)).
of the code, not yet of the information symbols itself. Hereto, a D is a time delay factor (z-' of the Z-transform).
special differential en/decoder structure has been developed. There has to be at least one I42) = P(), i.e. i, = 0, in order to

2 Conditions for the binary convolutional com- express the low-order term D' = 1, appearing in GM1), by means
ponent codes of G(2). Furthermore, one jh has to equal ith = 0) - L(2). This is

necessary as the term DL()-' appearing in GO) has to be expressed
Assuming a binary set partitioning of the 2't -QAM, with a la- by G(2) with the maximum exponent L(2) - 1. For reasons of
belling that is chosen to be 90°-invariant from the third partition decoding complexity it is useful to have L02 ) _ L<1), because k(2)
label on, one obtains the following conditions: is usually greater than k0). This can be achieved by the proposed

I The all-ones sequence must be a valid code sequence of code (1). construction leading to a considerably low decoding complexity.
(....1,1....1,....) E 0 1) Some results are given subsequently. A coding scheme with an
II All valid code sequences of code (1) must be valid code sequences asymptotic coding gain of 6 dB, e.g., has a complexity of 4 states
of code (2), too. 0)11 C A4( 2) for the first stage and 8 states for the second (and, maybe, ad-
III No conditions for AU4), j = 3, ... ditionally the Wagner decoding of a parity-check code as a third

3 Differential en- and decoding stage).

The modulo-4 differential decoder is located after the multistage
convolutional decoder. Otherwise the noise power would be dou-
bled at the input of the differential decoder, significantly reducing Code (1) Code (2)the chivabe cdinCgan.e (1) Code--(2)
the achievable coding gain. Gen. non-rec. (4,7,7) (10,13,15), (16,13,15)
The modulo-4 differential encoder is located between the encoding le), L(j), dj) 1,3,6 1,2,3
stages one and two (see Fig.). It can be shown that this demands Gain / dB f 4.7 3

for a systematic second-level code. Gen. non-rec. (15,15,13) (51,61,73)

4 The semi-algebraic construction Ij), L(),L •Jý 1, 4, 9 -,I3, 5
[Gain / dB 6.5

As outlined in section 2, the all-ones sequence has to be a valid Gen n rB (17

code sequence of code (1). For kV) = 1 a code with all gene:a- Gen.,Lon-,dc. (l, 3, 823

tors having an odd weight obviously fulfills this condition.1 For L() , ,24

0) > 1, the all-ones code sequence can be obtained, if there is Gain / dB 6

the possibility of creating odd weighted generators by combining
some rows (by means of the information sequence) of the Forney Differentia

matrix of code (1). This, e.g., is fulfilled, if one row consists only encoder 7
of odd weighted generator polynomials or if the whole code is only mod 4
composed of odd weighted generators. Iddem

To ensure rotational invariance for code (2), as a necessary and suf- -

ficient condition, one has to ensure that every valid code sequence
A01) of code (1) is also belonging to the set of code sequences AM21 Parallel input () (1)... (4)

Wk): number of info bits per frame, coderate R) =
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Rotationally Invariant Multilevel Codes'
J. N. Livingston

Texas A&M University, College Station, TX 77843-3128

I. INTRODUCTION

The idea behind rotationally invariant codes is to find an encoder

that ensures the following: given any coded sequence, if we ro- A0 11A 1o 0  1111

tate each symbol through a fixed rotational symmetry, then the i?01 0? A 100

new sequence of rotated symbols is also a valid code sequence. If

this is the case, we may use differential encoding and decoding to 1110 A. I

overcome the effects of phase rotation.

In this work, we describe an approach to the design of rotation- Fig. 1. 16 QAM constellation.

ally invariant codes using multilevel coding. This technique allows

the designer to achieve, a priori, a given performance level, as well These conditions are the same as those found in [3], but couched

as being invariant to rotations through constellation symmetries, in different terms. In [3], this method is extended to M-PSK sig-

naling. However, the conditions for rotational invariance become

II. ROTATIONAL INVARIANCE AND MULTILEVEL CODES harder to meet for M greater than 4. The importance of these

observations is that now we have a constructive method of finding
It has been argued (see e.g., (1]) that a "natural labeling" is best rotationally invariant codes. It is a simple matter to find codes

for achieving rotational invariance. In Figure 1, we illustrate nat- that achieve coding gains of 2 to 5 dB with little complexity.

ural labeling on a 16-QAM constellation. Below each point is a For example, binary BCH codes of the same length meet these

binary label. Note that for the 16-QAM constellation, the two conditions. The design of convolutional codes that meet these

least significant bits are not rotationally invariant, while the two conditions can be difficult. However, through the use of gener-

most significant bits are already invariant to rotations through ator matrix descriptions of the codes, we have been able to find

multiples of 7r/2 radians. This leads us to the following observa- a systematic method for designing them. One approach is to ex-

tion: tend the convolutional code over two time epochs and then prune
Observation 1: Only the two least significant bits (for QAM) paths. A second approach is to delete generator polynomials from

need to be encoded in such a way as to make them rotationally a high rate code to form the subcode. And a third approach is

invariant -. to form new generator polynomials from a high rate code by mul-

The theory behind multilevel codes involves partitioning the tiplying them with what we call sequence limiting polynomials.

signal space into subsets. The multilevel code employs an L-level All three approaches involve some trial and error in finding the

code, C = [C,-.. - , CL], where the Ci are component codes. Each codes with the best distance, and ensuring the all one's sequence

component code is responsible for selection of its corresponding remains in the subcode.

subset, a,, i.e., C is the set of all sequences ((a..... a')) of sub-

sets in the constellation that satisfy (at) E Ci for all i = 1, 2,... , L REFERENCES

[2]

We note that in Figure 1, that the two LSB's are affected by a [1] S. S. Pietrobon, G. Ungerboeck, and D. J. Costello, Jr.,

rotation. This again yields an observation: "Rotationally Invariant Nonlinear Trellis Codes for Two-

Observation 2: Both code C, and C2 must provide rotational Dimensional Modulation," submitted to IEEE Trans. on In-

invariance for a 16-QAM constellation, form. Theory, 1991.

It can be shown that for multilevel codes, the condition of ro- [2] A. R. Calderbank, "Multilevel Codes and Multistage Decod-

tational invariance is given by the following. ing," IEEE Transactions on Communications, vol. 37, no. 5,

90 Degree Rotational Invariance: 90 degree rotational invari- pp. 2 March 1989.

ance is guaranteed if the codes C, and C2 (assumed linear) meet

the following criteria: 13] Kasami, T., et. al., "On linear structure and phase rota-

tion invariant properties of block M-PSK modulation codes,m"
1. Code C, must contain the all one's sequence. IEEE Trans. on Inform. Theory, vol. 37, no. 1, pp. 164-167,

2. Code C, must be a subcode of code C2. Jan. 1991.

'This work was supported in part by NSF grant number NCR-9016354
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EIGHT-DIMENSIONAL MODULATION FOR BANDLIMITED CHANNELS

Spase L. Drakul (*) and Ezio Biglieri (t)

(*) University of Ljubljana a Faculty of Electrical and Computer Engineering * 61000 Ljubljana (Slovenia)
(t) Dipartimento di Elettronica * Politecnico * Corso Duca degli Abruzzi 24 * 1-10129 Torino (Italy).

N-dimensional (N-D) signals are generated by selecting N an orthogonal where i, j, k, I = 1,2. 26 (t) and #2(t) are orthonormal pulses.
basis zt(t),V'2(t)...N(t). The data vector x = (Z1,2...ZN) is carried Optimum demodulation of signal (3) transmitted over the AWGN chan-
over the channel by the signal s(t) = • l zVj(t). Here we assume that the nel can be done in the standard way by exploiting the orthogonality of sig-overthechanelby he sgna s~) Eý_,nals. Here we examine a suboptimum demodulator, which exploits the special
symbols zi take on values ±-I. At the receiver, the data vector is recovered by
exploiting the orthogonality of the basis functions: a bank of N filters, each structure of our basis signals. To simplify our presentation, consider only the

in-phase branch of the demodulator, and assume that noise is not present.
matched to one Oj(t), gives x at its output. The demodulator outputs the signal

In this paper we describe a technique to generate an 8&D basis for trans-
mission over bandlimited channels. The idea here is the following. Assume
we have a set of N orthogonal signals # = {(t(t) ..... , N(t)). We generate a i2 (t) = +•(t)4-•(t4T'). (6)
2N-dimensional basis by taking the products tl(t)• and 2(t) , with 6,(t) We observe that the first term in the right-hand side of (6) is non-zero in the
and ý2(t) chosen properly, first half of the 8T& symbol interval, while the other term is non-zero in the

As an application of this procedure, we get Q2 PSK [1, 2] by choosing = second half.
{p(t),q(t)) and 61(t) = sinwet, W2t) = coS w't. Similarly, a four-dimensional The demodulator structure can be considerably simplified by avoiding mul-
set of signals defined over the interval (-2T2, 6T2), T2 the bit duration, can tiplication of the received signal by ai(t). Upon observation of signal (6) we
be generated by choosing form the new signal

I ± A M(t):Fjt -42,) (7)
01(t) = COB ( - f - 4o2(t) 4ii(t - 4T,) (1) obtained by inverting the signal polarity in the second "alof the observation\ 4Tb ,\4T,, interval. By taking the sum e(t) and the difference 6(t) oi the observed

I ( signal and the signal with the polarity reversed, we obtain o(t) = +20i(t) and
fi(t) = --- si 2(t)= cos - (2) 6(t) = ±2,6i(t-4T,). Thus, the detection problem is reduced to discriminating

2 777 \8T, ~ 2 777 8T- between the two pulses f31(t), 02(t), and the polarities of these pulses. This

where [1(t/4T2) = 1 if Iti < 2T2, and = 0 otherwise. Inspection of (1) shows can be done by sampling twice in each subinterval of duration 4Tb, each time

that 461(t) and 02(t) are orthonormal. An eight-dimensional signal basis can comparing the sample value with a suitable threshold.

now be obtained by taking the products la,(t)cosw1,ai(l)sinwct}, where Error probability was simulated for transmission over a channel affected
by additive white Gaussian noise and intersymbol interference and with a

aii (t) = Aij ¢(t)Xi (t), i~J = 1,2, suboptimum detection strategy. Intersymbol interference was modeled by
introducing a transmitting filter HT(f) and an equalizing filter HE(f) followed

and the constants A,3 may take on any non-zero value. Here Ai, are chosen so by a receiving filter H)R(f) at the receiver's front end. HT(f) was selected
as to have 1aI(t) 11=11 a22(t) 11= 0.5817 and 11 a12(1) 11=11 a21() 1= 0.8134. so as to achieve the requirements of FCC standards. The equivalent noise
The cumulative power spectral density is shown in Fig. 1. The spectrum of bandwidth of the overall filter is Bq - 9.333/T,. The model also includes
8D-4P2C is more compact than that of QPSK and of Q2 PSK. the effect of a carrier recovery circuit and of a symbol timing recovery unit.

Fig. 2 shows that the degradation due to intersymbol interference is on the
order of 1 dB for a bit error probability 10-6. The loss in performance with
respect to orthogonal eight-dimensional modulation over the AWGN channel
(and with perfect carrier and timing recovery) is around 2 dB for the same

8D-4P2C Q• error probability, but the spectrum of 8D-4P2C is more compact.

QPSK lo0"

, I0 .. - --- ---.......... . . -.

�•T .................
00 l 0 * 06 .4 of 1.0 4 If 10 20i

Figure 1: Cumulative power spectral density of QPSK, Q2PSK, and 8D-4P2C: .Z
Percentage of signal power in the bandwidth BT . ---- QPSK

We can transmit the 8-D vector x = ( zi. 8s) through the signal 10" - 8-D-2(itIS)
8- D-4P2C (with~ ISI)

z(f) = s,(t) cosw.,t + s(1) sinw•t (3) 8D-4P2C

where 10 a

Mt(t) = Zlall(t) + z2al2(L) + zsa 2 l(t) + zsa22(t) 2 4 6 8 10
and F.OJN (dB)

8s.() =z3aai(t) + z0a14(t) + Z7021(t) + ZSa22(i).
Figure 2: Bit error probability of 8D-4P2C for additive white Gaussian noise

This modulation scheme can be interpreted from a different point of view and intersymbol-interference channel (Be = 0.33/T2) vs. E,/No. Perfor-
by defining the two waveforms #1(t) = aii(t) + a12(1) and M1I(t) = -ai(t) + mance of orthogonal 4- and 8-dimensional schemes and of QPSK is also shown
ai2(t), where -2T, !5 1 < 2T2. Moreover, observe that we have a22(t) = for comparison.
-aii(t - 4T2) and a02(t) = ao2 (t - 4T,). Consequently, we can write for
example: References

a II (t) + a22(0) + a2i(0 022(g) = 01(1) + 0(t - 4T6,), [1] D. Saha, and T.G. Birdsall, "Quadrature-Quadrature Phase Shift Key-

and similar relations hold for all the possible values of the 4-tuple (zl, Z2, X3, l4). ing," IEEE Trans. on Commss., Vol. 37, No. 5, pp.437-448, May 1989.
Thus, we can represent our modulation scheme by writing the transmitted sig-
nal in the form (2) M. Visintin, E. Biglieri, and V. Castellani, "Four-dimensional signaling

s2(9) +=kO(t) ± Oj(I - 4T,), (4) over bandlimited channels," Proc. of the 1991 IEEE Internatioasl Sym-
postre on Information Theory, Budapest, Hungary, p. 3, June 24-28,

s.(9) = -i,(t) ± 01t(t - 4T2), (5) 1991.
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Efficient splitting of multidimensional alphabets for modulation codes

Rolf Johannesson, Joakim Persson, and Kamil Sh. Zigangirov

Department of Information Theory
University of Lund

Box 118
S-221 00 Lund, Sweden

Summary-We propose a new combined coded mod- In this paper we v-ove that we can choose the design pa-
ulation construction which gives a reduced decoding com- rameters of the encoders and decoders such that for given
plexity. It is a generalization of the constructions of reliability and complexity the transmission rate R for our
Ginzburg [1] and Ungerboeck [2] and is based on split- scheme is greater than that for the conventional coded
ting a multidimensional alphabet with 2k, k > 2, sym- modulation scheme. Estimations of the systems perfor-
bols into k binary alphabets. The encoder consists of a mance for 4-PSK, 8-PSK, and 16-PSK (see fig.) with soft
set of k binary convolutional encoders, elementary en- decisions show coding gains of about 0.5 dB compared to
coders, operating at code rates R1 , R 2 , .... Rk, where the conventional constructions.
R1 < R2 < ... < RL. The data bits are split into k
streams, each encoded by one of the elementary encoders. -..... Cwmauialasrs

The set of k elementary encoder outputs is mapped onto

the set of 2*-ary modulator symbols. The decoder con-
sists of k elementary decoders. The decoding is performed
step by step beginning with the first elementary decoder, 4-MK I-PSK 16-PSK

then the second etc. Each elementary decoder uses infor- a a. . .
mation from the outputs of the previous decoders. The
code rate and memory of each elementary encoder is cho-
sen such that the elementary decoders have approximately .
the same complexity and reliability.! ..

We describe this method in more detail for the Gaus-
sian channel and 4-PSK with soft decisions. Our rate R
encoder consists of two (elementary) parallel binary rates . ...
R, and R 2 convolutional encoders, where R = R1 + R 2.
Each encoder generates one binary code symbol per time
unit; 41) for the first encoder and V(2) for the second
encoder. The pairs of code symbols are represented.as ,, • ....nu b r "(2) (E) se as u . ,/• € ) . ,% . .
numbers j = (vt v, (1)) written in binary representation. A/s)

These numbers are mapped into modulation signals

s,(t) = cos(wt + p References

where pj = jir/2. [1] V.V. Ginzburg, "Multidimensional signals for a con-
tinuous channel", Probl. of Inform. Transm., Vol. 23,

The decoder consists of two Viterbi decoders. The first No. 4, pp. 20-34, 1984.
one, corresponding to the first encoder, operates without
taking the output sequence of the second encoder into ac- [2) G. Ungerboeck, "Channel coding with multi-
count, i.e., it makes its estimates based on the conditional level/phase signals", IEEE Trans. on Inform. Theory,
probability distribution for the received signal given that Vol. IT-28, pp. 55-67, 1982.
the code sequence v(1) = (v(10,v(1)...) was transmitted.

The second Viterbi decoder estimates the second code
sequence based not only on the second received sequence
but also on the estimated code sequence from the first
Viterbi decoder.

If the first decoder output is error free, then the sec-
ond decoder knows exactly which of the signal pairsond decoder andws exactly which orrthe sponds pairs This work was supported in part by the Swedish Research Coun-
(s0(t), 2(t)) and (s (t), a(t)) that corresponds to each cil for Engineering Sciences under Grant 92-661 and in part by the
code symbol. Hence, the decoding process is reduced to Royal Swedish Academy of Sciences in liasion with the Russian
decoding of BPSK signals. Academy of Sciences.
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High Performance and Low Complexity
Coded Modulation Schemes for

Reliable Data Communications 1

Sandeep Rajpal, Do Jun Rhee and Shu Lin
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This paper presents two coded modulation schemes for achieving choose the following three binary codes : A, = (2,1,2), A2 =
reliable data transmission over the AWGN and the Rayleigh fading (2,2,1), and A3 = (2,2,1). These three binary codes are used
channels with large coding gains, high spectral efficiency, and re- to form a 2 x 2-dimensional 8-PSK signal space, denoted All =
duced decoding complexity. In the first scheme, coded modulation A((2,1,2)*(2,2,1),(2,2,1)),which consists of 32 signal points, each
[1] is used in conjunction with concatenation [2]. This combination signal point consists of two 8-PSK signals. The intra-set distance
of coded modulation and concatenation is known as concatenated of A0 is D[Ao] = 1.172. To partition All, we choose the following
coded modulation. In concatenated coded modulation schemes, the binary codes: B1 = (2,0,co), B2 = (2,1,2), and B3 = (2,2,1).
concatenation can be carried out either in single or multiple levels. These binary codes are then used to form a subspace of Al, denoted
The inner codes are bandwidth efficient modulation codes, and the A1 = A((2, 0, oo)*(2,1,2)*(2,2, 1)), which consists of 8 signal points.
outer codes are Reed-Solomon (RS) codes. If the inner codes, outer The intra-set distance of A, is 4. The coset code As/A1 consists of 4
codes, and the level of concatenation are properly chosen, good error cosets, each coset contains 8 signal points. A rate-1/2 convolutional
performance can be achieved with reduced decoding complexity, high code of constraint length v = 3 and minimum free branch distance
spectral efficiency, and large coding gain. dB-free = 3 is chosen for the construction of the 2 x 2-dimensional

In a single-level concatenated coded modulation scheme, a single trellis 8-PSK code. This code is generated by: G(D) = (1 + D2, D)
RS code is concatenated with a single modulation code. In this and has a 4-state trellis diagram. The schematic diagram for con-
paper, several single-level concatenated coded modulation schemes structing the desired 2 x 2-dimensional trellis 8-PSK code is shown in
for the AWGN and the Rayleigh fading channels are proposed. In Figure 1. At each time instant, 4 information bits are encoded into
these schemes, both block and trellis modulation codes are being two 8-PSK signals. All the possible signal sequences at the output of
used as the inner codes and they are designed for either the AWGN the overall encoder form a 2 x 2-dimensional trellis 8-PSK code. This
channel or the Rayleigh fading channel and to have simple decoding code has a 4-state trellis diagram in which two adjacent states are
complexity. In a q-level concatenated coded modulation scheme, q connected by 8 parallel branches and each branch corresponds to
pairs of outer and inner codes are used. RS codes with different levels a signal point in a coset of Ao/Al. The spectral efficiency of the code
of error correcting capabilities are used as outer codes, and coset is iv = 2 bits/signal. The minimum free squared Euclidean distance
codes constructed from a block modulation code and its subcodes are of the code is 4. Figure 2 shows the bit-error-performance of the
used as the inner codes. The encoding and decoding are accomplished overall concatenated coded modulation scheme.
in q levels respectively. The decoding at each level consists of inner References
and outer code decodings. Closest coset decoding is performed at
the first level inner code decoding based on the received sequence [1] G. Ungerboeck, "Channel Coding with Multilevel!?hase Sig-
to obtain a sequence of estimated coset representatives for the first nals," IEEE Trans. on Information Theory, Vol. IT-28,
level inner code. This sequence of estimated coset representatives is No. 1, pp. 55-67, January 1982.
converted to RS code symbols and decoded based on the first level RS
outer code. From the decoded RS symbols, an estimated sequence [21 G.D. Forney, Jr., Concatenated Codes, MIT Press, MA,
of coset representatives is formed and the estimates are passed to 1966.
the second level inner code decoder where the decoding process is I bk Raue- I As/At
repeated. Successive applications of closest coset decoding at each Covnml SIpW set
of the individual levels give estimates of the coset representatives at
all the q levels. In this paper, several multilevel concatenated coded
modulation schemes are proposed for the AWGN and the Rayleigh
fading channels, and they achieve very good performance and large
coding gains over uncoded reference systems of the same spectral
efficiencies. Ao/ At /J{$

In the second proposed scheme, multilevel coded modulation is 3 bits l

combined with multiple product codes to form two-dimensional prod-
uct modulation codes. In a product modulation code, the column
code is a block modulation code and algebraic codes of various er-
ror correcting capabilities are used as the row codes. Methods for
constructing good product modulation codes for either the AWGN Flir, 1 A tIrei ceded 2 X 2-fteslomul S-PSK
channel or the Rayleigh fading channel are proposed. A multi-stage
decoding algorithm for these codes is devised, which reduces the de- ............ .......... ... .......
coding complexity while achieving good error performance. ------ i i. ..0. 4 "• .. .... ........

Error performance bounds have been derived for both proposed - -- . .. .. 2"2 o.s745)PSI
schemes, which along with simulation results show that they achieve .'........ : z I - -
good error performance, large coding gains, and high spectral ef-
ficiency with reduced decoding complexity. The proposed schemes is? .......... ... _1__ .. ......... ............ ........... .... ...........
outperform the ones available in literature both in terms of coding ........... ............ ........... ......... . ....... .
gain and decoding complexity. ............

As an example, consider a single-level concatenated coded mod- .. ... fo w code sm formula for RS coe.........IsI ........... ;. .......... .......
illation scheme, in which the outer code is the NASA standard ( 255,..............
223 ) RS code over GF(2e) and the inner code is a 2 x 2-dimensional . ... L• ... ... .... ........... ..-- "
trellis 8-PSK modulation code. For inner code construction, we 1,.221 . _ ... i . ........3 4 6t s 7 as Is I' I 'Ia Is 1,4

'This res•rch was supported by NASA Grast NAG 5-931 and NSF Grant 61W.
NCR-911 0 Piiire 2 Bit error parfarmae of dhe concatented coded S-PSKscbm
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MULTILEVEL TERNARY LINE CODES WITH TRELLIS STRUCTURE

Urmit Ayg6li! and Erdal Panayirci

Istanbul Technical University, Fac. of Electrical & Electronics Eng., 80626 Maslak, Istanbul, Turkey

Abstract: In this paper, a combination of the two coding tech- The first step of the multilevel line code design procedure is to

niques given by Imai-Hirakawa and Pattie-Taylor is applied to the construct an alphabet consisting of 2n+1 maximally distinct ternary

ternary (+,0,-) line code design problem. New ternary coding systems (+,0, -) n-length codewords, For this purpose, we use ternary se-

with reduced decoding complezities and improved error performance quences with only 0, ±2 disparities (word digital sums). Half of the

compared to those obtained by the classical Ungerboeck's trellis coding 2"+' codewords are chosen having zero disparity and the rest having

approach,are obtained. The decoding complezity for high coding rates equal number of positive (+2) and negative (-2) disparities, the code-

are reduced by the proper choice of the punctured convolutional compo- word alphabet So is then divided into M-level nonoverlapping subsets

nent codes for each partitioning level. A spectral null at zero frequency to form a partition chain So/S 1 I ... ISM-, with minimum subset dis-

is obtained by the use of a 112 rate unit memory convolutional encoder tances Ao !5 Al _< .. AM-,, respectively. To each partitioning level

at the last partitioning level which selects line codewords with opposite Sj- 1 /iS,i = 1,2,...,M - 2 a binary component code is associated

disparities in an alternated fashion so that the running digital sum with free Hamming distance dH, related to the free Euclidean distance

values vary in a finite interval, dieD of the overall system by

SummaryED = < M - 2 [Awhe

Sum ywhere dM is the free Euclidean distance of the encoder correspond-
In baseband digital transmission systems, the signal to be trans- ing to the last partitioning level M - 1. At the partitioning levels i =

mitted must have zero dc component and as small as possible power 1,2,..., M-2, we use punctured convolutional codes C1 ,C 2, .. C-2
spectral components at low frequencies along with having a sufficient due to their relatively lower decoding complexities. At the last level
timing content. This avoids any dc power feeding over the line, reduces M - 1 where the subsets including only one ternary codeword are ob-

the low-frequency noise and allows the extraction of clock informa- tained, we take the basic line requirements into account and use in all
tion.If the baseband digital signal is transmitted as a binary unipolar cases a 1/2 rate unit-memory encoder which chooses line codewords
sequence, these requirements are not satisfied.For this purpose, line with +2 and -2 disparities in an alternated fashion. Thus, we restrict
coding techniques are employed 11). A line encoder transforms the the values of the running digital sum(RDS) at each line coding step to
binary sequences feeded at a rate R bit/sec to its input, into R' sym- +2,0 and -2. Note that, at each signalling interval, the two input bits
bol/sec rate L-level (L > 2) sequences at its output and provides a of this encoder are used to determine a ternary line codeword. There-

redundancy of R'log2 L - R in information rate. fore, the linear relation between Hamming and Euclidean distances

The application of the Ungerboeck's [21 trellis coding technique to are not valid for this encoding level. The use of this 1/2 rate encoder

the baseband ternary (+,0, -) line code design problem is realized results in some slight losses in the number of data bits transmitted per

in [3] where the basic requirements for the baseband digital signal ternary codeword, to obtain systems with good error and complexity

transmission and the error performance improvement by trellis coding properties, compared to the encoders given in [3] using Ungerboeck's

are considered as an entity during the design phase. For rates R = approach. Thus, for the sake of comparison, we use the asymptotic
n/n + 1 (n = 1,2,3) ternary line encoders are designed based on coding gain(ACG) defined as,

2"+2-element alphabet which consists of codewords with 0,+l and -1 (dIED/E.),, _ R_,u
polarities and a proposed codeword assignment model. Coding gains ACG[dB] = 100lo( ( /E-) o (2)
of 3 -3.52dB are obtained with respect to the classical paired-selected

ternary line code. where RU and R,P represent the coding rates(number of data bits per
In this paper, based on the multilevel coding approach, some new transmitted ternary codeword) of Ungerboeck's type and multilevel

ternary line encoders with lower decoding complexity and improved ternary line codes, respectively. E, is the average codeword energy.
coding gains,compared to those obtained by the Ungerboeck's tech- ACGs up to 2.5dB are obtained with significantly reduced decoding
nique, are proposed. The multilevel coding scheme given first by Imai complexities.
and Hirakava[4] employes at each signalling interval, one output bit of Reerences
each of several binary error control encoders to construct the signal to

be transmitted. An important advantage of the multilevel coding is (1] N.Q.Duc, "Line coding techniques for baseband digital transmis-
the possibility of suboptimum multistage decoding of each code with sion", A. T.R., vol.9,1,1975.
decoded information transferred from one stage to the next. This al-
lows to reduce the decoding complexity at each stage and therefore for (2] G.Ungerboeck,"Channel coding with multilevel/phase signals",
the overall system. Pattie and Taylor[5J have presented a generalized IEEE Trans. on Inf. Theory,vol.IT-28, January 1982.
version of the multilevel coding technique where ni output bits of each
Ri = ki/ni rate component encoder are used to partition the signal [3] U.Ayg6lii and E.Panayjrci," New ternary line codes based on trel-
subsets determined at the preceding stage into 2n' new subsets with lis structure", to appear in IEEE Trans. on Commun.,1992.

fewer signals. In our work, we use a combination of these techniques [4] H.Imai and S. Hirakawa,"A new multilevel coding method us-
to obtain increasing minimum subset distances A0 !5 A, <_ ... AM-i ing error-correcting codes,,IEEE 1runs. Information Theory,
given by the set partitioning method. Here, M represents the number vol.rT-23, May 1977.

of coding levels. Our aim is to form the optimal ternary codeword

alphabets for several codeword lengths in order to achieve asymptotic [5] G.J.Pottie ans D.P Taylor," Multilevel codes based on partition-
coding gains at the lowest possible decoding complexity. ing", IEEE Trans. on Inf Theory,vol.IT-35, January 1989.
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Abstract
The trellis construction methods of Wolf [11, Massey [2), and Based on Wolf's and Masey's trellis state assignment methods,

Forney [31 for general linear block codes are briefly reviewed. An we present two sinplified methods for constructing minimal trellises,
isomorphim between a trellis constructed using Massey's me" The simplified trellis construction methods avoid the generation of
and one constructed using Wolfs nmethod is derived. It is confimed an unexpugaed trellis followed by expurgation of non-codeword
that Wolf's and Massey's trellis constructions also yield minimal tails, as used in Wolfs method for general linear block codes. Both
trellises. Two sinplified methods for minimal trellis construction are methods also avoid marix multiplications at each extension of a head
presented, along with a method to calculate the treli dimensions to form the trellis, as used in Massey's method for non-systematic
that is an alternative to the methods of [2] and [3). An improvement linear block codes or in Fomey's method for general linear block
is found to a lower bound on the maximum trellis dimension due to codes. The new methods should be useful for complete trellis
Muder [4]. It is shown that when equivalent codes are constructed by construction and for reduced-state treeltrellis searches.
permutations of the symbol positions the resulting trellis dimensions A method for calculating the trellis dimensions is presented tha
are fixed near either end, while in the central portion of the trellis is an alternative to those of (21 or (31. Using this method, an
the dimensions vary between an attainable upper bound and a lower improvement is found to Muder's lower bounds on the maximum
bound. From the lower bound on the trellis dimensions in the central trellis dimension (denoted s) for liear block codes. Muder's lower
portion of the trellis it is seen that only codes (and their duals) that bounds can be summarized into a single expression,
meet a certain condition on their minimm distances can possibly
hao... *rels with a relatively small number of s > mi (d.., - 1 - A d -. 1 - )

Summary where d41. aid j. ar the minimum distance of C and its dual
Compared to convolutional codes, the trellis representations of C-L, respectively; and where A _ n - k - (4dr. - 1) and A- A

linear block codes have been discussed much less frequently, with k - (d•,. - 1). The improved lower bound is
only a few papers appearing within twenty years of the introduction
by Forney of the convolutional code trellis. Of these papers, the sŽ mi (d.-. - - 1).
introduction of linear block code trellises appears in [1][21[51. Re-
cently, in [3] and [4], trellis construction and the trellis state-space It is also shown that the trellis dimensions remain fixed near either
dimensions were re-examined. Here, we continue this examination of end of the trellis despite symbol position permutations, and that a
trellis construction and dimensionality for general linear block codes, lower bound on the minimum trellis dimension in the central portion

Wolfs trellis construction for a general linear (n, k) block code of the trellis (denoted 4). is given by
C begins by generating an usnexpurgated trellis that represents all A)
uncoded sequences of length n. The trellis states are taken to be a _ > max 10, mrin(dm - 1 - A, d,,. - I - A-)).
partially formed syndrome vector. The code trellis is then formed Tis establshes ta only codes (and thei duals) that have a small-
by expurgating all paths that do not lead to the zero state at depth n. est minimum distance mi (4,., ) significantly less than the
Massey's trellis construction for a general linear block code assigns on pl y
a state at depth 1 in the trellis to be the vector of parity symbols trrespondive ingleton bound can possibly have a trellis with few
in the codeword fall, as determined by the information symbols in stats relive to m ,
the codeword head.1 An isomorphism between a trellis constructed References
using Massey's method and one constructed using Wolf's method is [11 J. IL Wolf, "Efficient maximum likelihood decoding of linear
found by comparing the state assignment equations. To show that block codes using a trellis," IEEE Trans. inform. Theory, vol. IT-
these methods produce minimal trellises, we use a condition from [4) 24, pp. 764-0, Jan. 1978.
that specifies that a state at depth I must be assigned to those heads [21 J. L Massey, "Foundations and methods of channel coding,"
of the code ree T' that satisfy the equivalence relation in Proc. o the In. C64. on Ito. Theory and Systems, vol. 65,

CA ~t c NTG-Fachberichte, Sept. 1978.
(3] G. D. Forney, "Coset codes - part I: Binary lattices ad related

where -1 indicates that c. and cIA share the same set of tails, codes," IEEE Trans. lInorm. Theory, vol IT-34, pp. 1152-1187,

Sept. 1988. Appendix A.
[41 D. J. Muder, "Minimal trellises for block codes," IEEE Trans.

The hode e wad doe Wi co' at* codsod cdcEC am doe im I symbaos ad the los htorm. Theory. voL IT-34, pp. 1049-1053, Sept. 1988.
u - I MYs. of e. recd ,br. so tw h ,cw). [5) L R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, "Optimal decoding

This westk wN ,oppos! i po b a N4wd sciences ass! EqUinoi. Rid, I of linear codes for minimizing symbol error rate," IEEE Trans.Comma'i (NSERC) Seslohp a B.C. Scsf Coow O.R.1A.T. ;;;;Zl . B.C. Ad..dSymil ( 5tch hp. -aam by NSEReCarna OGP0001731. AIform. Theory, pp. 284-287, Mar. 1974.
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I Introduction Alorthm 1
Recently. many research works have been conducted to look for t (symmetric) error beglia
correcting and all unidirecional erro detecting (t-EC/AUED) codes based on t-EC B.' := (11... 1) u:= 0;
codes[l-5]. In this paper, we propose a new construction method for a t-EC/AUED for :w b- I dowuto0 do
code which is constructed by appending redundant bits, which consist of two parts, (b
to the codewords of a base t-EC code. The first pat of redundant bits is constructed fort := I to do
systematically and the second by searching algorithms. The mapping from the code- VTEST(X,,) = true thee
words of a t-EC base code to the two parts of redundant bits is very simple and begin
determined by the Hamming weights of codewords of the base code. It is shown ui :u + 1; BU(") := X,
that the proposed t-ECIAUED codes achieve higher information rates and require end;
smaller encoding tables compared to the conventional ones. B,(b, t) {B("-, B( -,..., B(-}

We denote the number of I -- 0 crossovers from X = (z0,xl,.... z,.,-) to end
Y = (Vo, u,....y. -Xz-,Iy fi {0,1))by N(X,Y), theHammingweightofX Alprith 2 Modify Algorithm I so as to search {X.,,} from = I tow=bwith
by W(X). For X and Z = (zo, z. z, ,). we denote the concatenation of X and the initial condition Bt" 3 = (00... 0).
ZbyXZ=(zi,zt.. ...,,-zo, z,,zn-). We alsodenote the cardinality ofaset A=(00itdm)3 For&gven.B(b,t),corstrctBo(b+m,t)byconcasnatingB,(b,t)
S by IS1t, the least integer not less than a by with A(rn) and construct BI(b +m-,t)by concatenating B,.(b, t) withthefirst
than a by 1a1. m - I bits of A(m). n

In the following, the t-EC/AUED codes proposed in [1] and (21 ae referred to as
code Co and Cf, respectively. As an example, we show in Table I the largest values of IBo(b, t)l among those

2 Code Construction obtained by Algorithms I through 3 for several values of b and t, in comparison with
the best known results so far.We denote an (n,k I 2t+1)base code by D and defineM w maxi{W(X) I XE D}" We can see from Table I that many better results are obtained by the newly pro-

Let A(-) = {,Ao), A ), _. .... , Aý7.,} be a set of binary m-tuples and Br(b, t) = posed algorithms.
Bo"), -'• .... B(-) (N >! Lwu/mJ) a set of binary b-tuples satisfying 4 Performance of the Proposed Codes

N(A("),A•' 1 ) > max{ •(q -p)/ 2 ,] ,0 (1) As an example, we show inITable2the number of additional bits required tocon-
N(B$"),BV(")) Ž min~t+l,m(v-u)), foru<v. (2) struct SEC/AUED codes from single enro correcting base codes by the proposed

Then, the proposed t-EC/AUED code Cm is defined by method in comparison to the best known results so farWI-5)(shown in the column
Cm = {XA(-)B(ý-) I X E D, A(p-) E A(m), Bu(-) E B_(b,t)}, (3) old). From Table 2 wecan see thatithe proposed codes need less additionalbits than

where the conventional ones.
W(X)=2mu+p, Op<2m. (4) Table1: )B(b, t)j Tab :SECIATED codest=l 4=2 t =3 t4 n r---+•

Theorean Code Cm is a t-EC/AUED code. 1 1 2 2 2 2 C' C Q C old
Though a construcion method for A(m) is already given in [ 1l, we propose a new 2 4 4 4 4 3 2 2 2 3 4 2

systematic construction method for A(m), which introduces a hierarchy into the class 3 6 6 6 6 4 3 3 4 3 4 3
ofproposedcodesfC,.(seeTheorem3below.) 4 8 8 8 8 6 4 4 4 5 4 4

5 b34(12) 10 10 10 8 5 5 6 5 6 5
Lemmal Define A(m7)={4An),A•). A(-') 1)by 6 221(16) '13(12) 12 12 12 5 5 6 7 6 5

AU)=(1), AW =(0) (5) 7 336(24) 320(16) 14 14 14 6 6 6 7 6 6
(,) A' 8 358(48) '25(20) '19(16) 16 16 6 6 7 7 8 6

"'"2m-2 ... i 2m-9 '86(72) '38(24) '26(20) 18 20 677787
""010 144 50(32) 33024)124(20) 77 787

Z' ) m() 248 (70(48) '3n28) 332(24 24) 777787
.- A2m-3 -4 A,,- 12 432 394(72) ".3(32) ( 36(28) 32 7 7 8 8 9 7Then, A(m) satisfies Eq.(i). ¶ 13 --- 1142(120) '70(40) 143(32) 35 7 7 8 8 9 8

It is shown that the proposed code has following p s. 14 --- 3220(216) 184(48) '54(36) 36 8 8 8 8 9 8
15 - -- 3396(392) 3112(72) '65(40) 48 8 8 9 9 10 9

Theorme2 ForgivenBl,(b,t), ifthereexistsan(n1+l+b, k)t-EC/AUEDcode 16 ----- --- 3154(120) '80(56) 57 8 9 9 10 9
C,[2],wecanconstructan(n+l+b,k)t-EC/AUEDcodeC, by usingthe same 175212180) 102(72) 72 9 9 1030 9
B,(b,t). The converse is not always the case. ¶ 18------ 329"(264) 3124(104) 85 9 9 10 1010 10
TIof3 Cm(m.l) can beregarded as CorCo. ¶ 19 - - - -- - -- - 496(488)'168(156) 86 1010101010 10320- --------- 216 96 1010101011 10

Theorem 3 states that the information rate of Co is not less than that of Cm(m Ž 1) 21----------- --- 288 108 10 10 1011 il 10
andtheinformationrate of C, is not less than that of Cm(m ? 2). However, itis 22------- ------.---.. 3374(368) 144 1111111112 11
easy to realize that encoding the proposed code C.(m 2! 1) requires tables of sizes e Values withoutmarkaretheresultsdue 216 1 11 1112 12 11

tojIT.- 248 12 1212 1212 12
f(n + 1)/2m1 and 2m for mapping from u to B( m) and from p to A•,), while Co a The new values obtained by the pro- 256 112121212 12
and C[ require tables of sizes n and 1(n + 1)/2J, respectively. Therefore the size of posed al gorithe s lwe markedrby a num-ber at dwe- upper left corper whinch indi-
encoding table for the proposed code C,(m 2! i) is about 1/2m of dtht for Co and cates the algorithm used.
about Ir/m of that for C,, if n is large. * The best known results are also shown

3 Construction of Bm(b, t) in parenthese
In order to obtain efficient codes by the proposed method, it is very important to References
prepare B,(b, t) which has as many elements as possible for fixed b and t. For 1Il M. Blaum and H. C. A. van T"lborg, "On t-error conrecting/all unidirectional
lack of space, we only show three algorithms to construct Bm(b, t) among six al- enror detecting codes", IEEE Trans. Comput., vol. 38, no. II, pp. 1493-1501,
gorithms we considered. Algorithm I is obtained by extending the algorithm for November 1989
B, (b, t) given in [3) to Brn(b, t) and Algorithms 2 by modifying Algorithm I. In [21 R. Andrew, "Construction of t-EC/AUED codes". Electron. Lett., vol. 24. no. 20.
Algorithm, 1 we denote by {X,,., - (zo ,) ... ,)}(r 1,2... (.,)) the pp. 1257-1258. September 1988
set of binary b-tuples of Hamming weight w and numbered with r according to [31 Y. Saitoh and H. Imai, "Andrew's t-ECIAUED codes", Electron. Let., vol. 25,

uet r-1 -1 no. 15, pp. 949-950. July 1989
theulethatr i< r2 IffzE j"I2 < rz2 " 2'. Algorithm I examine if X,, [41 S. Ai-Blassarn and B. Bose. "Asymmericlunidirectional error correcting and

i-o 4.0 detcting codes", in Proc. AAECC-7. Toulouse. France. June 1989
can be an element of B.(b, t) by the function TEST. TEST(X.,,) outputs true if F . H. Binck and Henk. C. A. van Tilborg. "Construction and bounds for10o(ý), B(-),. ,Rýum) n(m)=,X,•, satisfiesq.q(2,6)in fi1)for m nOand Eq.(2) [1EJ .OicadHn.C .v~ lxr Cnmcinadbud o

l s... . u - systematic tECIAUED codes", lEEE Trans. lPV. Theory. vol. 36. no. 6,pp. 1381-
form 1 1, otherwise oulputs false. 1390, November 1990
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Summary Next, we have new constructions for In, k] tEC/AU
ED codes. Currently the best known constructions for

An In, k] tEC/AUED code is a tEC/AUED code the [n, k] tEC/AUED codes are based on the "descend-
which is systematic on the first k positions. For an ing tail matrices" [1]. For each input message sequence,
In, k] tEC/AUED code C, when k is fixed we want to r, parity check bits are appended to make it a codeword
minimize the length n. For fixed k, the lower and upper in a t error correcting linear code, then a descending tail
bounds for the minimized length n have been discussed is appended to code the weights of the codewords.
by many researchers. In this research, we improve nu- Our idea is to find the inherent relations among the
merous existing lower and upper bounds. We first dis- message sequences and design the tail part as a whole.
cuss the method to improve the lower bounds. Two methods (the group theoretic method and the lin-

Let N(a,b) = 1{1 < i < n : ai = 1 A bi = 0}, ear code syndrome method) are found to efficiently di-
then it is well-known that a code C is tEC/AUED iff vide the message sequences into "subcodes", and then
va,bEcasb [N(a, b) > t + 1]. This implies that a the tail words are used to code the indecies of the sub-
OEC/AUED code is an antichain and a tEC/AUED with codes as well as the weights of the codewords. These
t > 0 is a special antichain. Therefore, the well-known new constructions have complexities that are compara-
LYM inequality can be applied to these codes. Because ble to codes constructed by descending tail method. For
the requirement for tEC/AUED codes is much stronger more details, one can see [4]. The following table shows
than the one for general antichains, we sharpen the LYM a part of the new lower and upper bounds.
inequality to the so-called weak and strong LYM in- t=1 t=2
equalities as follows. k r k r

Define 4 6 4 8
5 6-7 5-6 9-12), + t - 2i n - m - t + 2, 6 6-8 7 9-13(15)

Mn(,t, i) ,t - 2i + j, 7 6-8(9) 8 9-15
/ 8 7-8(9) 9 (9)10-15

9 7-8(10) 10-11 10-16(17)
ýRn(m, t,0) = M,,(m, t,0), 10-11 7-9(10) 12-13 (10)11-16(17)

"M?(M, t, i) = maz{Am(m, t, i- 1), M.(m, t, i)),i > 0. 12-14 (7)8-10(11) 14 11-16(18)
15 8-10(12) 15 11-19

16-17 8-11(12) 16-18 (11)12-19
Let C be a tEC/AUED code, then we have the fol- 18-19 (8)9-11(12) 19-21 12-19

lowing results. 20-25 9-12 22 (12)13-19
Weak LYM inequality for tEC/AUED codes: For 26 (9)10-12 23-25 (12)13-20
each i with 0 < i < t, 27-28 (9)10-13 26 (12)13-20(21)

29-30 (9)10-13(14) 27-28 13-20(21)"M4"(cl, ti) < 1. 31 10-13(14) 29-30 (13)14-20(21)

cec _ _ _ 31 (13)14-20(22)

References
Strong LYM inequality for tEC/AUED codes:For each i with 0 < i_ t [1]. F.J.H.B6inck and H.C.A.Van Tilborg, "Con-

r eh structions and bounds for systematic tEC/AUED codes",

M-' clI, t, i) IEEE Trans. on Information Theory, Vol.36, pp.138 1-1390,
.) 1. No.6, Nov. 1990.

CEc (,n, [2]. Z. Zhang and X.G. Xia, 'LYM-type inequali-c _ _[cl )ties for tEC/AUED codes," To appear in IEEE Trans. on
By appropriately applying the above two inequalities Information Theory, Jan. 1993.

to In,By ] tEC/AUED codes, most existing lower bounds [3]. Z. Zhang and X.G. Xia, "LYM-type inequalities for
t-antichains," Submitted to Discrete Mathematics.

are improved by 1 bit and many of them are improved [4]. Z. Zhang and C.Tu, "On the construction of sys-
by 2 bits. For details, one can see [1,2,3]. tematic tEC/AUED codes," Submitted to IEEE Trans.

'This research is supported in part by NSF under Grant NCR- On Information Theory, under revision.

8905052.
293



Coding for Simultaneous Correction
and Detection of Skew in Parallel
Asynchronous Communications

Mario Blaum and Jehoshua Bruck
IBM Research Division

Almaden Research Center
San Jose, CA 95120

Consider the following communication scheme [1, 2]: a binary vec- Let S(X; Z) = (1k,12). We say that S(X; 2) does not exceed (sI, s),

tor of length n is transmitted using i parallel wires. Each wire denoted S(X; Z) <_ (si, s2), if 11 • s, and 12 < 32. Otherwise, we
represents a coordinate of the vector. The propagation delay in say that S(X; Z) exceeds (s8, s2) (notation, S(X; Z) > (s.. q2)).
the wires varies. Arrival of a transition represents a 1 while ab-
sence of a transition represents a 0. The problem is to find an Definition 2 Let 1, t2, S1, 82 be 4 non-negative parameters and
efficient communication scheme that will be delay-insensitive, let C be a code. We say that C is (t1, t2)-skew-tolerant (ST)
Let us represent the tracks with the numbers 1, 2,..., n. After (tl + s1, t2 + s2)-skew-detecting (SD) if, whenever a codeword X
the m-th transition has arrived, the receiver obtains a sequence in C is transmitted followed by other codewords giving a received
Xm,• = , .2 ...., zT., where I < xi < n, and zx represents the sequence Z, then, by examining Z, the code will correctly decode
fact that the i-th transition was received at the x,-th wire. The X provided that (0,0) < S(X; Z) _ (t1, t2) and will detect the
set {z 1,z 2.... , ,,,} is the support (i.e., the set of non-zero coor- occurrence of skew when (t1, t2) < S(X; Z) _< (t + s8. /2 + .q2).
dinates) of a vector and determines uniquely a binary vector.
Verhoeff [2] studied the following problem: assuming that a vector Notice that a (tI, t2)-ST code is a (ti, t2)-ST (ti + s1, 12 + .q2)-SD

X is transmitted, once reception has been completed, the receiver code such that s, = 32 = 0, and an (s1, s2)-SD code is a ( 1, t2)-ST
acknowledges receipt of the message. The next message is sent (1, + s1, t2 + s2)-SD code such that tj = t2 = 0 (compare with the
by the sender only after the receipt nf the acknowledgement. The definition of error correcting/detecting codes that can correct up
problem is finding a code C whose elements are messages such that to t errors and detect up to t + s errors).
the receiver can identify when transmission has been completed. Given two binary vectors X and Y of length n, we denote by
It is easy to see, as proved in [2], that the codes having the right N(X, Y) the number of coordinates in which X is 1 and Y is 0.
property are the so called unordered codes, i.e., all its elements The following is our main result:
are unordered vectors.
Here, we assume that there is no communication between receiver Theorem i Let C be acodeandlet 7 = min{ftI 1 12 , 7' + ax{t 1,2t},
and sender between messages, except, perhaps, when errors are p = main{st,+2}, S = max{+1 ,s 2 }, C = min{t1  + .t, 2 + S2} anddetected. The sender does not wait for acknowledgement before p = max{ti+su,1m+sm}. Then, Cis (tl,t1)-ST (1, +.s,1 2 +.s2 )-SD

deteted Th sederdoe no wai fo acnowedgmen beore if and only if, for any two distinct codewords X and Yt in (7, such
sending the next message. This makes transmission faster, since ifan nli, fo any tw oldis inc c s anieu
the waiting period between messages gets shorter. However, if tat N(t, Y ) • N , t)o the following iwe sortn te watin peiod trasitonsfro Y mghtstat ~ (a) If (t1 - t2)(sl - s2) Ž_ 0, then at least one of the following 3we shorten the waiting period, transitions from Y might start to conditions occurs:
arrive before reception of X has been completed, a condition called 1. N(X, Y) Ž r + 1.
skew.
In [1], coding strategies were studied that allow either detection 2. N(X, Y) Ž T + 1 and N(Y, X) Ž_ p + 1.
or correction of skew between consecutive messages. Here, our
aim is to study codes that can correct a certain amount of skew 3. N(X, Y) Ž1 and N(Y, X) Ž ti + t2 +,S + 1.

between messages, and detect an extra amount of skew when the (b) if (I - t2)(s, - s2) < 0, thenat least one of the following 4
skew correcting capability of the code has been exceeded. We conditions occurs:
generalize the results in [1].
Consider a transmitted vector X followed by some other vectors, 1. N(X, Y) > r + 1.
giving a received sequence Z. There are two parameters that are
related to the skew. The first one, denoted re(X; Z), denotes the 2. N(X, Y) > T + 1 and N(Y, X) 2! p + 1.
index of the last transition in X before the occurrence of skew, 3. N(XY) Ž +1 and N(YX) Ž 11 +1,2+8+1.
i.e., the last transition in X before the arrival of either a transition
not in X or a repeated arrival. The second one, denoted r(X; 7,), 4. N(X, Y) -_ 1 and N(Y, X) Ž til + t2 + S + 1.
denotes the index of the last arrival in X. If there is no skew,
re(X; Z) - r(X; Z). We are ready now to define Lhe concept of We will prove that the conditions are sufficient by giving a decodl-
skew of a vector X with respect to a sequence Z. ing algorithm and we also present codes satisfying the conditions.

Definition I Let X be a subset of (1, 2, .... , n} (equivalently, X References
is a binary vector of length n). Let Z = X], X2 ,. -, -,.... be at [1] M. Blaum and J. Bruck, "Coding for Skew-Tolerant Paral-
sequence whose elements are in j1,2,...,n}, Z,X=z 2  X lel Asynchronous Communications," IBM Research Report,
and Z, the set corresponding to Z,. Let in = m(X; Z) and r -= le Asyn7h2onous 1991,ctons, IBM Trans. R n
r(X; 2) be as defined above. We say that the skew of X with RJ 8268 (75629), July 191, to appear in IEEE Trans. on
respect to Z is equal to (11, 12) (notation, S(X; Z) = (11, 11)), if and Information Theory, March 1993.
only if [2] T. Verhoeff, "Delay-insensitive codes - an overview," Dis-

11 = I(Z, - Z.) n X1 and 12 = I' - to - i,. tributed Computing, 3:1-8, 1988.
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Mario Blaum and Jehoshua Bruck
IBM Research Division

Almaden Research Center
'650 Harry Road

San Jose, CA 95120
USA

Levon H. Khachatrian *

University of Bielefeld
Department of Mathematics SFB 343

P.O. Box 8640
D-4800 Bielefeld 1

Germany

In [4], a coding solution to the problem of parallel asynchronous or
communications was presented. After transmission of each code- (b) min{N(X, Y), N(Y, X)} ) 1 and
word, the receiver acknowledges reception of the message through max{N(X, Y), N(Y, X)} _ T + 1.
a handshake mechanism. In this way, skew between messages is
avoided. From a coding point of view, the problem is identify- 2. (t I, t2)-skew-tolerant (ST) if and only if, for any pair of dis-
ing the end of a message. As pointed out in [4], the codes that tinct codewords X, Y E C, at least one of the following two
accomplish this task are the so called unordered codes. conditions occurs:
A more complicated coding situation occurs when acknowledge- (a) min{N(X, Y), N(Y, X)} ) t + 1
ment of the message is not allowed. In principle, this is an attrac-
tive alternative, since it would allow pipelined utilization of the or
channel, with increased data throughput. However, the difficulty (b) min{N(X, Y), N(Y, X)} ) 1 and
now is that there might be skew between messages, i.e., signals max{N(X, Y), N(Y, X)} ti + f2 + 1.
from a second transmitted vector may arrive before the current
vector has been completely received. We present a general method for constructing (tI, t2)-SD and ST
Necessary and sufficient conditions for codes that can either detect codes. The procedure involves adding three tails to the infor-
or correct a certain amount of skew were given in [1]. For further mation bits: the first tail encodes the information bits into an
motivation and description of the problem, the reader is referred (n', k, 2t, +2) error-correcting code; the second tail makes the code
to [1, 4]. Here, we present constructions of codes that can detect satisfy the conditions in Definition 1; the third tail merely unorders
or tolerate skew below a certain threshold, the code in a way analogous to the generalization of Berger's con-
Given two binary vectors X and Y of length n, we denote by struction given in [1]. We also briefly discuss optimality issues of
N(X, Y) the number of coordinates in which X is 1 and Y is 0. the constructions. More details can be found in [2]
In [1] theorems that characterize (tI, t2)-skew-detecting and skew- References
tolerant codes were proven. Here we present the theorems in the
form of a definition as follows: [1] M. Blaum and J. Bruck, "Coding for Skew-Tolerant Paral-

lel Asynchronous Communications," IBM Research Report,
Definition 1 Let 11 and t2 be two non-negative integers, and let RI 8268 (75629), July 1991. to appear in IEEE Trans. on
t = min{t, 1t2} and T = max{ti, t2}. We say that a binary code Information Theory, March 1993.
of length n is:

[2] M. Blaum, J. Bruck and L. Khachatrian, "Construction of
1. ( 1, f2)-skew-detecting (SD) if and only if, for any pair of Skew-Tolerant and Skew-Detecting Codes," RJ 8909 (79996),

distinct codewords X, Y E C, at least one of the following August 1992, to appear in IEEE Trans. on Information The-
two conditions occurs: ory.

(a) min{N(X, Y), N(Y, X)} > t + 1 [3) L. H. Khachatrian, "Construction of (II, t2)-tolerant Codes,"
to appear in Proceedings of Dilijan Conference, Sept. 1991.

"*On leave from the Institute of Problems of Informatics and A,,toniatinn. [4] T. Verhoeff "Delay-insensitive codes - an overview," Dis-
Armenian Academy of Sciences. tribu"ed Computing, 3:1-8, 1988.
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Binary superimposed codes are considered. The super- Doubly rfect codes
position mechanism assumed is addition modulo-2. Various .
constructions and bounds are derived. Let d be odd, d=2t+l. It is clear that C*m is subject to any

upper bound for binary codes with distance d=2t+l. Therefore the
Intduction parameters (n,m,d,T) of a superimposed code C are subject to the

The idea of superimposed codes was inutoduced in 1964 by following obvious bounds,

Kautz-Singleton [1]. The application they had in mind was informa- in 2
tion retrieval and the superposition mechanism assumed was Y (T):SA(n,2t+l) 2
Boolean sum. Chien-Frazer [2] considered the same problem b0
assuming modulo-2 addition as the superposition mechanism. Later 1 (n)
authors have usually emphasized the application of superimposed i=0
codes in multiple-access communication [3],[4]. In the present
investigation we adhere to that view while adopting the same
superposition mechanism assumed by Chien-Frazer: addition We say that a code C satisfying the first bound isgf because
modulo-2. for such codes the induced code C r, is as large as any binary code

with distance d=,t+l. If both inequalities are satisfied with equality
The xmboib we say that the superimposed code C is doubly perfect.

Let F denote the binary field and let C r Fn be an n-length Doubly perfect codes do exist. The above example with (n,m,d,T) =

block-code over F. For any m; 0<5m < T C I denote by C' the (15,3,3,23) is one example. Further examples are as follows:

set of all codewords x e Fn which can be formed as a sum
x = x1 + x2 + ... + x, of s distinct codewords xi from C where n m d T

0! <s !5 m. If they are all distinct - this is the case of interest to us -
it is clear that C* is a code of size I1 3 1 23

15 3 3 23

.IC = (T)T* I = 23 6 7 13
i=0

22s+1_ 1 22-s- 1 3 22s+1-2s-l s=1,2,3,...
We say that the original code C is a superimposed (nm,d,T)-code if

the induced code C* has minimum distance at least d: d(C* ) > d. 2m m 1 2m+l m=2,3,..,
The problem is to choose C so as to obtain the best possible trade-
off between the parameters (nm,dT). A key result is the following.

Theorem 1: If for some k, 05 k < n, there exists an [n,k,d]-code
and a [T,T-k,2m+ 1]-code, then there exists a superimposed [1) W.H. Kautz and R.C. Singleton, "Nonrandom binary
(n,d,m,T)-code. superimposed codes", IEEE Trans. on Inf. Th., IT-10,

No.4, pp. 367-377, 1969.

Proof: Let G be a generator matrix of an (nkd]-code and let H be

a parity check matrix of an [T,T-k,2m+l]-code. A superimposed [2] R.T. Chien, W.D. Frazer, "An application of coding theory
(n,d,m,T)-code is given by the rows of the matrix H'G (H' denotes to document retrieval", IEEE Trans. Inform. Theory. IT- 12,
transponse of H). Indeed, any linear combination of rows from the No. 2, pp. 92-96, 1966.
matrix H'G belongs to the [n,k,dl-code generated by G. Moreover,
any 2m rows from H'G are linearly independent because the (3] A.G. Dyachkov and V.V. Rykov, "Bounds on the length of
columns of H have exactly this property. Finally, it is obvious that superimposed codes", Problemy Peredachi Informatsii. vol.
H'G has T rows and n columns. 17, No. 2, pp. 26-38, 1981. English translation 1982.

13
[4] T. Ericson and L Gy&fi, "Superimposed codes in Rn",

Example: Let G generate the Hamming code (n,kd] = [15,11,31 IEEE Trans. Inform. Theory, T-34, No.4, pp.877-880,
and let H generate the Golay code [T,T-k,2m+l] = [23,12,7]. 1988.
Theorem I produces a superimposed code with parameters
(n,m,d,T) = (15,3,3,23).
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High-dimensional Symmetric Compacted Code
- Error-correcting of high bit error rate of 10-1 , 10-2 -

Masayasu HATA and Ichi TAKUMI
Intelligence and Computer Science, Nagoya Institute of Technology,

Gokiso-cho, Showa-ku, Nagoya, 466 Japan
Concept of new code

In this paper, a long block code is conceived as a code string O - -, ,*

and it is wound up into a compact sized knot in an n dimensional "- -0(nM, R4.132

torus space T" (Ref.1,2). The code string is winding diagonally - S-Dn-4) R.27 A

to the each dimensional fundamental cycles of the n dimensional --- s-•.M R4.32
CmwYA*WdCod ei R-1/2

torus. Therefore, the digits on the code string are scattered about 10-2 corwokg d. oodR-
the fundamental cycles and the time and space distances between c 0 ts co,, "61/2
digits on the each cycles and among the cycles are greatly ex- t RS or=, F ,1-4
panded and independences between digits and among cyc]es are F [ . "

assured. 1l,-
The digits on the each fundamental cycles form a single unit 10-4,

code. These unit codes are mutually independent against the
transmission errors through the said independence. Therefore, ,
we can give a modeling for an erroneous route as an error screen
with an interval determined by the inverse of the mean bit error
rate of the route. If the size of unit code of the fundamental cycle 0 1. . . 10-2
is smaller than the interval, the code can pass through without B0106 1 E 0 10
hit by the error screen. Fig. 1: Decoding bit error rate vs. channel bit error rate

And so the designing size of the each fundamental cycles of
the code should be the same in order to obtain an optimized W-RC

robustness and the code comes to have geometrical symmetries
like a crystalline ball.

Example of proposed code
For this paper, the unit code which is constituting each di-

mension is a simple short length parity check code of the same
length m. The code is constituted by means of product space of
cyclic-shifted versions of one-dimensional parity check codes by iD--RC 3D-RC
n-fold orthogonally, which shows the structural symmetries and Fig.2: Torus representation of two and three-dimensional
satisfies the n-dimensional parity check functions. The burst er- proposed code
ror correcting ability of the code is (m - 1)m- 2 in length with
transmission rate R = (1 - 1)" of code length of m. The ran-
dom error correcting abilities are also appreciably increased with
the dimension n, especially for n > 4, exceeding the minimum
distance limit of the code of (2'/2 - 1). The proposed code is
defined as a quasi-cyclic code. The uncorrectable patterns of er- (D) 3D-RC (B) 4D-R
ror are uniquely showed in the space as a symmetrical solid to Fig.3 : Undetectable solid
the parity check axes, which is the same solid for both burst and Table 1 Performances of proposed code
random errors.

Dim. Size Length Trans. Correctahle Correctable Random Err.
Results n I - rate [Burt le h0

By computer sinulations, we could show that the code may be 3 3 27 0.296 6 3 3 3
applicable to a worsm quality of bit error rate of order of I0- , 4 64 0.442 12- 31025 125 0.512 204
102 and has a better decoding bit error rate for the range of 6 210579 3 3 __4

transmissiou rate of R = - , than the convolution code. 6 1 0.579 30 4
4 3 81 0.198 Is 7 a 10

As an example, the code of m = 5, n = 5 of length m' = 3,125 4 256 0.316 48 7 14 18
and R = 0.32768 ný 0.33 can almost perfectly correct 150 random I 5 625 F10.410 I0 7 2-

errors, which correspond to 4.8 x 10-2 of bit error rate, and 200 t TI 19 W_ ... 7
errors with 99% correction, and can correct a burst error of 500 5 3 243 0.132 54 15 35 1 41
bits in length. L4I 1024 0.237 192 15 95 111

5 3125 10.3231 500 l 2W0 241
As a similar code, an n-D cyclic code has been proposed in late 5 T776 0.4021 100 15 > 380 4M0

60's and recently again attracted interests from the practical sides code's i i - wos _ _ _ c d o
of decoding algorithm and the performances, however, the efforts code's operability for worse BER conditions.
are confined to only two dimensional case and not yet explored References
for high dimensional code exceeding two. Further, the n-D cyclic [lJ Nods T, and "ats M. :TRing code - code symmetry and uFco.rectabeerror, -," IEICE Trsnus.,373-A.2,pp.243$-252, Feb. 19go.
code is consisting of different sizes of length of dimension which [21 Hashimoto K. and Hats M. :"Higb-dimenaional symmetry parity check
are primitive each other and has no geometrical symmetries. And code capable of correcting 10- - 10-2 random errom," JEICE Trahs.,
therefore, the the proposed code will be superior to the n-D cyclic J75-A,8.pp.1257 1266, Aug. 1992.
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Some Families of Asymptotically
Optimal Optical Orthogonal Codes

0. Moreno, Z. Zhang and P. V. Kumar*

Abstract Three related constructions for families of optical All three constructions make use of the following two ideas.
orthogonal codes are presented. All are asymptotically optimum Let n be an integer that can be expressed as the product n =
in the sense that in each case, as the length of the sequences njn2 of two relatively prime integers nj and n2. Then, from an
within the family approaches infinity, the ratio of family size application of the Chinese remainder theorem, it follows that the
to the maximum possible under the Johnson bound, approaches construction of sets of {O, 1) sequences with periodic correlation
unity. bounded above by A is completely equivalent to the task of con-

structing a collection of arrays whose doubly-periodic correlation
is bounded above by A. Secondly, the sequences in the OOC are
required to have constant weight. The sequences in each of the

An (n,w, , 1)-optical orthogonal code (OOC) (see [1], [2]) C, three families A, B and C when represented in matrix appear as
n > 1, 1 _< w• _ n, 1 _< A _<w is a family of {0,1}-sequences the graph of a function mapping Z,,, --- Z,,. This guaran-

of length n and Hamming weight w satisfying the following auto the all ha con wapp roximately) n2. Th e
tees that they all have constant weight (approximately) n2. The

and cross-correlation conditions: functions in A and B are polynomials, whereas, construction C

(-1 uses rational functions.E x(k)x(k E, r) 5< A 1

k_0 Precise parameters of the three families constructed are tabu-

for all sequences X(.) E C and all integers r 3 0 (mod n) and lated below. Reference [4] appeared after the initial preparation
of this paper. The two papers share some material in common

"n-1 such as the idea behind the construction as well as some features
Sx(k)y(k & r) :_ A (2) of construction A.
k--O

for all pairs of sequences x(.), y(.) E C and all integers r, where REFERENCES
D, denotes addition modulo n.

For a given set of values of n, w and A, let $(n,w, A), denote [1] F. R. K. Chung, J. A. Salehi, and V. K. Wei, "Optical

the largest possible cardinality of an (n, w, A)-optical orthogonal Orthogonal Codes: Design, Analysis, and Applications," IEEE

code. Upper bounds for this function and several optimal con- Trans. Inform. Theory, vol. IT-35, pp. 595-604, May 1989.

structions for A = I and 2 can be found in [1]-13]. An easy upper

bound derived from the Johnson bound (see [1]) states that [2] E. F. Brickell and V. K. Wei, "Optical Orthogonal Codes
and Cyclic Block Designs," Congressus Numerantium, vol. 58,

Sw A(n, 2w - 2A, w) (n - l)(n - 2)...(n - A) pp. 175-192, 1987.
-n -- '( - 1) ... (W, - A) *

(3) (31 H. Chung and P. V. Kumar, "Optical Orthogonal Codes-

In this paper, three constructions (A, B and C ) for families New Bounds and an Optimal Construction," IEEE Trans. In-

of OOC's are presented. In every case, the families are asymptot- form. Theory, vol. 36, No. 4, pp. 866-873, July, 1990.

ically optimum in the sense that, as the length of the sequence
family --+ oo, the ratio of the size of the OOC to that of the [4] Nguyen Q. A., L. Gyorfi and J. L. Massey 'Construc-

maximum permissible as determined by the bound in (3) above, tions of Binary Constant-Weight Cyclic Codes and Cyclically

approaches unity. Permutable Codes", IEEE Transactions on Information Theory,
vol. IT-38, No. 3, May 1992.

r_. _n A I Size

A p(p- 1) (p- 1) t
p prime < t<p-2

B (q-1)p (p-t) t p q-1/
q 5 9l <_t•p-1
p prime

q t--I
q2 _1 - I q3 +q/2l t= 2

C q=2' q-1 1!55q-2 Ž q5+q3/2-(5q2)/6 t=3a>2 1 t< -2+q12-(4'1 f

_ = - +te .1. (, )

1!.1 1 Q4
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Abstract

We investigate the single bit insertion/deletion correcting codes which is a Gilbert - Varshamov type lower bound on the
as proposed by Levenshtein and others. [1 - 4,6]. These cardinality of linear error correcting codes. These new bounds
synchronization error correcting codes are derived from number are compared to the known bounds in Figure 1.
theoretic constructions. The weight spectra and Hamming
distance properties of these codes are found and a relationship
between these properties is established. This relationship is
extended to codes that can correct multiple random o LOWER BOUND FROM [81
synchronization errors. From this general relationship, ,00oo NEW LOWER BOUND

improved bounds on the cardinality of such multiple V NEw UPPER BOUN
synchronization error correcting codes are found. From the 1000 7 UPPER BOUND FROM (6]

new relationship between the weight and Hamming distance of
synchronization error correcting codes, several new codes are
found. 100

Introduction a 1o

In 1965 Levenshtein [1,2] found that a certain code construction
technique developed by Varshamov and Tenengol'ts [3] could
also yield codes that are capable of correcting single
synchronization errors. This work was later extended by 0.1
several workers [4, 6]. Synchronization errors manifest
themselves in the bit stream as the deletion of a valid symbol or 0.0o ,,
the insertion of such a symbol. We first investigated the 4 6 a 10 12 14 t6 Is

binary single error correcting codes as developed by Levenshtein WORDLENGTH
to determine some new properties. The weight spectra and the
Hamming distance profiles for several short length codes were
determined. The dc--free subcodes of the Levenshtein codes Figre 1 : Bounds on the corinalty of double uijdrouitatio
were investigated as well as runlength limited concatenatable error correcting codes.
subsets that have a minimum runlength constraint of 1, i.e.
there is at least one zero between ones. The spectra of some of New codes
the dc-free codes are also presented.

We also present general construction techniques for codes that
New bounds on the cardinalitv are capable of correcting two adjacent synchronization errors

and two random synchronization errors respectively. The
From the investigation of the Levenshtein codes, the cardinality of these codes for short word lengths is also given.
relationship between the weight of a codeword and the By combining certain dc free criteria to the balanced subcodes
Hamming distance between other Levenshtein codewords of of the Levenshtein codes, we found a class of "multipurpose"
specific weights was determined. From this relationship follows codes which have enhanced dc suppression, are able to correct
several propositions that establishe a similar relationship for either one synchronization error or one additive error and
codes that are capable of correcting two synchronization errors require less bandwidth than similar codes.
when using a number theoretic construction technique similar to
that of Levenshtein. By using the abovementioned References
relationships we establish the following new upper and lower
bounds on the cardinality of double synchronization error [11 V. I. Levenshtein, "Binary codes capable of correcting deletions.
correcting codes: insertions and reversals," (Rumian:) Dokiady Akademii Nauk

SSSR 163(4), pp 845 - 848, 1965: (English:) Soviet
Upper bound: Physic-Doklady 10(8), pp 707 -710, 1966.

[2] V. I. Levenshtein, "On perfect codes capable of correcting
a- Ideletions of a character," Fourth Joint Swedish - Soviet Interna-

ICl <2 + E (n/wt. A(n-1,6,w-1)) n >w >t 1 (1) tional Workshop on Information Theory, August 27 -W=3 September 1, 1989, Gotland, Sweden, pp 199--24.
[3] R. R. Varshamov and G. M. Teneagol'ts, "On asymmtrikal

where w is the weight (i.e. the number of "ones") of the error - correcting codes," (In Ruria), Avtoimatika
codeword of length n and A(n,d,w) is the number of Telemehanika, vol 26, N2, pp 288 - 292, 1965
codewords of weight w which differ from each other in at least d [41 H. D. L. Sollmann, "A relation between Levenehtein-4ype
positions. The bound in (1) is due partly to Johnsson [5] who distances and inetiou-n-nd-deletion correcting capabiities of
derived an upper bound for constant weight codes with a certain codes," Internal report, Phiips Research Laborakes,
minimum Hamming distance. Eindhoven, The Netherlands, November 9, 1990

[51 S. M. Johnmno, "Improved asymptotic bounds for error-corre-
Lower bound: ting codes," IEEE Transactions on nformatioa Theory,

vol IT--I, pp 198 - 205, July 1963.
(61 P. A. Bours, "Bounds for codes that an capable of correcting

ICI / f (R1-) (2) insertions and deletions," Internal report, Technieche Universatait
J=O Eindhoven, Eindhoven, The Netherlands, July 1991.
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The Two-way Channel as a Computer Game
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BMC. First, the BMC was used as the simplest non trivial example of a
Abstract TWC by Shannon in hi- or'ginal 1961 paper. This [8] paper marks theo t rwayct beginning of network information theory, see also Cover [1, chapter 14].In his 1961 paper on two-way channels (TWC's) Shannon de- Second, once the BMC is solved, it seems likely that similar methods can

rived single-letter inner- and outer hounds to the capacity region.
The first part of this paper is a survey of earlier results on TWC's be applied to solve all deterministic TWC's. Finally, it does not seem
in general and the binary multiplying channel (BMC) in particu- possible to make any progress on general (non) deterministic TWC's as
lar. The second part is devoted to a new approach to the problem long as the easier deterministic TWC's are not completely understood.
of determining the capacity region of the BMC. Based on Schalk- AMan example, there are 322 distinct [4] ternary deterministic TWC's
wijk's 1982 idea to represent symmetric, R1 = R2 - R, coding of which 46 are T-channels.
strategies for deterministic two-way channels as progressive subdi-
visions of an M x M square, we developed a computer game AX.C Note that the best [6] lower bound of 0.6.305552995 to the equal
as a development environment for new coding strategies. Playing rate capacity is the result of a continuing line of research building upon
.AXE is simple and requires no background in information theory. our very first [5] strategy. Continuation of this research line does not

1 History look promising: it will result in more complicated strategies with more
parameters and smaller improvements, and maybe there is an entirely

In order to approximate the capacity region of a TWC we start off with different class of strategies that perform better. Computer search is

Shannon's [8] observation (1961) that the capacity region can be found unfeasable, since the number of possible strategies dwarfs Avogadro's
from the per letter rate of increasingly long coding strategies. An initial number of 6.02 .1021 for relatively small message sets. However, people
hurdle was the fact that coding strategies. where the code sequence at seem to have a feeling as to the proper shape of resolution products. Tohurdleah s terminal t only dependstonathegessghere the b eing trnsm ned bt help people contructing strategies for binary and ternary TWCs on M x
each terminal not only depends on the message 0 being transmitted but At squares, F. Hantz and A. Bloemen developed the computer puzzlealso on the received sequence Y at that terminal, are hard to visualize. game AXE. The 'game' is played by editing resolutions already stored

A breakthrough [5] was made in 1982, when it was discovered that in the computer as part of a strategy tree. Any improvements replace
coding strategies for deterministic TWC's could be considered as strate-
gies for subdividing the unit square. For the BMC a subdivision using the resolutions currently stored. There is no information theoretical
three types of resolutions (to be referred to as i-, m- and o-resolutions) background needed to play the game. By putting the game in public
was found. In the case of equal rates on both directions this constructive domain we hope to get some good coding strategies.codig sratgy chiees .6114,in eces ofShanon' iner oun of The results obtained so far look very promising. Early results were
coding strategy achieves 0.61914, in excess of Shannon's inner bound of found by J. van der Leur, who developed a coding strategy resolving
0.61695. Dueck [2] just previously proved by example that the capacity all message pairs of a 17 x 17 square with a rate of 0.61079. A first
region of a TWC is in general larger than its inner bound. tuning step is the save-up method: square and rectangle-like resolution

A further [6] basic step was taken a year later in 1983. The rn- products are not resolved, but they are put together into a new M X
resolution in the strategy [5] mentioned above was not efficient. This m- At square. This technique already provides a coding strategy on the
resolution takes place in an L-shape subregion. By collecting a number 6 x 6 square with rate 0.61795, and on the 11 x 11 square with rate
of those L-shapes the total resolution information that has to be sent 0.61984. These rates exceed Shannon's [8] inner bound rate of 0.61695
from terminal I to terminal 2 and vice versa can be accumulated at and Schalkwijk's [5] original rate 0.61914, respectively. The second step
each terminal. In the limit, the total resolution information can be is bootstrapping, similar to [6], to weed out inefficient resolutions. For
transfered at the very rate of the resulting strategy using a technique a 13 x 13 square, a discrete bootstrap strategy with rate 0.630.50 has
[6] called bootstrapping, thus boosting the 0.61914 rate of the original been constructed. The third step, transforming a discrete bootstrap
strategy up to 0.63056. The resulting strategy effectively resembles segy intractinuous tstrp trateforwill amotsureye ldsa
our original strategy where the rn-resolution has been eliminated. As strategy into a continuous bootstrap strategy will almdt surely yield a
this equivalent strategy is very simple and elegant, 0.63056 was initially new lower bound.

thouht o b th eqal atecapcit oftheBMCf[1 Thomas Cover and Joy A. Thomas. Elements of Informnation Theory. Wiley,thought to be the equal rate capacity oft the BMC. New York, 1991.
However, repeated trials to find a converse failed and suspicion re-

garding optimahiti arose. Accurate calculation of the rate of the boot- (2] Gunter Dueck. The capacity region of the twc can exceed the inner bound.
strapped strategy yields 0.6305552557. Finally, an improvement to Information and Control, 40:258-266, 1979.
0.630.5552986 was found, by having two initial i-resolutions and preserv- [3] Andries P. Hekstra, Frans M.J. Willems. Dependence balance bounds for single-
ing the efficiency of the postponed o-resolution by a transparency con- output twcs. IEEE Trans. on information Theory, IT-35(l):44-53, Jan 1989.
dition. Another [7] slight improvement yields the tightest lower bound [4] Annelies Jacobs. On the capacity regions of ternary deterministic twcs. Master's
0.6305552995 to the equal rate capacity as of to date. thesis, Eindhoven University of Technology, Fac. E, Oct 1986.

Shannon's [8] upper bound of 0.69121 has been tightened by Zhen [5] J. Pieter M. Schalkwijk. The binary multiplying channel - a coding scheme
Zhang, et al. [11] to 0.64991 for general TWC's. The tightest upper that operates beyond the Shannon inner bound, IEEE Trons. on information
bound as of now for T-channels (TC's), i. e. channels with two inputs Theory, IT-28(I):107-110, Jan 1982.
and a single common output, found by ]lekstra and Willems [3], yields (6] J. Pieter M. Schalkwijk. On an extension of an achievable rate region for the
0.61628 for the BMC. It is our belief that the final result, at least for binary multiplying channel. IEEE Trans. on Informauion Theory, IT-29(3)A445-
the BMC, is closer to the best inner bound of 0.6305552995. In order 448, May 1983.
to find better upper bounds it will he necessary to consider the coding (7] J. Pieter M. Schalkwijk. Extending the achievable rate region of the binary

multiplying channel. In Proc. Int. Syrup. on Informanton Theor page 302,strategies in greater detail. Budapest.H ungary, Jun 1991.
In classical one-way communication we distinguish [1] between the [a] Claude E. Shannon. Two way communication channels. In Proc. 4th Berkely

information theoretic and the operational capacity. Shannon's channel Symposium on Mathematics, Statistcs and Probability, volume 1, pages f11-
coding theorem shows these two capacities to be equal. The achievable 644, 1961. Reprinted in D. Slepian, editor, KA opera in the DevelopmeW of
rates of our original strategy [5] and of the bootstrapped strategy [6] Information Theorsi, pages 339-372, New York: IFEEE Press, 1974.
are information theoretic rates. It was reasoned that these rates were (9] L. Tolhuixen. Discrete coding for the BMC, bases on Schalkwijk's strategy.

in Proceedings of the BeNeLu• Sy•npostmun on Informntion Theomp, volume 6,also operational as they related to the size of resolution products in the pages 207-212, Mierlo. The Netherlands, 1985.unit square. Rigorous proofs of the operationality of the rates in [5] and [I1] Wilhelmina M.C... van Overveld. On the Capacity Region for Deternminstic
[6] were given by Tolhuizen [9] and van Overveld [10], respectively. Two- Way Channels and Weite.unsdractional Memories. PhD thesis. Eikdhown

University of Technology, Fac. E, Jan 1991.2 The AX -pro gram Ill Zhen Zhang, Toby Berger, and J. Pieter M. Schslkwijh. New outer bounds to
capacity regions for twcs. IEEE Trans. on Incrmatioon TheoeM IT-32(3):383-

There are several reasons for trying to find the capacity region of the 386, May 1986.
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Quasi-Cyclic (QC) codes are a generaliza- generator QC code, V, is defined as
tion of cyclic codes whereby a cyclic shift
of a codeword by p positions results in an- h(x) = mX-1

other codeword. The class of QC codes is (Xr - 1,cO(x),ci(x),..,_,(x))'
of interest because it contains many of the and k, the dimension of V, is equal to the de-
best known binary linear codes. The results gree of h(x). If (xm- 1, c1 (x)) = 1, the dimen-
presented here reinforce the statement that sion of V is m, and G is a generator matrix
'Quasi-Cyclic codes are good'. for V. If, deg(h(x)) = k < m, a generator

The blocklength, n, of a QC code is a mul- matrix for V can be constructed by deleting
tiple of p, n = mp. Many of the results on r = m- k rows of G. In this paper, codes are
QC codes presented in the literature concernthos fo whch geeratr mtri ca beconstructed with deg(h(x)) <c k - 1.
those for which a generator matrix can be Linear programming is efficient for finding
constructed from m x m circulant matrices, optimal codes if k is small. However, an ex-
(with a suitable permutation of coordinates). haustive search quickly becomes intractable
In this case the generator matrix can be rep- as k increases. Therefore non-exhaustive
resented as techniques must be employed to search for
G = (c0(x),Cl(x),c 2(X), c3(x),..., C-1 (X)), good codes. A greedy exchange algorithm has

previously been used with good results be-

where the coefficients of the polynomial ci(x) cause it is computationally simple and there-
are defined by the circulant matrix Ci. G is fore able to cover a large number of codes
a (pm, m) code, and the dual code H is a quickly, and so was also used in this case.
(pm, (p - 1)m) code. To date most of the Although the resulting codes are not guaran-
results on QC codes are concerned with these teed to be optimal, they can be compared
rate 1ip and (p - 1)/p codes. In this paper with known bounds to determine if a bet-
a generalization of the rate I/p codes to rate ter code can exist. The results of this search
(m - r)/pm codes is presented based on the are ten codes which improve the known lower
theory of 1-generator QC codes, which are bounds on the minimum distance of binary
a sub-class of QC codes. The order of a 1- linear codes as tabulated by Verhoeff.

iThis research was supported in part by the Nat-

ural Science and Engineering Research Council of
Canada
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It is shown in this paper that there exists a class of codes _(N,K,D ae Rati
generated by the known self-dual binary extended quadratic residue M40.2500 1.40
(EQR) codes. Each code in this new class has an even better error- (1 0.3125 0.50
control rate than its "parent" binary EQR code. Asymptotically, 1 130
both the information rate and the error control rate of these new (3,13 0.23611 0

codes are shown to be bounded away from zero so that they repre- i 25 12 > 0.2500
sent "good" codes. 250.3928 12 0.2

1084.416 > 0.1852
The Self-dual Subclass of the Binary EQR Codes 0.4318 > 0.1515

Let Q denote the set of quadratic residues modulo a prime Table 1: A list of codes of this new class
integer n, i.e. let Q = {i 2 (mod n)li E GF(n), i # 0). Furthermore,
define q(z) = J'[rEQ(z + a') where a is a primitive n-th root of
unity in an extension field of GF(2). The cyclic code of length n R(N) and E(N) denote the information rate and the error-control
over GF(2) with the generator polynomial q(z) is called a binary rate of the new code, respectively, i.e. let R(N) - and E(N)
QR code and denoted by Q. D. Next, define the tinit superior and limit inferior of EM to be,

Let C denote the extended code of the binary QR code Q. Since Q respectively,
has an odd minimum distance d, C has the minimum distance d + 1.
Evidently, such an extendedcodeC is of theform, (n+l, 1P,d+1). 6. = limsup E(N), 6b = liminf E(N). (1)

Thus, the information rate of C is I. M-.ooN>M M-0o,N>M

Next, the self-dual class of the extended binary QR codes is ob- In a similar manner for R(N), define
taned.

Definition 1 : Let C-- denote the dual code of C. If C-- = C, R. = limsup R(N), R1 = liminf R(N). (2)
the code C is called a self-dual code. Furthermore if all weights are M--o,J> M--o,N>M

divisible by 4, the code C is called a doubly even self-dual code. Finally, for each real number 61 : 6 <6 6, let
Lemma I : Let C be a binary EQR code (n + 1, '*- ,d + 1).

Then if n = 8m - I, C is a doubly even self-dual code. 2-R(N = supf A >minf ,(N, dN)) (3)
00'ooN>M

A New Class of Binary Linear Codes denote the outer supremum taken over all sequences {dN) for which
dN/N - 6 and I(N, dN) = N-iog2 M(N, dN) where M(N,dN)

A construction theorem for the new codes is given in this sec- is the largest possible number of codewords in a code of length N
tion. with a minimum distance of at least dN.

Theorem 1: For a given binary self-dual EQR code (n + The main theorem on the asymptotic bounds for the new punc-
1, +.., d + 1), there exists a binary linear code (N, K, D) such that tured subcode is presented as follows.
N = n - d, K - "21 - d, and D> d+ l.An infinite Theorem 2 : Let (N, K(N),D(N)) denote the new punctured

clix~t ass of binary linear codes is constructed by means code developed in Theorem 1. Thenof Theorem 1. The construction technique of these codes consists
primarily of two steps. First certain d+1 linearly dependent columns 1)
are found in the generator matrix of a self-dual binary EQR code liminf E(N) Ž 0.1236; (4)
(n + 1, P, d + 1). Then the columns and rows, associated with M-oo,N>A -

such the corresponding d marked columns of the generator matrix, 2)
are punctured and deleted. Finally, one more column is removed to Ru < 0.4382, R1 ? 0.4 (5)
leave a matrix which is the generator matrix of the new code. The where R. and R1 are defined in (2); and
parameters of several new codes which are generated by Theorem I
are listed in Table 1. In such a table, the given distance D is found 3)
by a computer search. The result shows that the error control rate R(N) > i - - E(N). (6)
of each new code is better than that of its corresponding self-dual
extended binary QR code. The information rate of each new code Corollary 3 (Asymptotic bounds). For the new punctured code
satisfies the inequalities I. < * < ½. (N, K(N),D(N)) of Theorem I one has the following inequalities:

Asymptotic Bounds 0.4 < R(N) S 0.4382, (7)

The asymptotic bounds on the information rate and the error- 0.1236 < E(N) (8)
control rate of the new codes are found in this section. To describe and
these bounds compactly, the following notation is used. First, let 1 - 1E(N) 5 R(N) 1_ I(6) (9)

_____ ___2 22

*This work is supported by the NSF under Grant NCR-9016340. for N sufficiently large where IZ(6) is defined in (3).
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The covering polynomial method of decoding cyclic codes is For cyclic codes with rate R < 3/r, all error patterns can be
described in [1] and is essentially a modification of error trapping. trapped by binomials or monomials.
While this method is a simple and effective way to decode many Proposition 3 : The number of binomials c required to trap
cyclic codes, determining the optimum set of covering polynomials Propation o : eT h t r or anomils codequith rap
for general code length n, code dimension k, and error weight r is every error pattern of weight r = 3 for an (n, k) code with rate
not an easy problem (it is Research Problem 16.12 in MacWilliams R < 1 is given by
and Sloane [2]). Ink k 3 '([fltJ,k) [in(n - 3i,2k - n + I +i)

When the rate of a code satisfies R < 2/r, all error patterns n - _< E n-k
can be trapped by monomials, and Wei [4] presented a smallest I I , t n i nr I I

covering set for this class of codes when 1- = 2 or 3. We ex- where J(n, k, r) is the number of interval patterns of length n and

tend Wei's result to higher r, and propose an algorithm to find error weight r, whose largest fraction is not greater than k.

optimum covering sets. The above equation gives reasonably tight bounds on the number

Proposition I : For (n, k, r) binary cyclic codes with rate R < of binomials. For example, n = 21, k = 15 gives 9 < c < 10,

2/r, the number of optimal covering monomials for even r is given n = 21, k = 18 gives c = 21, and n = 27, k = 24 gives c = 36.

by Among the attractive features of the algorithm is that it can

c= - F,] + 1 1 + 1, where p 2n k be used to decode past the guaranteed error correcting power of

p T I k the code, up to complete hard-decision decoding. The method

Further, { 0, xn-k-ki+f-q n,-k-l+[+P, X-I+r-fl+2p, can also be extended easily to soft-decision decoding, where we
Further, " " find the closest soft decision codeword, subject to a maximum

Xn-k-+[+ff1+(c-1)p } is a covering set. number of hard errors. In [3] we consider the decoding of binary

Note that our choice of optimal monomials above are all lo- cyclic codes of length 31 or less, including the decoding of error

cated in one half of the information positions. The number of coy- patterns of weight t + 1 or higher. We classify the error patterns to

ering polynomials is very much dependent on the interval patterns be trapped as (1) all error patterns of weight r (important in soft

which represent how error bits are spaced in an error vector. Two decision decoding), (2) all coset leaders of weight r, and (3) all

error patterns are said to have the same interval pattern if they unique coset leaders of weight r. Using a combination of analysis,
are cyclic shifts of each other. Let V = (11, V2,.-., V.) denote the exhaustive search, computational shortcuts, and a greedy algo-
interval pattern, and v h. = maxL vi. Th(vi[a] v. v< n - (T - 1). rithm, we determine the number of covering polynomials needed

i - for codes of our consideration and summarize these results in ta-

Proposition 2 : For (n, k, r) binary cyclic codes with rate R < bles which we do not include in this summary. Simulation of the

2/r, the following procedure gives covering monomials that are performance of soft-decision decoding using covering polynomi-
sufficient to trap all error patterns of weight r, and we conjecture als was also performed to show that approximately 1.5 - 2.0 dB
that the set is minimal. gain is achieved at a bit error rate of 10- for soft-decision using

covering polynomial that trap error pattern of weight t + I or less.

I. Let z1 = [a] ,Mi(x) - -k+Zx = 2.

2. Assume zj_p _< v,. < zj - 1, where zj(> zj-i) is un- References
known, and covering monomials Mi(x),. .. , M(x) are used.
MW(x) = X"'I+Z, when j is odd, M2(X) = xn-', when j is [1] T. Kasami, "A decoding procedure for multiple-error-
even. Beginning from the condition v,U _ zi - I, we can get correcting cyclic codes," IEEE Trans. Inform. Theory, vol.
sets of upper bounds on lengths of v,,+,,..., v i 7 v*,..., v,** - IT-10, pp. 134-138, 1964.
that make any consecutive interval fractions (vi, vi+i) are

not covered by any monomials used. Call the sums of up- [2] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-

per bounds El, "". ,E1, where 1 is the number of possible Correcting Codes, North-Holland, New York, 1977.

combinations of interval fractions. Find the largest z, thatsatisfies E, < n, all i. [31 W. Sung and J. T. Coffey, "Maximum likelihood error-
trapping decoding of binary cyclic codes," presented at the

3. If z, > k, then {0, MI(x),. .. ,Mji(x)} is the covering set, Thirtieth Annual Allerton Conference on Communication,

size of the set c = j, stop. control, and Computing, Monticello, Illinois, Sep. 30 - Oct.
Otherwise, let j = j + 1, go to step 2. 2, 1992.

[4] V. K. Wei, "An error-trapping decoder for nonbinary cyclic

ISupported in part by NSF Grant NCR-9115969 codes," IEEE Trans. Inform. Theory, vol. IT-30, pp. 538-541,

1984.
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If i H.h satisfies m). then we have:

Abstract Theorem 1: If r _> go, the minimum distance of code C, defined by

The current algebraic geometric (AG) codes are based on the is at least r-g+,. The value of r-g*,l is called designed
theory of algebl'aic geometric curves. In this paper, we present a I
novel approach for construction of AG codes without any back- minimum distance.
ground in algebraic geometry. Given an affine plane irreducible Thus. construction of good AG codes is now reduced to finding
curve and its all rational points, based on the equation of this curve, H and if for a given affine plane curve, such that (1") (1) is satisfied
we can find a sequence of monomial polynomials x'y'. Using the and (2S) g* + u is as small as possible. In the following, for two
first r polynomials as a basis of dual code of a linear code called AG classes of affine plane curves and for those curves which can be
code, the designed minimum distance d of this AG code can be transformed into these classes of curves, we give solutions of H and
easily determined. For these codes a fast decoding procedure with H, which satisfy (1*) and (2*).
complexity 0(n 13 ), which can correct errors up to L(d- I)12J, is TypelofAffine Plane Curves: f(x.y)=x'+y" +g(xy)=O,
also shown. By this approach it is neither necessary to know the where gcd(ab) - I and a > b > deg g(xy).
genus of curve nor find a basis of differential form. This approach Type II of Affine Plane Curves: f(x.y)=x'y' +yb. +g(X,y)=O.
can be easily understood by most engineers. Some examples are also where gcd(a.b) - I and a +c. b +c > deg g(x.y).
shown, which indicate that the codes constructed by this approach Example : Letf(x,y) - x 5y2 + y9 + x 2 -0 over GF(2'). We have x
are better than the current AG codes from same curves. - 7, y - 5. By this new approach, we obtain:

H -' 1. y, x, y2 , xy, x2 ', y3,xy2, x2y. y4, X5, Xy 3 , x2y 2, y', 13y. xy4,
Summary X 4, X3y2, y6, X3 y2 xy' .x y, X

2
y

4
,y

7
, ... t,

First we introduce a new method to determine the minimum I - 10, 5, 7, 10, 12, 14, 15, 17, 19, 20, 21, 22, 24, 25, 26, 27, 28.29,
distance bound for linear codes. Let H =A h,, h2 ..... h ... ý be a 30, 31, 32, 33, 34, 35,.... , and g* - (a - 1)(b - )/2 - 12.
sequence in F". where h, - (0,, h,2 .. . h,.) and let S(r) be the H-4 

5
, x

6
,x7,x3,x

5
y, x

6
y, x7y, x'y Kand u-8.

linear space over Fq spanned by the first r vectors of H. Let k 1 Thus, we have g' - 12 + 8 - 20. From this example, when r > 12,
ii,, hi,..... , f. and S(ru) be the linear space over F. spanned by i.e. r+ u>gd>r - 12 +1 -r+u -g'+ 1, wherer+ u is the
the first r vectors of H and all vectors of it. When v - 0, that means number of check bits in C,. But from B1, Example 6]. the genus is
ii - 0 and S(r,u) - S(r). In this paper, we are only interested in 26.
such H and/if: Remark : There are many affine plane curves, which do not belong

for<j, h. h i ,u), and h, Eto these two types, can however be transformed into any of these
i~j, .jr,. hSi) r , d,.S(r u). (1) types. For example, an affine Hermitian curve is w` +v`+1 + 1 -0

where hij= (hj, hil I .h0 2 , .hj. ). Let Hr - I h-, h 2 -- over GF(r 2 ). It can be transformed into x't - y' - y - 0 by
h[l ] s"--andy=-----rwhere: +r's --'I.

h, Ir and lHl- ,,, it.... i. T r. Then H., -4 can be w ayv-s v-s

a pA fast decoding procedure for these AG codes can be easilyis reduced to H,. realized by the fast decoding in (2-41. The decoding procedure canin oreduce to c c Acorrect any L(d- 1)/2j or fewer errors with complexity 0(n"' 3 ),
In order to construct AG codes, we prefer to construct directly where d is designed minimum distance determined by the above

some simple i H, H ý for a given curve. For convenience, we res- theorems.
trict H and H to some special vectors, that is. hr ( p,(x1,y41),
Pr(12.Y2) .... pr(X.,y.) ), where (.r,,y) are rational points and References
p,(x,y) is a monomial polynomial x" yb,. For simplicity, denote H -ay , xyb,.. ,yb, I In the same waH - • [1] i. Justesen, K. I. Larsen, A. Havemose, H. E. Jensen, and T.

XA.b. Y X ... way, x y'y H6holdt, "Construction and decoding of a class of algebraic
x.y4. x .... , X '. y". In order to construct H and h such that (l) is geometric codes." IEEE Trans. on Information Theory 35
satisfied let us define order of polynomialf(x.y). For each polyno- (1989) 811-821.
mialf(x,y), it is associated with an integer of, which satisfies the fol-lowing conditions: [21 G. L. Feng and T. R. Rio, "Decoding algebr-aic-geometric

codes up to the designed minimum distance." to appear inOf,- = O0, if of > o0 , and of. = Of + o0 . (2) IEEE Trans. on Information Theory Jan. 1993.

For convenience, let fbe of. We have xyb _ a.x + b-y. (3] G. L Feng, V. K. Wei, T. R. Rao, and K. K. Tzeng, 'True
Let I be the set of the orders of polynomials in H, that is, I A Designed-Distance Decoding of a Class of Algebraic-

a I i- 1,2.... .IfanintegerptIandO~p~ theorderoflast Geometric Codes, Pan I: A New Theory without Riemann-
polynomial in H, p is called a gap of I. Let the number of all gaps of I Roch Theorem," to appear in IEEE Trans. on Informatnc
be g'. g* is called the qiemi of H (or i). Letg ' - g* + x. Later we Theory.
will see thatthe action ofg' is asthesame as g in current AGcodes. (4] G. L. Feng. V. K. Wei, T. R. Rao, and K. K. Tzeng, 'True

Designed-Distance Decoding of a Class of Algebraic-
Geometric Codes, Part 11: Fast Algorithms and Block Hankel
Matrices," to appear in IEEE Trans. on infirmaian Theory.
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The Automorphism Groups of the t-d+I

are the functions on G' : x -4 tr( v 1 x
2 1 ) + I(x) whereDelsarte-Goethals Code& ~

Claude Carlet v - ( v .. Vt-djl) ranges over G' t-d+l and I over R(l,m').
If C is a set of boolean functions on a set G, an autamorphism of C is

INRIA, France any permutation 0 on G suct. that, for any f in C, fo ý is an element of
C. More generally, we will call honiomorphism of C any mapping

The Delsarte-Goethals codes ba(m,d) (m=2t+2 >4,2<d t+l), from G to G satisfying the same condition.
introduced by P. Delsarte and J.-M. Goethals in (31, are We prove that the automorphism group of WX(m,d) is the set of all
generalizations of the Kerdock codes. Nonlinear and distance the permutations on G of the type:
invariant, they are the best codes known for their parameters, and
possess formal duals (cf [4], [5]). (x, E)-4 (a x2k + b , E + 8). (a, b e G', a * 0,8 e F. k = 0 .... m-2).

For d = t+1, 1) a(md) is the Kerdock code K(m). The So, it is the same as that of the Kerdock code of same length.
automorphism groups of the Kerdock codes are known (cf [1]. [2], Previously, we need to characterize the linear homomorphisms of
[6]). We study the automorphism groups of those Delsarte-Goethals the code C (in', d) (ie those linear mappings from G' to G' which are
codes which are not Kerdock codes : the D)(m,d) codes, with homomorphisms of the codeC• (m', d) ).
m=2t+2 > 6, 25 d < t. THEOREM 1

We first recount some definitions and properties. The linear homomorphisms of C (m, d) , m'= 2t+1 - 5, 2 S d $ ,
m' is the integer m - 1; G, G' and F denote the Galois fields of T

orders 2 m, 2 m' and 2 (respectively), and tr the trace function from G' are :. the permutations on G': x -4 ax2 where a ranges over G'*,
to F. G'* is the set C' \ [0). and k = O, ... i m'- )

The Reed-Muller code of order I, R(I, m), is the set of all the affine
forms on the F-space G. The Reed-Muller code of order 2, R(2, in), the functions x -4 b tr(ax) where a and b range over G'
is the set of all the boolean functions f on G (ie the functions from G

to F) such that the function (pf defined by: TEOREM 2
2 The automorphisms of lG(md) (m=2t+2 Ž 6, 2:5 d S t) are all the

V(x, y) e G , (pf(x, y) = f(O) + f(x) + f(y) + f(x + y) permutations on G :
(where + denotes the addition in F) is bilinear. gif is called the (x, e) -4 (ax 2 k + b, - + 8)
symplectic form associated with f. G'xF - G'x F

(P is the zero symplectic form if and only if f belongs to R0l, in). A where a ranges over G' *. b over G', 8 over F, and k = 0, ... , m - 2.
coset of R(I, m) in R(2, m) is the set of all the boolean functions
which admit the same associated symplectic form. To achieve the proof of this theorem, we prove two lemmas:

The weight w(f) of a boolean function on G is the size of its
support: w(f) = I Ix c G / f(x) = I} 1. LEMMA I
A function on G is called balanced if its weight is equal to 2W-1. If f For any element (u, u, u") of G' 3and any element v of G' t-d+1 (2<
belongs to R(2, in), then it is balanced if and only if its restriction to d < t), the functions (x, e) -'o 0(u x, e) + O(u'x, e) + 0(u" x, E) and

the kernel (xE G / Vyc G, (pf (x, y) = 0) of its associated symplectic (x, r) -> p v (x, e) belong to the same coset of R(1, m) if and only if
form is not constant (cf [7]).

A function in R(2, m) is bent if and only if it satisfies one of the 1) v = 0
following equivalent properties: 2) u + ut'h+ ueq = 0

- its weight is 2m- I ± 2`12 -1 3) one of the elements u, u, u" is equal to 0.

- its associated symplectic form fp is non-degenerate LEMMA 2

- the sum E (- 1l)•x(y) is equal to 21. Let v be any element of G't-d4 l (2 Sd St) such that, for any non-zero

x,yeG element w of G', the fwnction : (x, e) -4 0(wx, e) + p v (x, e) is bent
If f is bent anf g belongs to R(1, m), then f+g is bent. Then v is equal to 0.

G is identified with G' x F (as a linear space). Let 0 (x, E) be the COROLLARY
The automorphisms of the shortened Delsarte-Goethals code

boolean function on Gdefined by: (x,)=tr(x2i+l) + E tr(x) Da(m,d)* of length (2 m 1 1) are all the permutations on
i=1 G' x F\ [(0. 0) : (x E) -> (ax 2 

, E), where a ranges over G'* and
and, for any element v = (v .. Vdl) of G' t-d+l where 25 d < t. k = 0, ... , m'- 1.
let P (x, E ) be the function defined by R

t-d+1

Pv(X,£)=tr( X vi x 2 4+). (1) E. R. Berlekamp, "Coding theory and the Mathieu groups"
i- Inform. contr. Vol. 18, pp 40-64, 1971.

The function 0 is bent (cf [7] p.460, th 18). Its associated symplectic (2) C. Carlet, "The automorphism groups of the Kerdock codes",
form is the following function on G 2 : Journal of Information and Optimization Sciences, vol 12 (1991) n13

(r+ r (x). (3) P. Delsarte, J.-M. Goethals, "Alternating bilinear forms over((x, E)(y, TO)) -+ tr(x) tr(y) + tr(xy) + E tr(y) + GF(q)", J. Combin.Theory, 19 A (1975) 26-50 [15, 21. A]
If u and u' are two distinct elements of G', then the function (4) J.M. Goethals, "Nonlinear codes defined by quadratic forms over

0(ux, P) + 0(u'x, c) is bent. GF(2)", Information and control, 31 (1976) 43-74.
p v is not bent since p v (x, c) is independant from E. (5) F. B. Hergert, "On the Delsarte-Goethals codes and their formalduals" Discrete Mathematics 83 (1990) p. 249-263, North Holland

(6) W. M. Kantor, "Spreads.translation planes, and Kerdock sets I,
The Delsarte-Goethals code DaI(m,d) is the non-linear subcode of II", SIAM J. AMg. Disc. Math. 3 (1982), 151-165 and 308-318

R(2, in) whose elements are all the functions: (7) F. J. Mac Williams and N. J. Sloane, "The theory of error-
(x, E) -* 0 (ux, E) + p v (x, E) + I(x, E) correcting codes", Amsterdam, North Holland (1977).

where u ranges over G', v over G' t-d+1, and I over R(I, m).

We denote by C (in', d) the linear code of length 21' whose elements
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ALGEBRAIC DECODING OF ZETTERBERG AND
DUMER-ZINOVIEV CODES

S.M Dodunekov J.E.M. Nilsson
Institute of Mathematics Institute for Communications Technology
Bulgarian Academy of Sciences German Aerospace Research Establishment (DLR)
1113 Sofia, Bulgaria D-8031 Oberpfaffenhofen, Germany

Abstract

We consider two families of exceptionally good double-error Step 1. Calculate S1 = r(a) and go to step 2.
correcting codes: the Zetterberg binary codes and the Dumer- Step 2. If S, = 0 then no error has occurred. Otherwise go
Zinoviev quaternary codes. The Zetterberg codes are the best Se s t he nr
known family of double-error correcting binary linear codes. They
are longer than the Bose-Chaudhuri-Hocquenghem double-error Step 3. Calculate -y = S'; if -y = 1 there is a single error with
correcting codes of the same redundancy. The quaternary Dumer- locator S1. Otherwise go to step 4.
Zinoviev codes are the only known q-ary double-error correcting
codes which asymptotically meet the Hamming bound for q > 3. Step 4. Calculate y-' and Tr(7-1 ); if Tr(-y 1 ) = 1 go to step

We derive simple criteria to decide whether 1, 2 or 3 errors 5. Otherwise three errors have occurred.
have occurred when one of these codes is used for data trans-
mission. Based on these criteria new decoding algorithms are Step 5. Two errors. Solve the equation 6s + 5 + 0-12 = 0
proposed, which are faster and simpler to implement than the and correct two errors on positions c& = Sn.n12, S =
known ones. The main improvements compared with the known
algorithms are two. First, a quadratic equation only has to be
solved when two errors have occurred. Secondly, some calcu- Notice that since 7 E GF(22,) the computation of y-I can
lations, especially the inversion, can be carried out in a field be done in GF(22"). The results about decoding complexity for
considerably smaller than the ground field, the codes C2 and C3 show that the new algorithm has consider-

ably lower time and space complexity compared to the known

Summary one whenever 2 or 3 errors have occurred.
Similarly, we establish a new decoding algorithm for the irre-

In this paper we present algebraic decoding algorithms for ducible Dumer-Zinoviev codes [6]. Notice that these are the only
two classes of double-error correcting codes: the Zetterberg bi- known q-ary double-error correcting codes which asymptotically
nary codes [1] and the Dumer-Zinoviev quaternary codes [5]. meet the Hamming bound for q > 3.

Let n = 22, + 1,s > 1 and let a be a primitive n-th root
of unity in the finite field GF(24"). The Zetterberg code C.
is a binary cyclic code of length n generated by the minimal References
polynomial g,(x) of a over GF(2). The code C, has dimension
k = n -4s, minimum Hamming distance 5 and covering radius 3. [1] L.H. Zetterberg. Cyclic Codes from Irreduciblc Polynomials for
The Zetterberg codes are the best known family of double-error Correction of Multiple Errors. IRE Trans.Inf.Theory, vol.8, pp.13-
correcting binary linear codes. They are longer than the BCH 20, 1962.
double-error correcting codes of the same redundancy.The known decoding algorithm [2] requires to solve a quadratic [2] P. Killquist. Decoding the Zetterbern3 Codes. In Proceedings of:

Theqaionwn odecodecing algothr [2) r3equiresrtorsove aquadratic Fourth Joint Swedish-Soviet workshop on Information Theory,equation in order to decide whether 2 or 3 errors have occurred. August 27-Sept.l 1989, Gotland, Sweden, pp.305-309.
We derive a simple criterion which makes it possible to deter-
mine in advance the number of errors and suggest a new algo- [3] S.M. Dodunekov, J. Nilsson. Algebraic Decoding of the Zetterberg
rithm with considerably lower time and space complexity. Codes. IEEE Trans. Inform. Theory, vol. IT-38, pp. 1570-1573.

Let e(x) be an error vector and denote by S, = e(a') the 1992.
syndromes. Let Tr(e) = f + C2 + + 2 + + C22 "- be the trace [4] S.M. Dodunekov, J. Nilsson. Algebraic Decoding of the Zetterberg
function from GF(2") to GF(2). Set -y= SIS-1. Codes. Internal report, Link6ping University, Sweden, LiTH-ISY-

1-1255.
Lemma 1 - 1 =I iff one error has occurred. [5] 1.1. Dumer, V.A Zinoviev. Some new maximal codes over GF(4).

Problems of Information Transmission. v.14, 1978, pp.174- 181 .
Lemma 2 Tr(y-") = I iff two errors have occurred. (Translated from Problemy Peredachi Informatsii).

[6] S.M. Dodunekov, J. Nilsson, V.A. Zinoviev. Algebraic Decoding
Based on the above lemmas the following algorithm has been of the Quaternary Irreducible Double.Error Correcting Dymer-
established (3 [4). Zinoviev Codes. Internal report, Linkhping University, Sweden,

et ls ] 4 . LiTH-ISY-I-1284.
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On a Fast Decoding Algorithm for Goppa Codes Defined on

Certain Algebraic Curves With at Most One Higher Order Cusp
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Miyamae-ku, Kawasaki-shi 216, Japan
tel 044-856-2141
fax 044-856-2235
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Abstract

We propose a fast decoding algorithm for a class of geometric Goppa codes defined on certain algebraic plane
curves, associated with Artin-Schreier extensions of F,(s), introduced by Stichtenoth [3]. Although we do not
attempt here to treat all the class of curves introduced by Stichtenoth, we do include certain elliptic, hyperelliptic
and Hermitian curves. These curves are defined by the homogeneous equation Y`Z&-6 + YZ-1 = X1 over an
arbitrary finite field F, of characteristic p, where a and b are relatively prime integers such that a = py(y E N %),
a < b and the zeros of y" + y form an additive subgroup of F, of order p'. The main step of the proposed algorithm
is to solve a key equation studied by Porter, Shen and Pellikaan [1]. For this purpose, we derive explicit formulas for
certain differential forms, which are used to construct the syndrome of the codes defined on the above-mentioned
curves, and propose a modified version of Sakata's algorithm [4]. Further, we prove, in work inspired by Shen's study
[2], that the Porter-Shen-Peiksan key equation for codes defined on the curves treated here can be solved by using
our modified Sakata algorithm with complexity O(d&2,a + g'a), where d&, is the designed minimum distance and g
is the genus of the curve. The proposed decoding algorithm may be regarded as an extension of Shen's algorithm
[2] for Hermitian codes to a wider class of codes. For certain hyperelliptic codes, this algorithm can decode up to

L(d&. - 1)/2j errors with complexity 0(n3), where n is the word length of the code.

References

[1] Porter S. C., Shen B. -Z. and Pellikaan R. : "Decoding geometric Goppa codes using an extra place," to appear

in IEEE Trans. Inform. Theory.

[2) Shen B. -Z. : "Codes from Hermitian curves and an iterative decoding algorithm," preprint. September, 1991.

[3] Stichtenoth H. : "Self-dual Goppa codes," Journal of Pure and Applied Algebra 55, pp.199-211, 1988

[4] Sakata S. : "Extention of the Berlekamp-Massey algorithm to N dimensions," Inform. and Comp., vol.84,
pp.207-239, 1990
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THE EXPANSION FACTOR OF ERROR-CONTROL CODES

Ali S. Khayrallah
Electrical Engineering Department
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Abstct: We investigate the expansion factor of a linear
block code. The expansion factor A(C) of an (nk;d) code with i-60Oi2d2-
codebook C is the maximum over all generator matrices G whose 82 a (k) (q - 1) d S i 5 k + 82
row space is C, of the minimum of w(xG) - w(x) over all non- bi:Sb I -
zeroinputs x.Onecanview A(C) as a measure of the "continuity" +20

of the code. It indicates how well the code preserves and expands-qA k + 62 + 1 < i < n
the distance relations of the input. We show that the expansion
factor is bounded as d - k 5 A(C):< d - 1. We also relate it to the The next result combines Proposition 2 and jhT fact that the
weight distribution of the code, and the output length n. Finally we total weight of a linear code is given by n (q - 1) q- (the basis of
find the expansion factor for a number of codes, including the Plotkin bound [5].)
Hamming, Equidistant, Golay, and BCH codes. P The length n of an (n,k4d) code C with

n expansion factor A(C) > 83 satisfies

Consider the problem of error-control coding over the q-ary a W63
symmetric channel with crossover probability E(q - 1) using linear N(- 1
block codes. Given an (n,k;d) code with alphabet A and
codebook C, let S(C) be the set of all generator matrices whose where
row space is C. The expansion factor 4(G) of G e S(C) is 6j a=k+5 (i.3 - )
defined as W~ I(bi -bi-i) i.8(G) 1 min (wx)-wx)i=d

XG) M (w(xG) - w(x)) Proposition 2 yields an upper bound to A(C) in terms of the
1*0 weight distribution. Proposition 3 yields a looser upper bound to

The expansion factor A(C) of the code is given by A(C) in terms of n.

ad(c) I max 6G M 1
( GeS(C) We find the expansion factor and the expansion matrix for

We also pick G* in S(C) with 8(G*) = 4(C) and call it the several Hamming, Golay, and BCH codes ([4], [5].) We also
expansion matrix of C. The expansion factor indicates how well the discuss examples of expansion codes [I], for which the upper
code preserves and expands the distance relations of the input. This bound of Proposition 1 is achieved (A(C) = d - 1), and equidistant
is important when the code is a stage in a cascade of codes, and codes [5], for which the lower bound of Proposition 1 is achieved
generally whenever the input distances are meaningful. It can be (A(C) = k - d.) We compare the values of A(C) with the estimates
helpful to think of A(C) as a measure of "continuity", and G* as found from Propositions 2 and 3. For instance, the familiar (7,4;3)
the most "continuous" generator matrix in S(C). Thus given C and Hamming code has A(C) = 0, and Proposition 2 and 3 yield the
C' with the same parameters except for A(C) > A(C), one should upper bounds 82 = 83= 1. And for the (15,5;7) BCH code, A(C)
choose C and use its G*. = 4, 82 = 4, and 83 = 5.

To further clarify the notion of expansion factor, consider an Related Work
encoder described by a generator matrix G with expansion factor The notion of expansion factor can be modified by taking
8(G), and a pure error detection decoder. An information word x is into account the fact that, on normal channels, error patterns of large
mapped into codeword y, which is sent over a noisy channel. If the weight occur with very small probability. Thus one can define a
channel output is a codeword y' with corresponding information bounded expansion factor, where only low weight codewords ame
word x', then included in Lho compuwdon 4G) and A(C). This idea is related to

d(x,x') < d(y,y') - 6(G) the work in [3].

This suggests that for a fixed codebook C, given a choice of BibioRWhy
generator matrices, one should pick G" to minimize the number of [1] A. S. Khayrallah, "Expansion channel codes:
input errors caused by channel errors. An upper bound to the bit Performance bounds and examples," in Proceedineg of
error probability as a function of Z(G) follows from the above the Conference on Information Sciences and Systems,
inequality. The bound is similar to the one in [2]. 1992.

Result [2] A. S. Khayrallah, "Per-letter error probability of
We list our theoretical results. The proofs are omitted in this expansion channel codes," in o

summary. Allerton Conference on Communication. Control, and

proposition I* The expansion factor 4(C) of an (n~k;d) ComPuting 1992.
code C is bounded by [3] A. S. Khayrallah, "Bounded expansion codes for error

control," in Proceedings of the ioint DIMACS1IEE
d - k ! A(C) S d - I workshop on coding and Quantization, 1992.

Let the weight distribution bi be the number of codewords (4] S. Lin and D. J. Costello, Error control codin2:
of weight no greater than i, 0S i! <n. Fundamentals and application-s Prentice-Hall, 1983.

ion The weight distribution bi of an (n,k;d) [5] W. W. Peterson and E. R. Weldon, Error-correcting
code C with expansion factor A(C) ! 82 satisfies odes, second edition, MIT Press, 1972.
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Shot-noise processes, also known as filtered point processes, where
constitute an important clams of mathematical models used to 71(r) _ Jv (0)dO.

understand physical phenomena ranging from the measurement
of nerve impulses in the brain, to the formation of images on film Furthermore, if Gc is absolutely continuous, then the cumulative

exposed under low-level illumination, to the electric current gen- distribution F(y) = 1 - P(Y > y) has density

erated by photodiodes used in optical communication systems.
Hence, it is unfortunate that in most cases, shot-noise densities f(y) = e-s (Y) + "(Y) - 4G(y), •
must be obtained by using special techniques such as contour I dy J
integration to numerically invert their characteristic functions. In many instances [11, the functions q and -y can be com-
The purpose of this presentation is to suggest a new method for puted in closed form, and ik can be expressed in terms of special
computing both shot-noise cumulative distributions and densi- functions. In these cases, we only need to worry about Ge. We
ties. In fact, as shown in [1], the method is quite general and app-oximate (1) by taking L finite and replacing the infinite sum
can be used to recover any continuous cumulative distribution with a finite sum. In examples we have considered, (O(w) decays

from it characteristic function without numerical integration, no slower than 1/v'I ; since b, decays like 1/n, the terms of the
Consider the real-valued process {Z,} given by series decay like 1/n 2 . The series therefore converges to a con-

Z= , A~h(t - T.,), tinuous function. This implies that the Gibbs phenomenon will
not be present. Samples from the Fourier series are computed

where the {T.} are points of a Poisson process with nonnega- with a fast Fourier transform, and a cubic spline is then fit to

tive intensity A(.) and {A.} is an independent, identically dis- the samples. To approximate AGc(y), we simply differentiate

tributed, nonnegative "gain" sequence. We assume that the the cubic spline between its knots. The result of applying this

sequences {A.) and {IT} are independent of each other. The technique to [1, Example 21 is shown below in Fig. 1.

deterministic function h is the system impulse response or point
spread function, depending on the application. REFERENCES

Let t be fixed and set g(T) _ h(t - r). We now focus on the
random variable [1] J. A. Gubner, "On the computation of shot-noise probability distri-

butions," IEEE T7ras. Inform. Theorp, submitted.
Y t Z, E A~g(T.).

Let F(y) denote the cumulative probability distribution of Y.
We assume that F is continuous everywhere except the origin,
where it has a jump discontinuity of size e-B. Let ro denote the '110

measure defined by M-

f6,0.00-

ro(c) = A(r) d.

If 1'0 is a finite measure with density 70, then (i) B = P(A,, >
0). r0(R), (ii) the function -y, defined by 50- 0-

=y(O) 4 EtA IlA.>o)], 
4M00-

is integrable, and (iii) its Fourier transform, ".0 -

d0, 300.00 -

~(w) 4J e"'y(G)O, Do00- -

is well defined. It is shown in [(J that 2.-
150000 -

Ge(y) 4 lim ~ b,,[er•(e'r/L) - .•(nwr/L) - 1]e-fhuIL, (1) ,oom-

L-o n•-oo 50.00 -

where bk = -j/nz for n odd, bn = 1/2, and bn - 0 otherwise, is 0-. -

well defined and that 0
500 0 14 3A0 2. .0 5.00

P(Y>Y) { e-,[G&(y) + 17(y')], IY Ž 0, Fig. 1. Approximation of f(y). Impulse at origin not shown.

e-'[Ge(y) + ,(1) + 1], y < 0,
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Summary
converge absolutelý. If they satisfy the stronger

Cochannel and Intersymbol interference can often condition ab = O(rI) for r<M - then the distribution
be modeled as the sum of an infinite series of random c
variables with weights which decay rapidly. One is singular. Fairly simple but tight upper and lower
important example is provided by interference which bounds for E[g(Z)] can also be obtained with the aid
results from passing data through a causal filter of Jensen's inequality, under mild restrictions on the
consisting of lumped elements. For many practical coefficients and on the convexity of the function g.
applications, this model yields a random variable with
a distribution wnich Is singular (concentrated on a Some graphs of error probability as a function of
set of measure zero) but diffuse (non-atomic), such as signal to noise ratio and channel bandwidth are given
the Cantor distribution. Because this model is to illustrate the possibilities. Typically, for small
Intermediate between the case of random variables with bandwidth, the interference is the dominant effect,
a density function and the case of discrete random while for large bandwidth the noise dominates. For
variables, there are no well-developed mathematical some receiver structures, there is an intermediate
tools for calculating expectations. A trapezoidal bandwidth at which the error probability is smallest.
rule for evaluating expectations is developed In this These results extend and improve the results of
paper. Upper and lower bounds on expected values are Wittke, Smith, and Campbell [1].
also given. Finally, with a view to future
applications, some of the mathematical properties of Because the distribution of Z is rather
the associated distribution function are examined, pathological, it would probably be useful to

understand its properties better. As was mentioned
We consider here modeling interference as a random above, the set of possible values of Z is frequently

variable nondenumerable, but of Lebesgue measure zero. In

z these circumstances, the Hausdorff (fractional)
EL13k~c dimension of this set provides a finer measure of itsh=1

where {X ,X I.... is a sequence of Independent size. A calculation of this dimensln is difficult in

1 2 general, but for the case 3 k= 0(r) f or r<M . the
identically distributed random variables, each of d
which can take on one of M possible values, and where -(lod M)/(aog rv.
41,12 ... } Is a known sequence, possibly vector- This bound approaches one as r)./M and it approaches

valued. In the applications envisaged here, zero as r-)O. The calculation of this dimension
Xk represents the k-th interfering information digit, provides some additional insight into the significance

while 13 a h(kT), where h(t) is the channel impulse of a result of Garsia [21 about entropy and
k singularity of infinite convolutions. Also, when the

response function and T is the sampling interval, distribution function is singular, but continuous, its
Thus the terms In the sequence {i } typically decay derivative can be evaluated as a generalized function

fairly rapidly, and the sum is not one to which the (Schwartz distribution) which is neither an

central limit theorem applies. Indeede for fairly integrable function, nor a series of impulse

typical channel parameters, the distribution can be of functions. The properties of this derivative can also

Cantor type, concentrated on a nondenumerable set of be related to the Hausdorff dimension mentioned above.

Lebesgue measure zero (1]. Such distributions have
neither density functions nor discrete probabilities.

For error probability calculations on Acknowlednemenj
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calculate E(g(Z)] for some smooth function g. Because Sciences and Engineering Research Council of Canada
of the special nature of the random variable, we through Grants A2151 and A3391, and through a
cannot employ either of the two standard tools, scholarship.
involving an integral of a density function, or an References
infinite series with weights equal to the
probabilities, to compute E[g(Z)]. It is possible to (1[ P.H.Wittke, W.S.Smith, and L.L.Campbell, "Infinite
express Z as a discontinuous function defined on the series of interference variables with Cantor-type
unit interval [0,I) and to write E[g(Z)] as an distributions," I= Trans Inform, Thfgry, vol.34,
integral on this interval. This Integral can be pp. 1428-1436, Nov.1998
approximated arbitrarily well by a trapezoidal (21 A.M.Garsia, "Entropy and singularity of infinite
integration rule The only condition which must be convolutions," Pacifji . a vol.13, pp.
assumed on the coefficients is that the series Eft, 1159-1169, 1963.
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The Asymptotic Equivalence of Investing
with and without Replacement

Thomas M. Cover

Abstract and Summary
Consider the following scenarios for a sequence of vectors for the best portfolio algorithm b, in each scenario is given by
x 1 , x 2 ,... , x. of price relatives corresponding to the history of a
finite collection of stocks over a period of n investment periods: S-- 2nw*+°(").
1) Nothing is known about the sequence of vectors; 2) The vec-
tors in the sequence are known, although the order is not known References
and the vectors are drawn independently with replacement from
this set; 3) The collection of vectors is known, although the or- [1] T. Cover. Universal Portfolios. Mathematical Finance, 1(1):
der is unknown, but the vectors are drawn without replacement 1-29, January 1991.
from this set.

Clearly the amount of wealth that can be generated in these
scenarios increases as the amount of information increases. For
example, in scenario 2 one knows the empirical distribution of
the market, whereas in 1, one does not. In 3, end-play can be T. Cover, Stanford University, Stanford, Calif., 94305. email: overisl.
used. stanford.edu. This material is based upon work supported by the National

We shall argue, for bounded vector sequences, that the uni- Science Foundation under Grant No. NCR-8914,r402.
versal portfolio algorithm [1]

fbl',#, blxdbT~~ w I l b~ib xidb

for scenario I will perform as well to first order in the exponent as
the best algorithms in scenarios 2 and 3. Thus even end-play on a
known collection of vectors of p.,. .- relatives cannot outperform
this universal portfolio based on no knowledge whatsoever, at
least to first order in the exponent.

The growth rate of wealth in all three scenarios is given, to first
order in the exponent, by the doubling rate W° (a generalization
of entropy rate), which is given by

1
W' = max - E log b'xi,

b n i. 1

where x1 ,x2,. ... ,x. is the sequence of vectors of price relatives
for the n trading days, and the maximization is over all portfolios

b =f (/a, b2,.. ,b), b•_ 0, • bi - 1.
ira1

Thus the wealth

-•= fI b1
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STATE PRICES AND GIBBS STATES the canonical distribution, which in turn is used to
describe the isomorphism between the statistical

Michael J. Stutzer mechanics of large physical systems and the
Dept. of Finance arbitrage-free pricing of contingent claims in continuous

Carlson School of Management time.
University of Minnesota

To illustrate the potential for exploiting this
isomorphism to generate testable predictions in complex

ABSTRACT circumstances, we used it to predict the change in a
country's riskless interest rate following integration of its

The foundation for the theory of asset prices in bond market into that of another "country" (e.g. the rest
the absence of riskless arbitrage opportunities is the of the world). The prediction is that the post-integration
existence and use of normalized Arrow-Debreu state interest rate will be a weighted average of the countries'
prices, also called a risk neutral probability distributionL pre-integration interest rates, with the weighting
Under this distribution, an asset's price is predicted to dependent on the respective countries' tangency
be the risklessly discounted, present value of its future portfolios.
payoff. The Bayesian, information theoretic view of
inference directs us to use a generalized exponential
distribution solving a constrained entropy problem (i.e.
a Gibbs state), as an estimator of these risk-neutral
probabilities. Use of the Gibbs state provides simple
derivation of powerful asset pricing predictions, and also
uncovers an isomorphism between statistical mechanics
and asset pricing, paving the way for future development
of new asset pricing predictions which exploit the
isomorphism.

The paper uses only simple mathematics to make
these points, and is self-contained, in the hope that it
will stimulate additional interdisciplinary interest in
financial economics.

SUMMARY

It is well-known that prices of contingent claims
in complete and arbitrage-free securities markets can be
computed using normalized Arrow-Debreu state prices,
also called risk neutral probability measures. This paper
uses simple mathematics to explore the value of a
Bayesian approach, called the maximum entropy
formalism (MEF), in selecting a risk neutral probability
measure in situations of incomplete financial markets.
The investigation is conducted within what is perhaps
the simplest possible multiperiod setting, i.e. a discrete
time approximation to a correlated exponential Wiener
vector process. The resulting risk neutral probability
measure is from an exponential family called canonical
distributions or Gibbs states.

Gibbs states have a form which facilitates passing
to the continuous t-'ne limit. Doing so shows that the
limiting Gibbs , ý:, i4 parametrized by a vector of
parameters wh,ch, .. a normalized, are the portfolio
weights in the famii;ar '.ean-variance efficient tangency
portfolio of tij, 1 tived risky assets. This limiting
Gibbs state is used to produce a multi-beta,
approximate arbitrage pricing theory, which linearly
restricts asset excess returns and covariances with N
observable traded factors. The coefficient vector in the
linear relation is the vector of the factors'weights in the
canonical mean-variance efficient portfolio of the N
traded factors and the riskless asset. Large deviations
theory is then used to provide a frequentist rationale for
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On the Optimality and Stability of
Exponential Twisting in Monte Carlo Estimation

John S. Sadowsky2, Purdue University
School of Electrical Engineering, West Lafayette, IN 47907-1285

Let P(.) be a probability distribution on R, and let Pp(-) de- The stability of suboptimal estimators is also addressed. Sup-
note the i.i.d. distribution for the sequence {Xk} with marginal pose that one must accept the exponential sampling cost Ln -ZLD

P(-). Define S, = E" , X1, and consider the probability p, - exp(a 2(j'; Q) n) of a suboptimal Q(-). If a,(-y; Q) > a2('y; Q) for
Pp(Sn, _ -yn) where -y > Ep[Xk]. By Craminr's theorem we have some v > 2, then the vth error moment of sample mean and the
Pn -LD e-x(•) where I(-') is the convex conjugate of A(a) = (v/2)th error moment of sample variance will be unstable. In par-
log( Ep(eoxX]). The notation an, LD eo" means lim,--n , log(a,)/n ticular, a4(-Y; Q) > a2(-'; Q) implies that the variance of the sample
= P. This should not be confused with a, - bn, which means variance will be unstable, and this in turn implies instability and
limln- an/b, = 1. poor convergence of the practical stopping rule. We say Q(-) is

This paper considers the problem of estimating p, via the completely asymptotically stable if a,('f; Q) = a2(-y; Q) for all inte-
Monte Carlo technique of importance sampling. Let Mp denote gers v > 2. A new result proved here is that the entire parametric
the family of all distributions Q(.) such that P(.) <' Q(.). In- family {P(*)(-): a > 0} C Mp is completely asymptotically sta-
dependent i.i.d. n-tuples ( Xnt) .. , X()), t = 1, .., Ln, are sampled ble. This result has important practical significance because in
from the i.i.d. sequence distribution PQ(.) and applied to the sam- some multidimensional applications it can be difficult to precisely
pie mean estimator determine the optimal twisting parameter vector.

A simple example illustrates the importance of the stability
n= - '(X ),-.,X ) _(Xki- issue. Take P(.) to be the Laplacian distribution with p.d.f, p(x) =

TnI F=_1 k=1 Q e-I+l/2, fix n = 30 and -y = 0. Then p, = Pp(S3o _> 0) ;- 10-1.

where E. = {(X1 , ..,X,): E"=i xJ >_ n7} and 1En(') is the indi- Consider two sampling distributions: the linear shift with p.d.f.

cator function. Write Z. = 1E.(Xi,.., X) Ilk=, (Xk). Then, q(.) = e-ll/2 and P(')(.). The figures below present numerical

provided Q(.) E Mp, we have EQ[Pj = EQ[Z,] = p,, which is to results of three independent runs of each estimator, plotted with
say that on, is an unbiased estimator for p.. empirical standard deviation error bars (±-~vi- ). The linear

P(o)(dx) = exp(ax - A(a)) P(dx), whenever A(a) < 00, is shift results clearly exhibit unstable behavior. Error bars often do
the exponentially twisted distribution for twisting parameter a. not overlap, and there is a tendency to underestimate p,, in some
We show that P(')(.), where 0 solves A'(0) = -1, has very strong cases, by a full order of magnitude. In contrast, observe that a
nonparametric asymptotic optimality properties as a sampling dis- single horizontal line at 10-4 would pierce all of the error bars of
tribution. the P(*)(.) estimates.

For a fixed integer v > 2 suppose that we set L, to stabilize the
vth error moment; that is, set Ln so that IEQ[ ([(O - pn)" ] I -" cpvn Uneir ShM: Unstable
with 0 < c < co. For example, for v = 2 we set L,,.- v n(Q)/e2 pi,

where vn(Q) = varQ[Z,], in order to achieve varQ[pn] - 2 . 10TV
In general, we show that stabilization of the vth error moment
requires sampling cost of exponential order. Specifically,

Ln -LD exp(a,(-y;Q)n)

where a,-(; Q) >_ 0 for all Q(.) E Mp. Moreover, for all integers i.L
v _> 2 ' 0 100 260 36o 400

a.(-y;Q) = 0 if and only if Q(.) = P(e)(.).

Exponential Twisting
This extends the original work by Bucklew, Ney and Sadowsky (J. -- - --_ --- - - --- ---
Appi. Prob., March 1990) that originally obtained the result for ,0 t iilhI~a-r ...-

the case v = 2.
Moreoverwe show here that P()(.) also asymptotically mini-

mizes the error moments sample variance estimator in the same
sense as above. This result impacts directly on the practical issue 0 100 200 300 400

of setting L, .- v,(Q)/f 2p'. We generally do not know either p,
or vn(Q) a priori. Both must be estimated. In practice, L, is Finally, one might ask what cost 4, --LD exp( a0 (7; Q) n) is
increased, either continuously or in batches, until L, _> O,/(9�/2) required to simultaneously stabilize all error moments (i.e., all v <

where 6, is the sample variance. Our result that P(e)(.) asymptot- oo)? For the Laplacian example we compute ao(0; Q) = 1.226.

ically minimizes the error moments of both S,. and 6, lends much However, for the ordinary Monte Carlo estimator P(.) P(0)(.),

credibility to this practical stopping rule. which is completely asymptotically stable, we compute a.(0; P) =
a2 (0; P) = 0.226. Thus, surprisingly, the sampling cost required

'To appear in IEEE T1ranu. on Informedion Theorp, Jan. 1993. tocompletely stablz h iersitetmtri usatal
'This work was supported by the National Science Foundation, grant No. to abilize the linear shift estimator is substantially

9003007-NCR. bigger than that of ordinary Monte Carlo!
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Convergence of Probability Measures for Continuous Sample Paths of Multidimensional Random Field Simulations Using Trigonometric Series

Robert Patton Leland
Department of Electrical Engineering

University of Alabama
Tuscaloosa, AL 35487-0286

We wish to simulate continuous sample paths of Gaussian random (ion D(;). Let X, be the simulation for X in (1)-or (3). If D(;) <
fields that are either homogeneous or have homogeneous increments, 311;13 for some M, 3 > 0, and the ireights and frequencies are chosen
and show weak convergence of the sample path probability measures so D.(6) - D(W) (and R.(;) -- R(;) for X homogeneous) point-
on C[0, I]i. wisely, D,(;) < 3f 1;1 for all n > N, and limrn-ý M max5 IaI = 0,

A zero mean Gaussian random field is homogeneous if its co- then the probability measures for Xn on C[0, 1i1 converge weakly to

variance function R is shift invariant, R(;t,,;) = E[X(;)X(12 )] ' the probability measure for X, as n - oc.

R(;i + P, A2 + 1i). In this case R has a spectral representation R(;) = Sketch of Proof (see [2] for details)

fIN exp(iA; 5) d4(,). In order to ignore slowly varying effects, we can
also describe the random field by its structure function D(;7,,F2) = The finite dimensional distributions for X. converge to those of X
EI(X(it) - X(,F2 ))2]. A zero mean Gaussian random field has ho- since R. (or D.) converges, and the limit is jointly Gaussian by the
mogeneous increments if D(;t,,) is shift invariant. Hlomogeneous Lindeberg-Levy version of the Central Limit Theorem. The conditions
increment random fields have the spectral representation (6] in Theorem I are satisfied for D(0) !< .1;119•. Using a multidimen-

,2 dsional version of the Kolmogorov Lemma, Yadrenko [5] (Theorem 2,
D(;) = 2 /-(1 - cos(; . i))d4b(S), f d + ) < on p. 108 ) the condition on w.(b) can be demonstrated. 0

- Rd_ I + For the structure function to obey D(;) _< 3ip 10 it is sufficient

We simulatea zero mean homogeneous Gaussian random field X(;), that for some 0 < • _ 2, M > 0
;E Rd, by a random trigonometric series

X E( = a cos(Xk.+t0s) (1) + 0Xk) 'Aýds(X) < oo (4)
h=1

To construct X. with structure function D.(;) so that D(57) and
wher th weghtsa5  nd requncis A areknon ad {91 i an D,,(5) are simultaineously bounded by .1Ij•i), we partition a suffi-

iid sequence of random phases uniformly distributed on [0, 21r]. This Dientl are regin eof hl f spun e d by sml l w e a n a et

yields an approximate covariance function ciently large region of a half space of Rd into small cubes, and let

R.(;) = X(a:) 2 cos( . (2) an = (4 Leda,(A))
k=1

For proper choices of a' and A", R, will approximate R, as the finite when the cube does not touch on or contain any non-integrable sin-
sum in (2) approximates the integral in the spectral representation gularities. The frequencies Ai can be taken as the center points of the
of R. Such approximations were considered for d = 1 in (3], and for cubes. If there is a non integrable singularity at the origin, for cubes

random fields in (4]. touching the origin, we take
We siftulate a homogeneous increment random field, X(.(), as

S= (4 Y- d0(A))2'

X. ah{cos(k',- ; + 0) - cos(O0)} (3) 1 2

k=t For a large enough number of sufficiently small cubes, the structure

The weights a' and frequencies A' are chosen to approximate the function is approximated as required.
structure function D(;) by D,(5). The FFT algorithm quickly generates random fields using trigono-

n metric series if the desired sample points all lie on a rectangular grid.
D() = E[(X,(') - ',,(5' + 5))] = Z--•(,) 2 ( - cos(£• 57)) If this is not the case, Gaussian-Legendre quadrature yields good ap-

k=1 proximations of the integrals for R(;) and D(,$), and can be modi-

fled to handle singularities. Gaussian-Legendre quadrature was used
For the random fields X,(;) in (1) and (3), the even moments of the to simulate random fields with the Von Karman spectrum, and with
increments obey D(;) = C•.1;15/3, 57E R2.

2m'
E(() -X(' + 5))2~] < ) [1] Patrick Billingsley. lWeak Convergence of Measures: Applications

in Probability, Society for Industrial and Applied Mathematics,
If R. -- R (or D. -ý D) pointwisely, and a condition on D(O) is Philadelphia, 1971.

satisfied, then the probability measures for X. on the space of contin-
uous functions C(0, lid converge weakly to that for X. Convergence [2] R.P. Leland. 'Simulation of Continuous Sample Paths of Random
of the finite dimensional distributions does not imply the sample path Fields Using Trigonometric Series', Multidimensional Systems and
measures converge weakly. Billingsley [i] gives a necessary and suf- Signal Processing, Vol. 2, pp. 23-43, 1991.

cient condition. [3) S. 0. Rice, "Mathematical Analysis of Random Noise", Bell Sys-
Theorem 1 1f the finite dimensional distributions for the random tem Technical Journal, Vol. 24, p. 46-156, January 1945.
fields X., P(X,(i)'... X.(&m)) converge to the finite dimensional
distributions for a random field X and for every qi > 0 there is an a (41 M. Shinozuka, C.-1. Jan, "Digital Simulation of Random Pro-

and N such that P,(IX(0)l > a) < q, Vn > N and for every il, e > 0 cesses and Its Applications", Journal of Sound and Vibration, 25,

there is a 6 and N such that P.(w,(6) > e) < q, Vn > N where pp. 111-128, 1972.

w,(6) = maxlo_1y<,l IX(;)-X(i')I then the corresponding probability (51 11. 1. Yadrenko, Spectral Theory of Random Field.,, Oplimization

measures P. on C[0, 11' converge weakly to the measure P for X. Software, New York, 1983.

The next theorem is our main result on weak convergence. [61 A.M. Yaglom,"Some Classes of Random Fields in N-Dimessional

Theorem 2 Let X be a homogeneous increment (possibly homoge- Space, Related to Stationary Random Processes", Theory of Prob-
neous) separable Gaussian random field on (0, lid with structure func. ability and its Applications, Vol. II. No. 3, pp. 273-319, 1957.
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WAVELET APPROXIMATION OF DETERMINISTIC AND RANDOM SIGNALS:
CONVERGENCE PROPERTIES AND RATES

Stamatis Cambanis Elias Masry
Department of Statistics Department of Electrical and
University of North Carolina Computer Engineering
Chapel Hill. N.C. 27599-3260 University of California at San Diego

La Jolla, CA 92093-0407

we use a scale function # with compact support, say [0, N I. A
substantial simplification occurs if we use a slightly lag data

Multiresolution signal decomposition and wavelet interval [-N2-4. T+N24] to compute the coefficients (a"). Then
orthonormal bases of L2(-oo, -) have received increasing the approximation is
attention in recent years in the mathematical and in the signal and
image processing literatures, see [1]. A multiresolution Yafka)) = aoa))#*.,t(t), OVt<T,
decomposition of L2(-, -) is an increasing sequence JV}- of k-
closed subspaces of L 2 (-'-, ') with dense union, empty where the sum is actually finite involving, for each te 10. T], the
intersection, and certain translation and scaling properties [1]. terms with 21t-N:k<2(t, and

The approximation of a function fe L2(--., -) at resolution - =
2-4 is the orthogonal projection f, of f on Vf which is computed by af.(&)) 2 0X2, 0)X(t)d- = (--,))$(s)ds.
using a wavelet orthonormal basis for Vr,
{0f.k(t) =-2"2#(2't-k)J,-,,, generated by a scale function We provide an n*t order asymptotic expansion for the integrated
*eL 2(-o. o,) by means of dilations and translations. The mean-square approximation error,
simplest example is the Haar basis where Q(t)=lho. ](t) has F
compact support and is discontinuous. There are scale functions e2 [X (X(tr )) -_X(t,))]2 d.
which are k-times continuously differentiable with compact 0
support [1M. For stationary processes whose covariance function

The approximation of any fE L 2(-o., -) at resolution 2-4 R(r) =R( (,0) has n one-sided derivatives at 0, but need not be
thus has the orthonormal series representation differentiable at 0, we obtain the n0 order asymptotic expansion,

,(t) = i af.k *f.k(t), as 1-4-

12 + 2 L)
which converges in L2(--o, -) norm, and whose coefficients aWe T 2(

aj,& - f (t) #k(t)dt . The L2 approximation error at resolution 2-4 where
.. 1 NN

is Ci=~ -R QN)O+))1IJ I u - v#(u)*(v) dudv ,
j 00

2I

el =-lIV-fllI= Jf2 (.))di- aft and the term o(2-*) does not depend on T. Thus generally the
k dominant term is of order 2-. When the stationary process has p

and e2 -+0 as f .- quadratic-mean derivatives and the moments of 0 of order
An n' order asymptotic expansion for the approximation 1, --. ,2(p-l) vanish (l:p!n/2), then the dominant term is of order

error e2 as f- is established in [2] for functions fe L2(--, ) -. For nonstationary processes, a similar asymptotic expansion
with n derivatives. Under certain additional conditions we have is provided, and the dominant term is generally of order 24 (it is

not clear in this case whether a scale function can be matched to aC2  C21,,1 2 l

el = -q - + .+ j + o(T-) q.m. differentiable process in order to speed up the rate of
convergence). This is also the case for deterministic functions

where fork > 1, which do not belong to L2(--.-) but are square integrable over

finite intervals.
C= (2k)! i j(t)]2 dt -(u-v)2k (u)#(v)dw dv. For nonstationary processes with finite mean energy over the

The quality of the approximation can be improved by using a entire real line: E7 X2(t,. )dr = JR(t, t)dt <- we obtain an nih

- order asymptotic expansion for the integrated mean-square error
scale function with vanishing moments: if J (t-p)i#(t)dt=O for

somei and j=l, .-. ,2(p-l) where I SpSn2 then the dominant el =E IX Q,o)-i(t,o))?d1.

term in el has order 2-W.
We also consider in [21 the wavelet approximation at with properties similar to those for deterministic functions in

resolution 2- of stationary and nonstationary second-order L2(-", -)
random processes. All stationary and most nonstationary second-
order processes do not have sample paths in L2(--.., --) and thus REFERENCES
they do not fit the standard framework of L2(-,-) wavelet 1I] I. Daubechies, Ten Lectures on Wavelets. Philadelphia, PA:
representation. However, with probability one, the sample SIAM, 1992.
functions of mean-square continuous stationary and nonstationary [2] S. Cambanis and E. Masry, "Wavelet approximation of
random processes are square integrable over every finite interval. deterministic and random signals: convergence properties
We therefore consider the wavelet approximation of such and rates," Univ. of North Carolina, Center for Stochastic
processes, at resolution 2-4, over a finite interval, say 10, TI, and Processes Tech. Rep. No. 352, Nov. 1991.
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ON THE MINIMUM EXPECTED
DURATION OF A COIN

TOSSING GAME

Inchi Hu* Santosh S. Venkatesht

ABSTRACT

The following coin tossing game is analysed: A store of N
fair coins is given and it is desired to achieve M heads in a round
of tosses of the coins. To allow for unfavourable sequences of
tails, restarts are permitted at any epoch in the game where,
in any restart, all coins are returned to store and tosses are be-
gun anew from tabula rasa. A restart strategy is a prescription
which specifies when a restart should be made. It is desired to
estimate the minimum expected duration of the game over all
restart strategies, and to find an optimal strategy which min-
imises the expected duration of the game. This simple coin toss-
ing game, proposed by R. L. Rivest, has cryptographic roots and
is linked to issues in the factoring of integers.

It is shown that there exists an optimal deterministic strat-
egy which minimises the expected duration of the game, and a
backward induction algorithm is derived which efficiently yields
the optimal strategy. The properties of the optimal strategy are
characterised, and some sub-optimal strategies analysed. In par-
ticular, it is shown that if the desired number of heads M is less
than or equal to one-half the number of coins N in the store, then
the minimum expected duration of the game grows linearly in N;
if, on the other hand, M exceeds one-half N, then the minimum
expected duration of the game grows exponentially fast in N.

"*Depurtment of Statistics, University of Pennsylvania, Philadelphia, PA
19104

t Department of Electrical Engineering, University of Pennsylvania,
Philadelphia, PA 19104; eleirosac mani: venkatoshOse.upean.9du
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A Simulation Study of Forward Error Correction for Lost Packet Recovery In B-ISDN/ATM

Nihat Cem Ouz Ender Ayano§lu
Electrical and Electronics Engineering Department AT&T Bell Laboratories

Bilkent University 101 Crawfords Comer Road 4F-507
Ankara, 06533, Turkey Holmdel, NJ 07733-3030, USA

ABSTRACT network at this rate. In each one of the four intermediate nodes, there is a
non-blocking 8 x 8 ATM switch with output buffers of capacity B = 256 cells.

We present the results of a simulation study for a virtual circuit connection To measure the coding gain, we perform FEC on the forward traffic belong-
over an ATM network where forward error correction is performed at both the ing to a tagged source-destination pair. While passing through the network
ATM cell level and the packet data unit (PDU) level. A main conclusion of this nodes, the tagged traffic interferes with the untagged cells belonging to other
study is that at low loads ATM cells from the same source dominate in the source-destination pairs. We assume that the tagged PDUs of NA cells arrive
switch buffers, while at high loads there is a mixino of ATM celt• from different at the source according to a Poisson process with rate p/NA, where p is the
sources. For the latter case, ATM cell level coding performs better, while for network load. NA + MA cells of a tagged PDU are transmitted in succes-
the former, PDU level coding performs better. The combination of the two sive slots under the control of a window flow control mechanism with PDU
techniques has the best overall performance. permits. This mechanism prevents the network from getting into a state of

ever increasing congestion since it limits the number of PDUs on the VC.
The transmitter stores each tagged PDU until an acknowledgement message

1 Introduction (ACK) is received from the destination. In the case of receiving a negative ac-
knowledgement message (NACK), the NACK'ed PDU is retransmitted. In real

In broadband integrated services digital network using the asynchronous life, ACKs and NACKs flow back through a similar, possibly the same, path
transfer mode (B-ISDN/ATM), the end-to-end propagation delays will typically as the forward traffic follows, and hence, are subject to loss as well as ran-
be much larger than the duration of a packet. Consequently, retransmis- dom delay. We assume for the sake of programming simplicity that they flow
sions associated with the conventional error detection and Automatic Repeat back through dedicated lossless, constant-delay channels. We still maintain
reQuest (ARQ) mechanisms will increase the delay of a packet intolerably, a timeout mechanism. Similarly, we assume independent Poisson arrivals of
especially for loss and delay sensitive high-speed applications. Therefore, NA-cell untagged PDUs with rate p /NA at the 7 untagged input ports of each
one may use Forward Error Correction (FEC) to improve reliability without node. Each untagged PDU chooses the tagged output port independently
increasing end-to-end delay. In FEC, redundant information is sent along with with probability 118 and its cells depart from the VC at the downstream nodes
the original data so that the receiver can avoid retransmissions by recovering independently with probability 7/8. Also, the tagged and the untagged cells
lost information using this redundancy. However, there is a trade-off in using are served at the same priority level. We also assume that the receiver has a
FEC: adding redundancy increases the load in the network, and in turn, the cell level memory: the successful cells of lost PDUs are stored. This feature
loss rate. FEC can be useful only when the former effect prevails, has a strong impact on the overall network performance since it decreases

In this work, we simulated a long-distance virtual circuit (VC) connection the amount of work from one retransmission cycle to the next.
over an ATM network, and quantified the improvement in delay-throughput In the simulations, we fixed the parameters NA and Np as 16 and 256.
performance achieved by using FEC. In ATM, the basic unit of transport, respectively, and measured the average PDU delay, which was defined as
switching, and queueing is a 53-byte cell. ATM cells are grouped into variable the average time that a tagged PDU spent in the network, as a function of
size Packet Data Units (PDUs) at the adaptation layer. Some of the PDUs p. The results for the uncoded (MA = Mp = 0), only cell coded (MA = 4,
arrive at the receiver with missing cells due to buffer overflows at congested Mp = 0), only PDU coded (MA = 0, Mp = 4). and both cell and PDU coded
nodes. By adding parity cells to each PDU, some of the lost cells can be re- (MA = Mp = 4) cases are compared. The parameters MA = 4 and Mp = 4
covered. A PDU is considered lost and retransmitted if its missing cells cannot were chosen according to the results of two optimizations in which we tried
be recovered by the FEC mechanism. Our principal motivation is the fact that MA E {0,1,2,3,4,6,8,12), and MP E {0,2,4,6,8,10,12,14,16,24,32),
the nature of the cell loss process strongly affects the performance of FEC. respectively. In the PDU coded cases, the averages were computed over
Adding parity cells to each PDU is effective when cells are lost 'randomly." It information-bearing PDUs so as to make a meaningful comparison with the
is not effective when the cells are lost in bursts. In such cases, interleaving uncoded case.
and buffer management techniques can be used. To combat burst losses, we The results show the trade-off between using cell coding and PDU coding.
employ FEC over PDUs, in addition to FEC over consecutive cells, and our For low p, where cells of a single connection dominate in the output buffers,
results indicate this is effective. Unlike employing buffer management tech- losses occur in rare bursts for buffer capacities as large as 256, and hence,
niques in intermediate nodes, this method is simpler to implement as it does PDU coding outperforms cell coding. For high p, the frequency of burst losses
not require processing at the network nodes and can be employed selectively, increases, and many cells from distinct connections interfere at the switch
e.g., only for delay and loss sensitive applications. outputs resulting in random losses. Therefore, cell coding starts to perform

better as p increases. The joint code outperforms only cell coding or only PDU
2 Forward Error Correction In ATM Networks coding for almost all p, except for a small degradation around p = 0.45, which

is due to the individual performance degradation in cell coding. The results of
In the method of FEC over consecutive ATM cells, the encoder appends M the optimizations over MA and Mp. and the details of transmitter and receiver
independent parity cells to each group of NA information-bearing cells. We implementations are available from the authors.
consider this block of NA +MA cells as a PDU. Since the receiver determines Finally, note that if the successful cells of the lost PDUs were not stored
the positions of lost cells by means of sequence numbers, it is possible to at the destination, the average PDU delays would be much higher tor high
design an erasure channel code so that up to MA erased cells per PDU can network loads. With a cell level memory at the destination, the lost PDUs have
be recovered. A lost PDU with more than MA erased cells is retransmitted to arrive at the re~eiver with fewer and fewer number of cells in successive
upon a time-out or a retransmission request from the receiver. retransmission cycles. However, when there is no such memory, the PDUs

In ATM networks, once a node is congested, it remains in this state for are subject to the same probability of loss in successive transmission cycles.
some time resulting in consecutive cell losses. Increasing MA is not a good
solution to this problem since it leads to higher cell loss rates and limits the 4 Summary and Conclusions
throughput. A better solution is to use a code over PDUs in addition to FEC
over consecutive cells: each block of Np PDUs is followed by Mp independent We have presented the results of a simulation study, showing that the use
parity PDUs. We call this block of Np+ Mp PDUs a coding block. This can be of forward error correction improves the performance of broadband networks.
viewed as a two-dimensional code if consecutive cells are arranged in the form We have concentrated on the performance over a virtual circuit connection
of a matrix each row of which contains cells of one PDU. The issues related to over an ATM network. The FEC technique is based on transmitting party
the construction of parity cells for both row and column coding are the same, packets, which are constructed by using an erasure channel code, along
and therefore, up to Mp lost PDUs per coding block can be recovered, with information-bearing packets. Although this may increase the network

load leading to higher packet loss rates and limit the network throughput,
3 Simulation Results retransmissions are avoided provided that sufficiently many packets reach

the destination. In particular, we have considered two types of coding: coding
In the simulations, we consider a five-hop VC connection over a wide ge- over consecutive ATM cells and coding over consecutive fixed-length PDUs.
ographical area. The end-to-end propagation delay is taken to be 10.240 The simulation results obtained have confirmed our a priori expectation that
slots, where a slot is defined to be the unit time needed to serve a cell at coding over PDUs would be effective for burst cell losses, and indicated that,
155 Mblsec, approximately equal to the delay of a US-wide or a Europe-wide by using FEC with correct parameters, it is possible to reduce the average

PDU delays approximately to the extent of a half.
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A Robust Error Control System
For

Broadcast Channels

S. Ram Chandran, TeleSciences, Fremont, CA. Shu Lin, Univ. of Hawaii.

Abstract obtained by shortening the inner code. Therefore, we can use

We have proposed a robust error-control system for the inner-code encoder and decoder for encoding and decoding
a broadcast environment. !he system is a oumbination of this code. Moreover, this code has the same error-correcting
of FEC and ARQ schemes. We use a cascaded cod-
ing scheme with a binary inner code and an interleaved capability as the inner code but is used on a much smaller por-
non-binary outer code. The decoding policy is chosen tion of the data block therefore it is very powerful. The data
so that we make optimum use of outer code's error cor- and parity transmissions both use the same format hence their
recting capability. The system also has a parity retrans-
mission feature. We use a dynamic programming opti- decoding procedures are very similar. The original message can

mization method to optimize the throughput. We show be recovered from the parity block also, by inversion, if the de-
that this system achieves very high reliability and high coding is successful. Otherwise, the parity and data blocks are
channel utilization even at extremely high bit-error-rates combined for further error correction using the half-rate code. If
(! 10-2). The scheme is suitable for high speed data
transfer even when the channels are noisy. the parity block fails to recover the original message by this com-

1 Summary bined decoding, then another retransmission is requested. The

next retransmission is a data block. Thus the retransmissions
In this paper we present a robust error-control system for broad- are alternate repetitions of data and parity blocks.
cast channels. The communication environment for the pro- The key idea of this coding scheme is that the decoding infor-

posed scheme consists of a single transmitter broadcasting mes- mation is passed on from inner-code decoder to the outer-code

sages to R receivers. As a special case, this system can be used decoder [1]. Data and parity blocks consist of codewords from

for point-to-point communications also. The goal of this system inner and outer codes arranged in an array. Decoding process of

is to facilitate high speed data transfer even when the channels these blocks consist of inner decoding followed by outer decod-

-are very noisy. The coding scheme used here is similar to the ing on each of these codewords. The decoding policy is chosen

work of Kasami et. al. [1]. We have modified their cascaded in such a way that the error correcting capability of the outer

coding scheme and also added a parity retransmission feature code is utilized optimally.

to it. The coding scheme is obtained by cascading two error- We provide a complete analysis of the performance of this

correcting codes: the inner code and the outer code. The inner coding scheme. We show that even with very simple inner and
code is a binary code designed for simultaneous error correction outer codes, we can achieve a probability of block decoding error

and detection. The outer code is obtained by interleaving a non- of 10-10 at extremely high bit-error-rates (! 10-2). At lower bit-

binary code with symbols from Galois Field GF(2A). This code error-rates, the achievable probabilities of block decoding error
is designed for correcting symbol errors and erasures. The er- are negligibly small. Moreover, such high reliability is achieved

rors handled by this code are either caused by the channel or the at very acceptable levels of channel utilization. The correspond-

inner code decoder, whereas the erasures are introduced by the ing probabilities of decoding failure (retransmission) is small.

inner code decoder only. The interleaving facilitates burst-error Using the proposed scheme, we can achieve up to 20% channel

correction. utilization with a hundred receivers at a Bit-Error-Rate= 10-2.

In addition, we also have a parity retransmission feature for References
the recovery of incorrectly received messages. The retransmis- [1] T. Kasami, T. Fujiwara, T. Takata and S.

sion scheme is a combination of type-1 and type-2 hybrid ARQ Lin, "A Cascaded Coding Scheme for Er-
schemes [3]. We use a selective-repeat mode of retransmission ror Control and It's Performance Analysis,"

and the protocol is similar to the one proposed by Chandran and IEEE Trans. Information Theory, vol. 34,

Lin [2]. In this retransmission protocol, the number of copies of No. 3, pp. 448-462, May 1988.

a message at any given stage of retransmission is chosen to op- [2] S. Ram Chandran and S. Lin, "Selective Re-

timize the throughput, using dynamic programming optimiza- peat ARQ Schemes for Broadcast Links,-

tion. This optimization scheme takes into account the number IEEE Trans. Comm., vol. 40, No. 1, January

of previous transmissions of the message and also the number 1992, pp. 12-19.

of receivers that are yet to acknowledge the message, thereby

allowing us to achieve the maximum possible throughput. [3] S. Lin and D. J. Costello, Jr., "Error Control

Parity blocks for retransmissions are formed based on the Coding: Fumdamentals and Applications,"

original data block and a half rate invertible code. This code is Prentice-Hall, 1983.
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THE CAPACITY PER CHANNEL OF A BROAD CLASS OF NOISEFREE
CDMA IS FOR VERY DIVERSE TASKS CLOSE TO 1/e UNDER VERY

LOOSE CONSTRAINTS

Sindor Csibi

Dept. of Telecom., Tech. Univ. of Budapest, Stoczek u 2, Budapest, H-1111; e-mail: h179csi@ella.hu

The capacity (i.e., the max. total throughput) per slot asynchronous arrivals) are under general cir-
channel of code division multirle accebs with su- cumstances essentially distinct, one may get close to
perimposed codes as hop sequence sets is consid- the very same capacity limit l/e under loose (how-
ered. The access to a channel is controlled slot-by- ever more or less individually tailored) conditions.
slot by a binary sequence for time hopping. One One of our purposes, in this paper, is to prove that
out of Q hop frequencies is selected slot-by-slot by this is really the case. Another aim is to show what
the symbols of a Q-ary sequence in the considered a peculiar interrelation holds among the additive
(simplest) version of frequency hopping. The num- families underlying the various distinct versions of
ber of (single server) channels K = I for time, and the multiple access problems considered; and try
K = Q > 1 for frequency hopping. The length of to point out, also qualitatively, under what kind of
the hop sequence (the frame length) in bits is de- constraints (on the multi-user objectives) can the
noted by N in the binary as well as in the Q-ary capacity be kept close to Ile.
case. m bits are conveyed during an active slot. Transparent upper and lower bounds are given on
Random delay, erasures, and erasure correction are C (resp., C(c)), for the aforementioned eight prob-
assumed, but no independent additive noise. lems, under distinct constraints on M, in and v

Task A: z bits per frame from at most Al window (and also on T, for Task A), w.r.t. z. Both quanti-
active sources have to be served without error out ties are close to I/e, for an approriately large value
of T potential sources. Task B: a Poissonian source of z (e.g., z > 100 bits), and approach to l/e (with
population has to be served, with a demand rate A, c - 0 for C(c)) as z - oo.
each source having at most once a packet of y bits to As a matter of fact the capacity (resp., c-
send next to a demand (z = y/v bits are conveyed capacity) per channel may be kept close to the limit
per frame). For simplicity for Task B the same lie for very distinct classes of the considered joint
single hop sequence is assumed at each potential separation and transmission problems if the objec-
source, and the c-capacity per channel C(c) (with a tive is an essential point-to-point message transmis-
probability 1 - e, and error free transmission up to sion together with joint frame separation (and far
Al window active sources) is considered. not just separation). This feature is consistent with

It was shown by Massey [1982], Bassalygo and the fact that the families of the extremnal sets cor-
Pinsker [19831, Tsybakov and Likhanov [1983], responding to the aforementioned eight distinct ex-
Massey and Mathys [19851, for the basic Task A, trernal set problems (with points defined by a trade-
that C -- 1/e and by Csibi [1991], for task B that off between the resources for joint frame separation
C(e) -- I/c, and c - 0, as z -- oo. under distinct and point-to-point-to-point transmission, anid with
constraints, all for time hopping. a shortest hop sequence of length N') have got a

It can be shown that for investigating the joint peculiar joint structure, resembling to the corolla
possibilities of separation and errorfree decoding the of a petaled flower. Viz., the capacity (resp. (-

disjunction of all possible cyclic shifts of the bi- capacity) sets for these eight distinct problems have
nary (resp. that of the binary representation of the got a common limit point I/e: C -. l/e (resp.
Q-ary) hop sequences, modulo N, is of our inter- C(c) -- 1/e with e -- 0) as z - oo.

est. Accordingly, the capacity study may be formu- The constraints for Tasks A as well as B are met,
lated, in the noisleless case, as an extremal additive e.g., by the RS hop sequence constructions due to A,
set problem, with disjunction as addition. (For the Gy6rfi, and Massey [19921 of actual interest. Thus
basic formulation and a basic bibliography of such one may get by zMe/N a good idea about the abso-
problems see, e.g., a survey by S6s [1989].) lute efficiency r7 = N'/N of such (and also of other)

It can be expected already from the aforemen- well implementable constructions.
tioned studies that while the additive set models
of our interest for Tasks A and B (time as well
as frequency hopping, slot synchronous as well as
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SUMMARY Proposition 1 Under -,ny random access algorithm,

Recent advances in optical technology have made it possible N(•_) > 2)+ > (.618)
to transmit at very high data rates. Consequently, the propaga- 2 '
tion delay for a packet of information is long compared to the
length of a packet. For example, consider a wide area network where P(-T is probability that a typical packet suffers delay 2o

with a single star topology, such that the stations are locaLed more. In particular, the mean delay suffered by a typical packet

50 kilometers from the hub, packets are 1000 bits long and the is at least 0.5N(.618)*.

transmission rate is a gigabit per second. The propagation delay
from one station to another is dictated by the speed of light in An upper bound on the achievable mean delay of a typical
glass. The delay is about 500 microseconds, roughly 500 times as packet is obtained by considering specific random access algo-
long as the transmission time of one packet. In contrast, classic rithms. Given k > 1 let Am.x(k) = max{G[l - (1 - exp(-kG))k] :
protocols such as the ALOHA protocol were investigated with a G > 0). Given A with 0 < A < Amsx(k), let G. be the minimum
propagation delay roughly 12 times the packet length in mind. positive solution to the equation

The particular model discussed in this paper is now described. A = G0[1 - (1 - exp(-kGo))k]. (2)
Newly generated packets arrive according to a Poisson process
with rate A. Time is divided into slots of unit length, where time Finally, let -r = (1 - exp(-kG,,))k and d,,(k, A) = 7/(1 -

is normalized so that one packet can be transmitted in one slot.
We denote by slot i the time interval [i, i + 1). Those packets Proposition 2 There exists a family of random access algo-
with generation times in the set B, are transmitted during slot rithms parameterized by k, A, N so that if D(k, A, N) is the aver-
i. We require that Bi C [0, i), for a packet can't be transmitted age delay (exclusive of the forward propagation delay) of a typical
until the first full slot after it arrives. The outcome of slot i, packet, then limN--.o D(k, A, N)/N = do(k, A).
denoted by 1, = O(B,), satisfies 1, E {0, 1,2). If no packets are
transmitted in slot i, then 19 = 0. If one packet is transmitted in
slot i, then the packet transmission will be successful and 0j = 1.
If two or more packets are transmitted in slot i, then the packets
will collide and the transmission will not be successful. Table 1: Comparison of lower and upper bound on the co-

There are two, often the same, propagation delays associated eficient of N in the mean delay, for some values of A and
with the model-the propagation delay of feedback and the prop- optimal values of k.
agation delay in the forward channel. The propagation delay of
feedback is denoted by the positive integer N. The outcome 9i A lower bound k" upper bound
is assumed to be announced to all stations by time i + N. Thus, 0. 5( 2 -1n 2). do(k-, A)
we require B,+N to be a function of (90,01,.-. ,9,). The usual 0.05 0.0000336 16 0.0000716
model, in which the outcome of slot i is known by the beginning 0.10 0.00410 7 0.00861
of slot i + 1, corresponds to N = 1. We define the transmission 0.15 0.0203 5 0.0506
delay of a packet to be the number of whole slots that elapse be- 0.20 0.0452 3 0.138
tween the time the packet is generated until the beginning of the 0.25 0.0731 2 0.293
slot in which the packet is first successfully transmitted. With 0.30 0.101 1 0.631
this definition, the delay is a nonnegative integer value, and it 0.35 0.127 1 1.05
does not include the forward propagation delay.

By finding a lower bound on the probability that a typical
packet will be successfully transmitted within the first N/2 slots,
we also find a lower bound on the mean delay suffered by a typical ACKNOWLEDGEMENT
packet. The effort of B. Hajek was supported by the National Science

Foundation under National Science Foundation Contract NCR
90-04355.
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CONSTRUCTIONS OF PROTOCOL SEQUENCES FOR
MULTIPLE ACCESS COLLISION CHANNEL

LUsz16 Gy~rfi and Istvin Vajda"

A, Gy6rfi and Massey [1] have given a general way a binary constant-weight-w cyclically-permutable
to construct constant-weight cyclically permutable code CPC(N, T, d,) is a (T, M, N, o) protocol-
codes. A cyclically permutable code CPC(N, T, d,) sequence set for
is a binary block code with Llock length N, size
T and positive cyclic minimum distance dc. The M = min T w t-- 'w-dI + 1
cyclic minimum distance d. of a code is defined as t wdc/2 w -d,/2
the minimum Hamming distance from a codeword
to its own cyclic shifts or to some cyclic shift of where [.J denotes rounding down to the nearest in-another codeword. teger ([1]).

Let a be a primitive element of GF(pr), where If the total information transmission rate Rsum isLet bea pimitve lemnt f GFp")' weredefined by
p is a prime number and r > 1. A primi-
tive BCH code V of length n = pI - 1 is then Me
defined by the parity-check polynomial h(z) =R..m = N (packeRs/slots).
l.c.m. {M0(z), Mi(r),..., Mk-.(x)), where Mj(x)
is the minimal polynomial of a3 over GF(p), and and the code B" is used as a (T, M, N, o) protocol
3 < k < p- 1, j = 0,1,..., k - 1. V is given by the sequence set then the parameters are as follows:
direct sum T = p(k-2 )r, N = p(pJ - 1),

M> W - R > a(w -)

where Vj is the code over GF(p) of length n with - (k - I)pr- I' - N(k - I)pr-l '
parity check polynomial M1 (r), j = 0, 1,..., k - 1. the maximum of which is obtained for o = w/ 2 un-
Because MI(x) is primitive polynomial, V, contains der the condition w/2 - 1 > (k - 1)pt-1. Choosing
an m-sequence c*. o = w/2, we get

Consider the following subcode of V:
1JC={e' + V2 +...+ Vk-1-Ru .4k11

If the pulse-position-modulation (PPM) code con- for large p. The ratio of the total population T to
sists of all weight-one sequences of length p, then the block length N is
let B* be the cyclic concatenation of V and the
PPM code, defined in [1]. It is shown that B' is a p(k-)r_
binary constant-weight cyclically-permutable code p(pr -I)

with length p(pr - 1), size p(k-2)r, cyclic minimum
distance dc > 2(pr - 1 - (k - 1)pr-1). For k = 3, this ratio is - p-1 . For fixed k > 3, this

The set {s1, S2, ... S ST} of binary sequences is ratio is a monotone increasing function of r and is
said to be a (T, M, N, o) protocol sequence set - p(kp)r-1.
if these sequences all have length N and, when [1] N. Q. A, L. Gy6rfi, J. L. Massey "Construc-
used as protocol sequences for multiple access col- tions of binary constant-weight cyclic codes and
lision channel without feedback, have the property cyclically permutable codes" IEEE Trans. on In-
that each active user can be identified by the re- formation Theory, vol. 38, pp. 490-499, May 1992
ceiver, the receiver can synchronize and each ac-
tive user achieves at least a successful packet trans-
missions during the protocol sequence length, pro-
vided that at most M out of the T users are
active. For any integer o with I < a < w,

"Technical University of Budapest, Stoczek u. 2, H-1521
Budapest, Hungary
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A0IBAI We will study three scenarios suitable for application of

In this paper, certain generalizations on the collision the above mentioned model: Frequency-HoSping

channel without feedback are presented, based on the Spread-Spectrum (FH/SS), Direct-Sequence Spread-

original work of Massey and Mathys. We are Spectrum (DS/SS), and unspread signaling in which.

concerned with situations in which, given a collision in power variations in the arriving signals arise due to

a slot, the channel capacity is a non-zero, decreasing path loss and fading.

function of the number of users involved. This
corresponds, for example, to spread-spectrum type of Finally, because the code alphabet size required for

signaling. Due to this model, concatenated coding achieving capacity in this generalized version of

schemes are employed to efficiently exploit the time- collision channel is very high, we examine a potential

varying nature of the channel, upon using reliability application of binary codes together with interleaving

information from the inner code decoding process, at [51, as a means of achieving 'realistic but non-

the outer code decoding process. Results concerning optimum throughput in the channel.

capacity and coding/decoding tradeoffs will be
presented.

AMMARY [11 J. L Massey and P. Mathys, "The Collision
Channel Without Feedback, IEEE Transactions on

The collision channel without feedback, was Information Theory, Vol. IT-31, No. 2, pp. 192-204,

thoroughly investigated by Massey and Mathys in [1]. March 1985.

Massey and Mathys showed that, the asymptotic
throughput of this channel, as the number of users [2] M. B. Pursley, ' Frequency-Hop Transmission for

tends to infinity, approaches e A -1, independently of Satellite Packet Switching and Terrestrial Packet

the kind of network operation (synchronous or Radio Networks', IEEE Transactions on Information

asynchronous). In their constructive proof, [1], they Theory, Vol. IT-32, pp. 652-667, September 1986.

presented specific protocol sequences, and maximum-

erasure-burst-correcting (MEBC) codes to achieve this 131 J. N. Hui, 'Throughput Analysis for Code Division
maximum throughput. Multiple Accessing of the Spread Spectrum Channelo,

IEEE Jourmal on Selected Areas in Communications,

In this paper, we attempt certain generalizations on [1]. Vol. SAC-2. No. 4, pp. 482-486, July 1984.

Our main scope is to consider systems in which,
collisions do not, in general, lead to a totally useless (41 G. D. Forney, "Concatenated Codes', Cambridge,

channel of zero capacity. In this case, the channel A. MIT research monograph: No. 37, MIT PRESS

capacity available during a collision, is a function of the 1966.

number of interfering users during the collision. This
model applies, for example, in Code Division Multiple (51 S. Laufer, and J. Snyders, "Feedforw-,rd Multiple

Access (CDMA) systems, and in capture systems, in Access Satellite Communications', IEEE Journal on

which, there are power variations in the received Selected Areas in Communications, Vol. 10, No. 6, pp.

signal powers of different users. 1003-1011, August 1992.

We show that, the protocol sequence construction
presented in [1], can be adopted effectively by our
model, to provide efficient channel accessing,
independently of time shifts between users signals.
Due to the time-varying, non-zero channel capacity
during a collision, more complex coding schemes, like
for example, concatenated schemes with generalized
minimum distance decoding (41 will be considered.
This is dictated by the fact that packets are not fuly
destroyed in a collision. Thus, an inner code will output
reliability Information for decoding the (outer code)
superpackets. In fact, due to the softer' collisions in
our case, the overall coding/decoding problem
becomes more complex. 322
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CAPACITY AND CODING FOR T ACTIVE USERS OUT OF M
ON THE COLLISION CHANNEL

Briss Hughe
Department of Electrical and Computer Engineering

The Johns Hopkins University
Baltimore, Maryland 21218

Abstract Corollarys The T-of-M user symmetric capacity is

The problem of designing codes for M users that Ca.,n = ( 1 - l/T )T-1 packets/slot,
permit any T < M users to transmit at the same regardless of whether the users are slot-synchronous
time is investigated for the collision channel. Twelve or asynchronous and whether or not the active users
communication problems are considered that vary are known in advance to the receiver, and whether for
cording to the degree of synchronisation among users, areikownin advne o tereier, a
the receiver's knowledge of the active users, and the arbitrarily small error or sero-error.
desired reliability of the code. For each problem, the Since C,,. does not depend on M, adding users
T-of-M user capacity region is determined and con- does not reduce capacity.
structive coding schemes that approach any rate in Theorem 2: For the T-of-M user collision channel,
this region are presented. Applications to random all synchronous capacity regions coincide. This com-
access communications are discussed. mon capacity region is the set of allR= (R,.•..,RM)

that satisfySummary

R. min EI Z,(1-Zjj)...(1-Z i,._.)}
The collision channel without feedback models j1,...jr-10

the communication of many transmitters with a coin- for some binary random variables Zl,..., ZM. 0
mon receiver through a shared packet broadcasting
channel. Massey and Mathys [I] determined the T- Theorem 3: In the synchronous case, the T-of-M

user capacity regions of this channel for asynchronous symmetric capacity is

and slot-synchronous users, and also gave construc- /M-T M / M
tive codes that approach all rates in these regions. Cm=-Tj J[ K packets/slot,

This paper considers the design of codes for M / K /

users that permit any subcollection of up to T of the where K = [(M + 1)/71 - 1 , regardless of whether
M to transmit at the same time. Twelve commu- or not the receiver knows in advance the set of active
nication problems are posed that vary according to users, and regardless of whether small error or sero
whether the users are synchronouw, slot-synchronoa, error is desired. 0
or aqsnchronous, the active users are known or ,- Remark: Symmetric, uncoded TDMA achieves a
known in advance to the receiver, and the error is symmetric rate of TIM. This is optimal if and only
desired to be zero-error or arbitrarily small error. if T < M < 2T.

Theorem 1s For the T-of-M user collision chan- For each capacity region, constructive codes that
nel, all slot-synchronous and asynchronous capacity approach all rates in these regions are given. Ap-
regions coincide. This common capacity region con- plications to random-access communications will be
sists of all R = (Rl,..., RM) such that discussed.

R4 _< min qi (1 - qj,)...(1 -qj--.), Referencess ,....Jr-10i

for some q -- (q,..., q) satisfying 0 < qj • 1, q(11 + [1] J. L. Massey and P. Mathys, *The collision chan-
- -] nel without feedback,* IBBB Trans•ctions on• .. + q[n = 1, qr&] = qr for T < k < H, and where Information Theory, IT-31 (2), pp. 192-204,

q~j] is qj arranged in decreasing order. 0 March 1985.

Remark: The slot-synchronous, known user, capacity
region was obtained earlier in (2]. [2] B. S. Tayhako and N. B. Likhanov, 'Packet switch-

For the T-of-M capacity region R, the symmetric ing in a channel without feedback,* Problemy
capsaciy is C-r., = sup { r : (T, ... , r/T) e It . Pretdachi Ixjormstsi, vol. 19 (2), pp. 69-84,

April-June 1983.
Suppmtd In peut by ARO Gr-a DAAL03-89-K.0130.
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A Model for the Approximation of Interacting
Queues that Arise in Multiple Access Schemes

Eytan Modiano and Anthony Ephremides
Electrical Engineering Dept.

University of Maryland
College Park, MD

In this paper we present a new approximate model for the analysis tus (empty or non-empty). This adjustment to the system model proved to
of systems of interacting queues which often arise in multiple access network dramatically improve the performance of our approximation. However, with
protocols. This new model is a refinement of an existing model developed in this change the system chain consists of 2N states and is difficult to solve
[1] for the ALOHA multiple access protocol. We begin by applying this model for all but very small values of N. To overcome th" shortcoming of the ex-
to the analysis of a multi le-node broadcast algorithm for a mesh network, panded model, we limited the system chain so that it merely represents the
which was presented in [2]. We then show how our model can be used to dentity and state of one user (our user of interest) along with the number
study the performance of the ALOHA multiple access protocol. of non-empty nodes on the ring. This modification permits a more accurate

derivation of the probability of success for the user chain. This is because the
A multiple-node broadcast is a common task in the execution of par- probability of success is defined to be the probability that the user is chosen

allel algorithms in a network of processors, where every processor may have to be served given that it is non-empty. Therefore, when the system chain
a message to be broadcast to all other processors. In 12) an algorithm was contains the state of our user, we can compute the probability of success by
developed which performs periodic, synchronized, broadcast cycles, where conditioning on the user state being non-empty. It turns out that this new
during each cycle only a small number of nodes are allowed to broadcast model is just as accurate as the previous model (containing the identities ,!
their message. Consider an N by N mesh, where each node has exogenous all of the users) but since this new chain has only 2(N+1) states it is much
packets arriving (to be broadcast) independently according to a Poisson ran- easier to analyse.
dom process and placed in infinite-capacity queues. Our broadcast algorithm
works as follows: We partition the mesh into N vertical rings, such that each Since the improved model offers such an improvement to the original
node belongs to exactly one ring. At the beginning of every broadcast cycle model with a minimal additional complexity, we were motivated to develop a
each ring selects, at random, up to d packets to be broadcast throughout the similar modification for the ALOHA multiple access protocol. In the ALOHA
mesh. The broadcast of the d packets from each ring is performed and has case we consider a finite number of users, each accepting packets that arrive
a fixed duration of (d + 1)(N - 1) time slots. Clearly, the queues at the N independently according to a Bernoulli random process, competing for the
nodes on each ring are highly dependent on each other. In fact, the queue use of a single channel. If a terminal is empty (has no packets), a newly
sizes of the N nodes on each ring form an N-dimensional infinite Markov arrived packet is transmitted immediately. The transmission is successful
chain. Obtaining analytic expressions for the steady-state behavior of such if and only if no other user attempts transmission during the same slot,
a system is very difficult. Even a numerical evaluation of such systems can otherwise a collision occurs and the terminal enters the blocked state. When
be computationly prohibitive. A similar difficulty arises in the analysis of in the blocked state, the terminal attempts re-transmission with probability
the Aloha multiple access protocol and no exact analysis for packet delay is p. In case of success the terminal becomes unblocked. An unblocked terminal
known, for that case either. Several approximate models have been proposed can be in one of two states; idle (when its queue is empty), or active (when its
for the analysis of ALOHA which may be useful in analyzing our system. queue is not empty). An active terminal transmits a packet with probability

one.
In [1], Ephremides and Saadawi developed an approximate model for

a system of interacting queues for analyzing the ALOHA protocol. In their The state of any single user can be specified by its queue size and
model they approximate a system of N infinite queues as a single dimensional by the indication of whether it is in the blocked or active states. A complete
infinite Markov chain representing the state of one user together with an N- description of a N-terminal system requires the analysis of a 2N-dimensional
dimensional finite Markov chain representing the state of the rest of the infinite Markov chain. Again, such chains are known to be very difficult to
system. They use parameters from the solution of one chain in analyzing analyze. We therefore resort to an approximation.
the other and solve the two chains together using an iterative algorithm. As was stated earlier, in 11] an approximation was developed which
This two-chain approach tracks the interaction between the different users modeled an N-dimensional infinite Markov chain as a one-dimensional infinite
in a system model that can be analyzed. We develop a similar approximate chain representing the state of a single user tngrther with a N-dimensional
model for the system of interacting queues in the mesh broadcast case. finite chain representing the number of blocked and active users in the entire

One Markov chain in our model, termed the user can, represents system. In [3] an improvement to the above model was proposed which ex-
the queue size for a single user. It is, therefore, an infinite chain. Packets panded the system chain to include the identity of all N user. That expanded
arrive according to a Poisson random process and depart only when this node model was shown to perform far better than the model in [1]; however, the
is chosen for service. We denote the probability that this node is chosen for expanded system chain contained 3 N states and was very difficult to analyze
service by P, and show that the delay, D, can by expressed as for all but very small values of N. We therefore develop a new system chain,

similar to the one developed for the multiple-node broadcast algorithm, which
D AS(2 =) includes the state of only one user together with the number of active and
2 2(P. A-%S) blocked users in the entire system.

where S is the cycle duration which ;, equal to (d+l)(N-1). The missing Our analysis shows that this refined model performs very well at
ingredient in this expression, &,, is the one term that can be obtained from low arrival rates and offers an improvement over the original model in which
the other chain in our model, termed the system chain, the system chain contained no information about the individual terminals;

The system chain represents the number of non-emntv nodes on one however, it does not perform as well as the improved model which contained
ring (the ring containing our node of interest). Clearly, this chain consists the identity of all N users. The differences are most noticeable when the
of N+1 states. The transition probabilities between these states can be ex- arrival rates are high (close to saturation).
premed in terms of parameters from the user's chain. If Si denotes the it' References
state of the system with i non-empty and (N-i) empty nodes and if)'i denotes
the steady-state probability of S•, then P. can be expressed as [1] T. N. Saadawi and A. Ephremides, "Analysis, Stability, and Optimiz-

:- : ,l + d E• Iv P,• tion of Slotted ALOHA with a Finite Number of Buffered Users," IEEE
p,. Po.. Pj + d .•ffi Transacctions on Automatic Control, June, 1981.

l-P0

[2] E. Modiano and A. Ephremides, "Efficient Routing Schemes for Multiple
Since the system chain equations depend on parameters from the Broadcasts in a Mesh" Twenai-SirtA assual Confereace os Informstion

user's chain and visa vems, the two chains are solved together using an iter- Scicaes sad Systems, Princeton, NJ, March 1992.
ative algorithm. The results from our approximate model compare very well
with simulation, particularly when arrival rates are low. [3] A. Ephremides and R. Z. Zhu, "Delay Analysis of Interacting Queues

with an Approximate Model" IEEE Trnsaactiow on Communicteions,
In order to improve the accuracy of the model, we expanded the Feb., 1987.

system chain to include the identity of the individual queues and their sta-
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ANALYSIS OF THE EXHAUSTIVE CYCLE-GATED SERVICE SCHEME

Irfan Ali Kenneth S. Vastola
Department of Electrical Computer and Systems Engineering

Rensselaer Polytechnic Institute
Troy, NY 12180.

ali@networks.ecse.rpi.edu vastola@ecse.rpi.edu

The Exhaustive Cycle-Gated (ECO) Service Scheme is load on the system (p<l). Thus the maximum unfairness is
used in a single-server multiqueue system. It works as follows: bounded. We also show that the average waiting time of
at the beginning of each cycle, when the server reaches queue Qi. customers ariving to the system (averaged over all the queues) is
a "poller" is dispatched from Qi. This poller visits queues in a independent of the spatial distribution of the load in the system.
sequential order Qi,Q2,Q3,...,QN. When the poller reaches a The number of customers served at a station during each cycle is
queue, it marks all the customers present in the queue for service proportiora to the arrival rate at that station.
in that cycle. The poller incurs zero delay at each queue; Comparing the ECO scheme to the exhaustive polling
however, there is fixed switch-over time from one queue to the disciple, we find that the average waiting time is higher for the
next. The server serves the queue in the same order. At each ECG scheme. However, it has been widely accepted in polling
queue it serves all the marked customers. Meanwhile, the literature that the exhaustive service discipline is unfair to lightly
arriving customers to all queues have to wait for the next cycle loaded queues in nonsymmetric traffic arrival scenarios. By
to receive service. When the server returns to QI, a new cycle considering several cases for low switch-over time between
begins. The queues are of infinite length and customer arrival queues, we show that the ECG scheme is nmre fair to the lightly
processes to the queues are nonsymmetric independent Poisson loaded stations in that they have lower mean waiting times than
processes. The service time of customers has a general in the exhaustive service discipline. Extensive numerical results
distribution which is the same for all the queues (though this can for the ECG scheme as incorporated into Fasnet are given in (3].
be generalized to different service distributions at stations). Simulation results included therein validate our analysis.

The ECG scheme is related to an existing service An extension of our work is to consider a variation of
scheme, the Gated Sequential Service (GSS) scheme [1], which the ECG Service scheme in which the polling and service order
is used in the Fasnet protocol for high-speed fiber optic bus reverses from one cycle to the next. For this service scheme--the
Local Area Networks. However, in the GSS scheme only the Exhaustive Reversing Cycle Gated (ERCG) scheme.-we use
head-of-line customer present at each queue at the beginning of a similar space-time modelling techniques for the analysis of the
cycle is served during that cycle. Hence, in our terminology, die system. Details of the analysis can be found in [4].
service scheme is a I-limited cycle-gated scheme. The ECG The analysis can also be applied to models for internal
scheme is also related to a recently proposed and analyzed mail delivery systems [5]. In these models a clerk picks up, soars
scheme, the Globally Gated (GG) service scheme [2]. In the GG and delivers mail to a dosed loop of offices. The mail picked up
scheme there is a global clock which at the beginning of each in a round is sorted in the mailroom and delivered in the next
cycle, gates the customers in all the queues. These the round. The marking of customers (mail) for service is the same
customers which receive service when the server arrives to the as in the ECG scheme; however, the server collects the
queue. The GG scheme is impractical for high-speed networks as customers from all the queues and serves them in the mailroom
it is very difficult to maintain a global clock. rather than seing them at the individual queues as in the ECG

We analyze the ECG scheme and derive closed-form scheme.
expressions for the moment generating function, mean and
variance of the waiting time and the number of customers served
at each queue at steady state. For the analysis, we employ a References
space-time diagram to model the system as it elegantly captures (I] F. Tobagi and M. Fine, "Performance of unidirectional
the 2-dimensional nature of the problem. From the space-time broadcast local area networks: Expressnet and Fasnet," ,JI
diagram, the waiting time of each customer is shown to be Jour. SelecL Areas Commun.. Vol. SAC-l, No. 5, pp. 913-926,
composed of three components. Equations for these are derived, Nov. 1983.
which in turn gives the Laplace transform of the waiting time of [2] 0. J. Boxma, H. Levy and U. Yechiali,"Cyclic reservation
customers at individual stations. We then highlight some scheme for efficient operation of multiple-queue single-server
properties of the Exhaustive Cycle-Gated (ECG) service scheme. systems."Annnls of Qper. Rwearch, Vol. 35. pp. 187-208,1992.
We show that the ECG scheme is similar to window-gated access (3] Irfan Ali and K. S. Vastola, "Performance of exhaustive
schemes, in that only those customers are served in a cycle cycle-gated access in high speed bus networks," Pr, d
whose arrival time falls within a time window of limited U, Orlando, Florida, Dec. 6-9, 1992.
duration which is the same for all stations. The ECG scheme [4] Irfan Ali, PhL Thji, Electrical Computer and Systems
also leads to a natural prioritization of the queues, EWI < EW2 < Engineering Department, Rensselaer Polytechnic Institute, Troy
7, < EWN, where EWi is the mean waiting time of a customer NY, in preparation.
in Qi. Moreover, under general nonsymmetric load distribution, [5] hrfan Ali and K. S. Vastola, "Analysis of models for internal
the ratio of the mean waiting time at QN to that at QI is less mail delivery systems," Proc. 5th Advanced Tech. Conf., U.S.
than (1+3p), i.e EWN/EWI<(I+3p), wherep is the normalized Postal Service, Washington D.C., Nov. 30-Dec. 2, 1992.
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BLIND WIENER FILTERING: ESTIMATION OF A RANDOM SIGNAL IN NOISE USING
LITTLE PRIOR KNOWLEDGE
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Dept. of Electrical Engineering, The University of Rhode Island, Kingston, RI 02881, USA

I Introduction of the elements of the matrix Y,. This step of signal recovery can

In this paper we extend an existing signal estimation method [1] be represented as a matrix filtering operation

so as to estimate the samples of a segment of a stationary random i = AV, (5)
signal embedded in noise where the correlation structure of the
process is unknown. The method assumes little prior information where na is a column vector with m an elements obtained by con-
and can be applied as a pre-processing step of "cleaning up" the catenation of the columns of Y[. The matrix A consistsof filterdata. weights. See [4, 5] for details.
The extension of the method is based on the idea of reducing In this paper we assume that an appropriate effective rank forthe rank of the signal model in order to lower the mean-squared the signal model has been determined from the data or from priorestimation error. Rank reduction is a general method for reducing knowledge. An example of determining the effective rank directly

the complexity in linear statistical models in order to lower the from the data is presented in [6].
mean-squared error in the estimate and to decrease the sensitivity
to measurement errors. By using reduced-rank models we lower 3 Applications
the variance of the estimate at the expense of introducing bias in
the estimate and, by having the right tradeoff between bias and The generalization of the method can be readily used in the appli-variance, the overall mean-squared estimation error is reucd In cations of the original method, e.g. (1) Adaptive detection [7, 61
the past, this idea of using rank-reduced models to obtain biased where one can temporarily treat strong interference as a signal toestimates with lower mean-squared errordehs been explored for be estimated and then subtracted from the data and (2) Data-modeling stationary signals with known correlation structure [2], adaptive improvement of SNR as a pre-processing step for esti-modlin Sttioarysigalswit kowncorelaionstrctue (1, mating the values of signal parameters. The performance of ap-
and for solving linear least squares problems [3]. In this paper mate valu es of signal parameters
we analyze the use of a reduced-rank signal model in the context proximate maximum likelihood estimation of signal parameters
of bias/variance tradeoff for signal vector estimation when the can be improved by first estimating the waveform of the signal

correlation structure of the signal is unknown. component [8].

2 Signal Estimation Method References

Consider an obeerved data vector D(Lxi) containing a signal com- i1] D. Tufts, P, Kumaresan, and I. Kirsteins, -Data adaptive sig-
ponent V and a noise component w. We are interested in estimat- nal estimation by singular value decomposition of a data ma-

ing the signal component V from the observed data vector i. The trix," Proc. IEEE, vol. 7, pp. 684-685, 1982.

correlation structure of the signal t and the noise wn is unknown. [2] L. L. Scharf and D. W. Tufts, "Rank reduction for modelling
stationary signals," IEEE Than.. Acoust., Speech, Signal Pro-

O= V + W (1) cessing, vol. ASSP-35, pp. 350-355, Mar. 1987.

The first step of the method is to form a Toeplitz data matrix [3] A. Thorpe and L. L. Scharf, "Reduced rank methods for solv-
Y, k.. from the observed data vector j. The formed data ma- ing least squares problems," in Twenty-third Annual Asilomar
trix Y can also be represented as a sum of Y, the signal-only Cony. on Signals, Sy stems and Computers, Nov. 1989.
Toeplitz matrix and W the noise Toeplitz matrix. [4] A. A. Shah and D. W. Tufts, "Estimation of the signal coin-

Y + W (2) ponent of a data vector," in Proc. ICASSP 9A, (San Francisco,

CA), pp. 393-396, IEEE, March 1992.
In the second step of the algorithm the Singular Value Decompo- [5] D. W. Tufts and A. A. Shah, "Estimation of a signal wave-
sition (SVD) of the Toeplitz data matrix lk is formed as follows form from noisy data using low-rank approximation to a data

matrix," IEEE Trans. Acoust., Speech, Signal Processing. To
'k, + (3) appear in April 1993.

[6] D. W. Tufts, D. H. Kll, and R. R. Slater, "Reverberation sup-

From the rank r approximation l',, the signal component is re- presion and modeling," in Proc. Ocean Reverberation Sympo-
covered. The residual matrix Y. contains vestiges of the signal sium, (L.Spezia, Italy), May 1992.
component which are traded off in order to reduce the overall [7] 1. P. Kirsteins, Analysi of Reduced Rank Interference Cancel-
m ean squared estim ation error. [7] I . P. t , Una veso y of R and I n dKn t on, RI,
In the third and the final step of the algorithm each element of atio9. PhD thesis, University of Rhode Wand, Kingston, RI,
the estimated signal vector 0 is obtained by a linear combination 19.

*Thk work was supported in pert by the Office of Naval Remrcb under [8] R. J. Vaccaro, D. W. Tufts, and Y. Ding, "Improved subsepce-
gant N00014-0-J1283 mad by the SDIO/IST, manged by the Army Re- based parameter estimation ," in Proc. 199t Conf. Irnfvrsion
march Office under contr. -t DAALO3-8-K-0108, Donald W. Tafte, Principal Sciences and Systems, (Princeton, NJ), March 1992.
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A METHOD OF MULTI-DIMENSIONAL BLIND EQUALIZATION
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Abstract: The blind equalization problem for the multi-channel to avoid such troubles is to employ a more general and large scale
data transmission is investigated. The algorithm is based on the of joint-distribution matching including a number of time-shifted
principle of distribution matching, i.e., the total system must be signals ... , zk-1, ZA, Zk+l, ... •
transparent when both the transmitted signal and the equalizer The proposed method is closely related to the minimum en-
output depend on the same distribution, where the transmitted tropy deconvolution (MED) which derive equalizer output as far
signal is assumed to be IID sequence. The difficulty in its exten- as possible from Gaussianity (4]. Note that the distribution of the
tion toward multi-dimensional cases is to reduce simultaneously received signal approximates monotonously to the Gaussian when
cross-interference between channels and inter-symbol interference the distortion of the channel increases. Therefore, the miminiza-
in each channel. The cost function, which measures the distance tion of the distance between distributions of a) and zx means the
between the joint-distribution of equalizer output vector(zk) and maximization of the distance between the Gaussian and the dis
that of transmitted vector (a,), is able to solve the difficulty. The tribution of zk. Extending the MED theory to multi-dimensional
proposed algorithm is closely related to the minimum entropy de- cases, we have another cost function using the kurtosis such as
convolution (MED), whose cost function measures the distance
from the Gaussian to the distribution of equalizer output. By ex- ,E[zl4] -N El(zW)4]
tending kurtosis used in MED theory to multi-dimensional cases, ./, = A +I - B A;) (2)
we derive another cost function which appears to be equivalent to E[I1z&11212  M E((z)=](
the first proposed cost function excepting power normalization. • 2 is similar to J1 except that the power normalization function

In multi-dimensional cases, the transmitted signal at, the re- does not work due to non-dimensionality of J2. J2 can be ap-
ceived signal pA and the equalizer output z; are series of vector, plied to the super-Gaussian case of at, if the second term is max-
and the channel response Hk and the equalizer Wh are series of imized by setting B < 0. Fig.l and 2 shows the simulation results
matrix. For example, the equalization in multi-carrier data trans- of on-line algorithm for J, and off-line algorithm for J2 in two-
mission is such a typical model. In these cases, ah should be dimensional case, where ak depends on the uniform distribution.
assumed to be multi-dimensional IID(independent identically dis- For the illy conditioned channel response, if J, and .J2 lack the first
tributed), i.e., independent both in the time series of each element terms, the phenomenon of channel drop-out easily occurs, since the
of the vector and among elements. Therefore, the equalizer must distribution of each element of zA is merely forced to that of a#,. It
eliminate not only intersymbol interference in each channel but is seen in Fig.1 and 2 that each channel is successfully separated.
also cross-interference between channels. Letting Tk be the matrix
series of total response, our destination is written as To = I (unit References
matrix), T2, = 0 (zero matrix) (k 6 0). Two types of algorithms [1] Y.Sato, "A method of self-recovering equalization for mul-
for blind equalization have been reported. One is based on the tilevel amplitude modulation," IEEE Trans. Commum.,
strategy to force the probability distribution of equalizer output pp.679-682, June 1975.
to that of the transmitted signal 14l,(M. The other aims to elimi- [2] A.Benveniste, M.Goursat, and G.Ruget, "Robust identifi-
nate the time-dependency in equalizer output N3. In this paper, we cation of a nonminimum phase system: Blind adjustment
extend the first algorithm toward multi-dimensional cases. In one- of a linear equalizer in data communications," IEEE trans.
dimensional cases, we have a cost function as E[(zk - -ysign(z,,))2], Automat. Contr., vol.AC-25, no.3, pp385-399, June 1980.
where sign(.) is signum function and -V is constant value given by [3] Y.Sato, H.Oda, and S.Hashimoto, "Blind suppression of
y = E[a2k/E[Ial]. It is shown that this cost function measures the time dependency and its extension to multi-dimensional
distance between the distribution of a, and z,, and to minimize equalization," IEEE Glabal Telecommunication Conference,
it makes the total system transparent. An extension to multi- Houston, Dec 1-4, Vol.3 pp.1652-1656, 1986.
dimensional cases is easily given by rewriting zA in vector form zk. [4] D.Donoho, "On miminum entropy deconvolution," in Ap-
However, this can not remove the inter-channel interferences. For plied time series analysis II(edited by D. Findley), Aca-
instance, such a significant problem occurs, as plural channels de- demic Press, pp.565-608, 1981.
generate into single channel and some of channels are dropped-out. 1)0
To solve this, we propose a new cost function as

j• = AE[(lzI 2 _ •~)2] + B E[((z(,))2 - -h)2], (1) 1.0. .......... ...

• 1D " • A = 1.0 B =1.0

where (. Zk) is Euclidean norm, zI) is the i-th elememt Step size a 0.001

of zk, - = E[I oIa 114]/E[II1a 112], _v2 - E and A ( D11
and B is positive constant parameters. ýIo mimirmze the first D1
term makes the joint-distribution of z, in the same shape as that . )2,
of ak. But ambiguity of arbitrary amount of rotation remains 0
since the first term refers only to the information of radius of zk. 500o0 iWo0o-iteration timnes

The second term contributes to adjustment of the rotation in the Fig.1 Time evolution of on-line algorithm for J,
desired direction so that each pair of elements zP and a( has the D
same figure of distribution. In result, when the distribution of ah is
sub-Gaussian, to minimize the cost function J1 guarantees blind Number of data 1000
equalization after remains the several ambiguities: the channel 1o ..................................... ............
swapping, the polarity and time-shift among time series of each A=. 0

element of zh. It should be noted that the time-shift ambiguity Step se a = 1
causes the troublesome problem. Consider the case where the time
series of some elements of zt, shift in different ways. Then, it can be
permitted if the time series of i-th element of zk is detected in the D11

time-shifted series a+ - of its own channel signal a('). However, 1)- D2
our algorithm has a risk of channel drop-out as the time serise of
some elements of z, are detected in the time-shifted series ^( ) 100 2teri

(').. of another channel's time series a(*). One of possible ways Fig.2 Time evolution of off-line algorithm for J2
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Summary

This paper deals with the following problem of esti- used in Cases (1) and (2) and a nearly BLUE in the non-

mating a random process from a finite number of observa- parametric Case (3). The rate of convergence to zero of the

tions, which arises in statistical communication theory and IMSE is n- 1 :

signal processing as well as in geology (Journel and Hui- n1 c(t)

jbregts, 1978) and environmental science (Christakos, 1992). lir n IMSEW =]o t

Suppose a random process X(t), t E [0, 11, is sampled where c(t) depends on the covariance function R(t,s) and

at a finite number of appropriately designed points. On the h(t) is the density of the sampling design.

basis of these observations, we want to estimate the values The second finding is that asymptotically the mean has

of the process at the unsampled points and we measure the no effect on the overall performance and can therefore be

performance by an integrated mean square error (IMSE). neglected. This quantifies the discussions in Journel and

The process can be modeled as Rossi (1989) and Sacks et al. (1989, p. 415). However, an

X(i) = m(t) + N(t), tE [0,1]. example of linear regression in Wiener noise shows that the

mean function may cause some perturbation on the optimal

Here m(t) is the nonrandom large-scale mean structure and sampling design points.

we consider The third finding is that the very simple and nonpara-

(1) the case where m(t) is known or, equivalently equals metric linear interpolation also leads to an asymptotically

zero; optimal performance!

(2) the semiparametric (regression) model where the mean If the centered N(t) has exactly k (k = 1,2,...) quadratic

can be modeled as m(t) = Ilifi(t) +... + •qfq(t), where the mean derivatives, the convergence rate of the IMSE is likely

#i's are unknown coefficients and the f,'s are known (regres- to be n-(k+i) but we do not investigate further this conjec-

sion) functions; and ture.

(3) the nonparametric case where the macroscopic mean References
structure m(t) is unknown.

[1] G. Christakos, Random Field Models in Earth Sciences
N(t) is the small-scale random structure which models the (Academic Press, 1992).
temporal dependence and has zero mean and known covari- [2] A.G. Journel and C.J. Huijbregts, Mining Geostatistics

ance function R(t,s) = CN(t)N(s). The centered process (Academic Press, 1978).

N(t) is assumed to have no quadratic mean derivative and [31 A.G. Journel and M.E. Rossi, When do we need a trend

the functions m(t) and fi(t) are of comparable smoothness model in kriging?. Math. Geology 21 (1989) 715-739.

with the microscopic purely random part N(t), specifically, [41 J. Sacks, W.J. Welch, T.J. Mitchell and H.P. Wynn,

m(t) and fi(t) are of the form fl R(t, s)V)(s)ds. Design and analysis of computer experiments, Statist.
Sci. 4 (1989) 409-435.There are three findings. (5] J. Sacks and D. Ylvisaker, Designs for regression prob-

The main one is the specification of simple sampling de- lems with correlated errors, Ann. Math. Statist. 37

signs which are asymptotically optimal as the sample size (1966) 66-89.

increases to infinity. This is done for a variety of estimators.

First the best linear unbiased estimator (BLUE) of X(t) is
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Summary t E [a, b) and 0 otherwise. We present a family of car-
dinal scaling functions which are generalizations of the

The classical Shannon sampling theorem has many Haar scaling function X(o,1)(t).
applications and generalizations. From wavelet trans- If f(t) is not in Vj(q), generally (1) is not true. When
form point of view, it provides the sinc wavelets. Re- f(t) E Vj+1 (4), Walter [1] estimated the error between
cently it has also been extended to general wavelet sub- f(t) and
spaces by Walter [1]. It says that if a signal f(t) is in E(t) = n f(--)x(2't - n),
wavelet subspace V,(4), then n

f(t) = where X(t) satisfies (2). In this research, we consider,~t " f( I)y(2jt - n), (1)
n 2 cardinal wavelets, that is, the sampling theorem (4). We

estimate the above error for f(t) which are not necessar-
where the interpolant X(t) has its Fourier transform ily in Vj+i(#), when 0(t) is a cardinal scaling function.

As an application of the sampling theorems (1) and
(w) ,( (4), efficient computations of wavelet series transform

VW) = En ý(w + 2nir) (2) (WST) coefficients from uniform samples of a signal
were considered by researchers [3-4], In particular, if

and ý(w) is the Fourier transform of the scaling function f(t) satisfies (1)1 (or (4)) then the WST coefficients
0b(t) and Z, $(w + 2nir) # 0 for any real w. Aldroubi of f(t) can be exactly obtained from f(n/2') by using
and Unser [2] considered the case where x(t) is a scaling the Shensa algorithm (or the Mallat algorithm, a spe-
function. In particular, they called a scaling function cial case of the Shensa's). Since the Mallat algorithm
satisfying is generally simpler than the Shensa's one, one might

prefer the sampling theorem (4). For signals which are

0(n) n = 0(3) not necessarily in wavelet subspaces, usually error oc-
0, .., curs when one uses the Mallat algorithm to compute the

WST coefficients. In this research, we also present sev-
a cardinal scaling function. In the following, we call the eral numerical examples to compare the errors when the
wavelets generated from cardinal scaling functions as Haar wavelets, Daubechies D4 and Ds wavelets and car-
cardinal wavelets. It is clear that, for a cardinal scaling dinal wavelets are used. These examples indicate that
function 0(t), the sampling theorem is the error for the cardinal wavelets is much smaller than

the ones for other wavelets.
f(t) = E1( -)€(2't - n), V/(t) E V,(0), (4) References

"n [1]. G.G.Walter, "A sampling theorem for wavelet
Sinc0(t) is a cardinal function if and only if + subspace," IEEE Trans. on Information Theory,Since $~)i adnlfnto fadol f• (w + vol.38, pp.881-884, Mar. 1992.

2nir) = 1, Walter's sampling theorem implies that (3)
is also necessary for (4) to be true. This concludes the [2]. A.Aldroubi and M.Unser, "Families of wavelet
following proposition. transforms in connection with Shannon's sampling the-Proposition 1. The sampling theroem (4) is true if ory and the Gabor transform," Wavelets: A Tutorial

and only if 0(t) is a cardinal scaling function. C3 in Theory and Applications, ed. by C.K.Chui, pp5O9-
In this research, we further classify cardinal scaling 528, Academic Press, New York, 1992.

functions which satisfy (3) and prove that a scaling func- (3]. Odir oul and P.Duhamel, "Fast algorithms
tio 0() wth omactsuportis crdial calng for discrete and continuous wavelet transform,"tion 4'(t) with compact support is a cardinal scaling IEEE Trans. on Information Theory, vol.38, pp569-

function if and only if 0(t) is the scaling function corre-
sponding to the Haar wavelets, that is, 0(t) = X[0,l)(t), 586, Mar. 1992.
where X(.,b)(t) is an indicator function which is I for [4]. X.G.Xia, C.-C.J.Kuo and Z.Zhang, "On the ac-

curacy of the computed wavelet coefficients," submitted.
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Construction of Discrete Orthogonal Wavelet Bases
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Abstract - In general, two sequences formed by uniformly sam- By Parseval's theorem
pling two orthogonal signals will not be orthogonal. This paper presents 1 ['
families of discrete orthonormal wavelet bases for 12 that are obtained E W.,.(k) W,,n,(k) =
by sampling of certain dyadic orthonormal wavelet bases of L2 over a b 2w

bounded frequency band. From equation (4),
1. INTRODUCTION (W..,,Wm,,n,) =

Numerous wavelet bases for L2(R) have been described in recent math- k

ematical and engineering literature. Because of their tractability in =
applications, dyadic orthonormal wavelet bases have received consid-
erable attention. Use of such bases in discrete-time settings generally I f -~-"

involves sampling of the mother wavelet at uniform intervals which are = , ( dw
power-of-two multiples of a fixed interval T. This raises the issue that = (Wa, W,.,,,

the sample sequences obtained from orthogonal time-scale replicates of

the mother wavelet may not be orthogonal. Orthonormality of the analog functions { W.*) thus implies orthonor-
This paper investigates the problem of obtaining (discrete-time) mality of the sample sequences {Wý,,). a

dyadic wavelet bases for V from (continuous-time) dyadic wavelet bases Theorem 2: The sequences {W,.u(k)})eg span 12. Thus they com-
of L2 . In particular, a construction of S. Mallat is extended and the prise an orthonormal basis for the space of discrete-time finite energy
Whittaker-Kotel'nikov-Shannon (WKS) sampling theorem is applied to signals.
obtain a family of discrete orthonormal wavelet bases for £2. Proof. For any discrete signal f E £2 whose DTFT j is periodic with

2. BASIS CONSTRUCTION period 2r, an analog signal fl can be constructed by inverse Fourier
transform of the frequency domain function defined byIn the frequency domain, define

A.,,) P1<!5-1 if r < Iw1 !5 2w pmw 0 otherwise
w =j() { o0 otherwiseheis

The function f can be expressed as a weighted sum of the orthogonal

and for n E N and n E Z, define 2,(, 1W,(V) = 2i a(2w)e-i2"- or basis elements W,',,. Thus
W6, n(t) = 2--/2WW(t/2'" - n). Then W-,n with m E N and n E Z .(t) =
form an orthogonal basis of L2 [-_, T]. Moreover, each W,. is ban-
dlimited to [-P, r] and hence by the WKS theorem may be represented m "

by samples {W,*,n(k))kaz or {W.,n(k)}&ez. and
Theorem 1: The sample sequences { Wm,(k)1&ez are orthonormal; f(k) = ,W,.(k) Vk -Z (5)

i.e., for arbitrary dyadic dilation indices m E N and m' E N and integer m n

time shifts n e Z and n' E Z, Hence {W.,,} spans/£. 1

r0 if (m, n) 6 (m' n') The procedure just described may be applied to other frequency-E W.,n(k)W;,,,(k) = if (i, n) # (i', n') (2) domain L2 wavelet basis constructions using bandlimited wavelets to
bet if(mn) = (m',n') yield other discrete orthogonal bases for £2.

Some additional properties of the above construction are listed be-
Proof. From above, {WA,} is an orthogonal basis of L2 and {W,nl is low without proof. Let f(k) be as in equation (5) and define
generated by sampling the corresponding analog function with sampling
interval T = 1. Note that dyadic dilation index m is restricted to be a g(k) = b..bmnWn. (k) and h(k) = IVEc m.,w (k)
natural number and the time shift index n to be an integer. Mn M. ,.

Let I•mn,. be the discrete time Fourier transform (DTFT) of the Then
discrete signal W-,.

)E W",'(k)e-C" 9 Linearity: If h = f + g then c.,, = am,. + b,,.

k * Convolution: If h = f * g (i.e., h(n) = 'E f(k)g(n - k)) then

The relationship between W.,. and Wmn. is em. = a.,n * bm,. = 2n•J12  am,n-t "bm,&

W,,,.(w) = • I',~.(w - 21k) (3) * Dyadic dilation: W.,o(k) = V2W,.+,,o(2k)

Since W,'p.(w) =0 when IwI > x, Reference

(1] S. G. Mallat, Multiresolution Repreaentatious and Waselets. Ph.D.
, .)- ,n(w) when wi :- V (4) thesis, University of Pennsylvania, August 1988.
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Time-Warped Bandlimited Signals: Sampling,
Bandlimitedness, and Uniqueness of Representation

James J. Clark Douglas Cochran

Division of Applied Sciences Department of Electrical Engineering

Harvard University Arizona State University

Cambridge, MA 02138 Tempe, AZ 85287-5706

1. INTRODUCTION properties of the entire functions F and H. Specifically, it relies on the
following results.

The ability to reconstruct a complex-valued signal on IR from a se- Lemma: Suppose G e G, f E Ba is not identically zero, and H =
quence of sample values {f(tn))nez is desirable in a variety of engi- F o G is bandlimited, then G is entire.
neering applications. While this problem is ill-posed in general, many Theorem I (from [4]): If F and G are entire and the order of Fo G
reconstruction formulas of the form is finite, then either (i) G is a polynomial and the order of F is finite,

or (ii) G is a non-polynomial function of finite order and the order off(t) = (t.)(t) () F is zero.nea Theorem 3 (based on results from [4]): If f e 8 is not identically

have been obtained for various restricted classes of functions. zero and G is a polynomial of degree n > 1, then the order of H = FoG
It was observed in [1] that such a formula for reconstruction of func- is greater than one.

tions from a given class C extends directly to a reconstruction formula
for functions formed by composition of any f E C with an inv"'tible The proof of Theorem 1 proceeds as follows. Assuming H is ban-

function -f : R -- R. Application of a coordinate transformation such diimited, Theorem 1 establishes G is entire. Theorem 2 may he applied
to show that G is a polynomial. Theorem 3 implies that the degree ofas 3' to the domain of a signal is commonly called "time-warping" in 0isetrzroron.IGwrecsatthnH oudecntn.

signal processing literature. Consequently, signals of this type have G is either zero or one. If G were constant then H would be constant.

become known as "time-warped" signals. Since h e L2, it cannot he constant without being identically zero.

Among the most important formulas of the type (1) are connected Thus G is a polynomial of degree exactly one; i.e., G(z) = ax + b with

with reconstruction of bandlimited signals; i.e., functions having the a 0 0. The condition that y is real valued implies that a and b are real.

form Hence 7(t) = at + b for rpal numbers a and b with a $ 0.

At) (w)e"' dw (2) 3. DEMODULATION

where j E L2 (R) and 0 < 0 < oc. Motivated by their reconstructability Earlier work [2] has established that B o r contains all bandlimited
from samples, this note presents some comments on the class 8 o 1 of functions and many nonbandlimited functions, but not all of L2 . A

ome bremaining issue is that of demodulation: given h E 8 o 1, can it be
time-warped bandlimited signals; i.e., functions of the form fbo n with decomposed into a bandlimited function f and a bijective monotone
belonging to the class 8 of bandlimited signals and - : R -. R belonging time warping function -y?
to a class r of continuous and invertible warping functions. If h e B o G, then there are necessarily many ways to express h as

2. RESULTS a composition 10 o -. Given any a > 0, for example, define functions
f, and -i by fi(t) = f(at) and ri (i) = 7(t/&). Then f B, Ef i E 9,

The perspective of Paley and Wiener [3] that it is natural to consider and f, o yi = f o 7 = h. This kind of representational ambiguity can
bandlimited functions on the complex domain is adopted in what fol- be circumvented by stipulating that f have exactly unit bandwidth. In
lows. It thus becomes necessary to consider warping functions on C this case, the question of representational ambiguity may be addressed
as well. Given a bandlimited function f : R -- C, denote by F the by a corollary to Theorem 1.
corresponding entire function with values defined by

Corollery [of Theorem 1]: Suppose h = fi o -i = f20o2 with fI and

F(z) j(w)e'"' dw f2 having exactly unit bandwidth and E 9,72 eQ. Then hi(t) = f2(t-b)
and -x(t) = -t2 (t) + b for some real constant b and all t E R.

Similarly, given h e B, denote by H the associated entire function. References
Define C to be the collection of all continuous functions G : C -- C
with restrictions - to R that are real-valued and bijective. If G E G [1] J.J. Clark, M.R. Palmer, and P.D. Lawrence, "A transformation
then the corresponding 7 e r is well dc:4 ned. Thus, given bandlimited method for the reconstruction of functions from nonuniformly spaced
functions F and H on the complex domain, finding a G E G such that samples," IEEE 7Prasacthons on Acoustics, Speech, and Sirmel Pro-

H = F o G ensures that there is some 7- 1r such that h = f o7. Given ceasing, vol. ASSP-33(4), pp. 1151-1165, October 1985.

-' e r such that h = f o 7, however, there is no a priori guarantee that [2] D. Cochran and J.J. Clark, "On the sampling and reconstruction
of time-warped bandlimited signals," Proceediags of the IEEE Interus-

any G E C exists with the property that H = F o G. In this sense, tional Conference on Acoustics, Speech, and Silmal Processing, vol. 3,
considering complex warping functions in G is more restrictive thanconsidering real-valued warping functions in r. pp. 1539-1541, April 1990.

[3] R.E.A.C. Paley and N. Wiener, Fourier Tirsnsforms ian te Corn-
Theorem 1: If f E B is not identically zero and G E 9, then H = pler Domain, AMS Colloquium Publications, vol. XIX, American

F o G is bandlimited if and only if G is affine. Mathematical Society, 1934.
[4] G. P61ya, "On an integral function of an integral function", Jour-

It is clear that H = F o G will be bandlimited if G is afine. The nal of the London Mathematical Society, vol. 1, pp. 12-15, 1926.
proof of the "only if" part of this theorem is based on the growth
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In many signal processing applications related to estima- in the n x p matrix U., the left submatrix of the unimodular
tion or Kalman filtering problems, efficient techniques such as QR matrix U = [U.-, U+]. The (n - p) columns of the matrix E+, the
decomposition, recursive least squares (RLS), etc., are widely em- right submatrix of E = [E_, E+1 = U-T, by definition orthogonal
ployed. Real-time use of such techniques is made possible through to the p projection vectors, can be considered as a valid basis for
the development of systolic algorithms (SAs) and their map- the processor space, so that a given node J E 9 is projected onto
ping onto modular parallel processor arrays. We present a linear the point J' = E+TJ in the processor space. The scheduling is also
mapping procedure for SAs based on integral matrix theory which defined by p vectors, stacked as columns of the matrix A_. (Again,
includes partitioning, folding, and predefined design constraints, the matrix A = [A-, A+] is the unimodular extension of A-.)
Both partitioning and folding introduce useful degrees of freedom The matrix A- must be chosen in such a way as to maintain the
in the design of the final array. ordering of the operations (precedence constraint). Furthermore,

no two computations may be mapped on the same cell at the
Mapping Procedure same time (compatibility constraint). The first constraint can be

In order to apply the integral matrix theory on SA map- formally stated as follows
ping, the algorithm must be described in geometrical terms as ATD > 0:, 1TATDi:> l, VDi.
a dependence graph (DG), i.e., a lattice embedded in a multi- - -
dimensional integral space. Here, we propose a mapping proce- The compatibility constraint can be specified only when a schedul-
dure for SAs which can include partitioning (locally sequential- ing function is chosen. A natural definition is the affine function
globally parallel, LSGP, as well as locally parallel-globally sequen- p(J) =- VTATJ + C(J), where the components of the p x I vector &,
tial, LPGS) and folding, and takes into account predefined design and the affine constant ((.) are suitably chosen. The compatibility
constraints. To partition an algorithm means to break it into constraint requires then that
components of smaller size. These components can be physically
executed in parallel or in a sequence. Care must be taken to satisfy 19(JI) 9 0(J 2 ), if J, 9k J2  and ET+J1 = ETJ 2

the constraints dictated by the partial ordering among computa-

tions, the locality of the data flow, etc.. By folding we denote These equations immediately become J, = J 2 + U-k, for some
the operation of displacing sections of the projected graph, in or- p-vector k 6 0,
der to obtain a desired pattern. This kind of operation is usually -T
highly non-linear at the physical array level, and is normally per- tTA.Uk 0 C(JI) - ((J 2 ), k 0 0.

formed in a heuristic manner, after projection. Classical systolic These constraints, in addition to the minimization of the overall
mapping procedures are based on linear or affine transformations, computation time, can be used to choose the right values for v
which on the one hand make the design simple and manageable, and the constants C(.).
by using well-understood tools, but on the other hand limit the The matrix M = E+TT+ is related to the partitioning of
range of manipulations that can be applied to the original algo- the algorithm, whenever its determinant has absolute value larger

rithm. Nonlinearity can be introduced in the procedure in order than unity. It can be proven that the columns of M define the

to make efficient use of computing and memory elements. Both

partitioning and folding can be included in a unified linear map- shape of each component of the partitioned algorithm and that

ping procedure. Partitioning can be included as a natural exten- its determinant is related to the number of nodes constituting the

sion of the general mapping procedure, whereas folding requires a component (its "volume"). This mathematical framework also al-

preliminary transformation of the DG. The idea is to artificially lows the inclusion of design constraints in the mapping procedure,
increase the dimensionality of the DG of the original algorithm, dealing with the interconnection pattern, I/O port location, etc..

by fragmenting one or more of the old dimensions. In so doing, These requirements affect the choice of both the projection matrix

folding can actually become possible, without having to introduce U and the scheduling matrix A.
nonlinear allocating functions. Folding can be included in the procedure by first artificially

As mentioned above, the algorithm must first undergo a increasing the dimensionality of the DG. One way to achieve this
number of refinements (regalarization, single assignment form, is to fragment some or all dimensions of the original DG by, e.g.,

etc.), so that the associated DG has the desired properties of lo- limiting the number of nodes along any given coordinate axis to a

cality and shift invariance. The DG 9 can be seen as an integral prespecified amount (say, ne nodes along direction t). A natural

lattice, i.e., a proper convex and bounded subset of Zn, Z being way to do this is to split index it into the ,Ul--l' 1 indices it.,
the set of relative integers. Each node of the graph represents a so that it, = it mod nt, t = ,[ifJ. The DG is now composed
computation, whereas the directed arcs connecting the nodes (de- of a number of different regions which can be mapped with some
pendences) represent the dependence relationships between coin- degree of independence. One needs to take care of the data move-
putations. The dependence matrix D collects the dependence ment between the newly formed regions, since it can result in
vectors DA as columns. In the sequel assume for simplicity's sake non-local interconnections. If global links are not permitted, this
the DG to be parallelepipedal: poses a constraint on the projection vector. Besides, the schedul-

ing function must allow a correct timing of the data transition
- {(it,.. . ,ii) E Z"IL, !5 ij <_ Ujp = 1,..., n}, between regions. The modification of the DG has to be done in a

fg=1,...,n. preliminary step, so that the mapping procedure can be applied
forpgven lwer and upprojer t l ts e DG ontoan in the normal fashion starting from this higher dimensional graph.
Suppose we want to project the n-dimensional DG onto an

(n - p)-dimensional array. The p projection vectors are collected
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Abstract 1

Transform codes are used to study low-rate quantization of sta- a < sup, O(w), and c(r) is the mean squared error of a 2'-level
tionary Gaussian sources. The transform decorrelates the source Lloyd-Max quantizer for a unit-variance Gaussian source. Thus by
samples and then scalar quantization is applied to the vector of varying the free parameter a, rates from 0 to 1 bit/sample can be
transform coefficients. Two bit allocations are considered: the achieved. Comparisons are made aetween the above expressions
first permits only zero or one bit to be allocated to each trans- and the source rate-distortion function. In particular, we find that
form coefficient (i.e., the scalar quantizers have only one or two the distortion penalty above the general Gaussian distortion-rate
levels), and the second is an optimal bit allocation. For the trans- function is the same as that of Lloyd-Max quantizers above the
form codes with the "0-1" bit allocation, a closed-form, paramet- iid distortion-rate function.
ric expression is derived for the asymptotic (with dimension) rate The principal result of our work is as follows. For any Gaussian
vs. distortion performance. This expression is compared to the random process, there exists a critical rate r0 below which 0-1
rate-distortion function, as well as to the performance of trans- codes are the optimal transform codes. In particular,
form codes with optimal bit allocations. The principal result is 1
that there is a critical rate, determined by the power spectral r0 = - .w
density, below which (and only below which) 0-1 allocations are Tr

optimal. This is a unique result in that it determines optimal the- where , = ess sup,, O(w), and
oretical performance for an important class of vector quantizers
at low rates. Quantitative results are presented for Gauss-Markov c(l) - c(2)
sources. -= c(1)

Summary Knowledge of the process power spectral density is, therefore, suf-

Whereas a well understood body of theory exists for the analysis ficient to determine this critical rate. Our specific result is a cod-
of high-rate quantization systems (see for example [1] or [2, ch. ing theorem which states that below ro, 0-1 codes are optimal, and
5]), a general theory for analyzing and designing low-rate quant- above ro there exist other transform codes strictly better than 0-1
ization systems is not yet available. In this paper we analyze codes. Since the asymptotic distortion versus rate performance of
two classes of low-rate transform codes. We examine rates less 0-1 codes has been derived in (1) and (2), the optimal theoreti-
than (and frequently much less than) 1 bit/sample and allow the cal performance (OPTA) for any transform code on a particular
quantizer dimension (or block length) to become very large so that source has now been found for all rates less than r0 . This rep-
asymptotic methods may be applied. We consider only discrete- resents, to our knowledge, the first complete characterization of
time, stationary Gaussian sources and mean-squared error as a the theoretically achievable performance of an important class of
fidelity criterion. quantizers at low rates.

Transform-based source coding systems are examples where We demonstrate our results for Gauss-Markov sources, and
there is a need to design simple, low-rate quantizers for "lower make performance comparisons to other transform codes. The
energy" transform coefficients. We are able to show that for low implications of this theory to the design of practical, low-rate
rates, the Karhunen-Loeve transform is the optimal transform codes are discussed.
among the class of orthogonal transforms. Hence the coefficients
are also Gaussian with variances that are the eigenvalues of the
source covariance matrix. As blocklength becomes large we can References
determine the asymptotic distribution of the coefficient variances
via Szego's Theorem for Toeplitz forms [3, ch. 5]. [1] A. Gersho, "Asymptotically Optimal Block Quantization,"

We first propose a product code that scalar quantizes each of IEEE Trans. Inf. Thy., IT-25 (July, 1979), pp. 373-380.
the transformed components at rate either 0 or 1 bit/sample; we [2) R.M. Gray, Source Coding Theory, Kluwer Academic Press,
refer to the resulting transform code as a 0-1 transform code. The 1990.
0-1 transform codes may be designed from rates 0 to 1 bit/sample.
For asymptotically large block lengths we find the following para- [3] U. Grenander and G. Szego, Toeplitrz Forms and Their Ap-
metric expressions for the rate and distortion of 0-1 transform plications, Chelsea, 1984.
codes, [4] A. Segall, "Bit Allocation and Encoding for Vector Sources,"

I dw (1) IEEE Trans. Inf. Thy., IT-22 (March, 1976), pp. 162-168.

D(&) I c(1)40(w)dw + 1 J{ )o)(w)dw

(2)

where 40) is the power spectral density of the source, inf,, O(w) <_

'This work supported under NSF grant NCR-9105647
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ABSTRACT The problem of designing a TSVQ from random Lemma 1 If R < oo then the greedy growing algorithm will ter-
data has received considerable recent attention. A key step in minate in a finite number of steps, producing a finite tree.
many methods of design is the application of a greedy growing
algorithm to the empirical distribution of the data. In applications Although the assumption that P has bounded support is re-
of interest to us these empirical distributions are of vectorial pixel strictive, it is necessary to ensure termination of the greedy grow-
intensities. Here we analyze the behavior of the greedy growing ing algorithm.
algorithm when it is applied to the true underlying distribution
of the observations, and we show that quantizers produced from Proposition 1 Let H = exp(l) be the ordinary one-sided expo-

large data sets will be close to quantizers produced from the true nential. Then if R is larger than some fixed constant Ro, the
distribution, greedy growing algorithm will not terminate.

1. INTRODUCTION Note that the output of the greedy algorithm need not be
unique. At some stage of the algorithm there may be a multiplic-

The problem of designing a tree-structured vector quantizer ity of optimal splits, involving one or more nodes: the algorithm
(TSVQ) from a sequence of random observations has received con- selects one of these, and subsequent splits are made accordingly.
siderable attention ([2],[3]). Recall that a TSVQ is completely In this context we can strengthen Proposition 1.
specified by a binary tree T whose nodes are labeled by points in
IRk: denote the corresponding quantizer by QT. Let X1,X 2 ,... Theorem 1 For every R > 0 there is a constant K < oo, de-
be a stationary ergodic sequence of random vectors Xi E IRk hay- pending on R, such that every tree produced by greedy growing has
ing distribution P. The rate of a tree T is the expected depth of maximum depth less than K.
T or, equivalently, the expected number of comparisons required
to encode a random vector Xi. The design problem is as follows: Definition: Let A(H, R) be the collection of trees produced by

Given X 1,.. . , Xn and a rate R > 0, find a tree Tn the greedy algorithm acting on a fixed distribution H and any rate
whose rate is not more than R and whose distortion R' < R.
ELlX - QT.(X)11 2 is small. The following consistency result shows that quantizers pro-

Here X is a random variable distributed as P, but which is in- duced by the algorithm when it is applied to the empirical dis-
dependent of the process {Xi}, and 1 1l denotes the ordinary tribution P,, will eventually be close to quantizers produced by
Euclidean norm on IRk. the algorithm when it is applied to the true distribution P of the

One approach to the design problem, based on [1], is to apply observations.
a greedy growing algorithm to the empirical distribution P. =

Z-' =1 6x, of the data Xi,..., X.. The algorithm "grows" a Theorem 2 Firx > 0 and for n = 1,2,.... let Tn E A(t,, R).
TSVQ in a step-wise optimal fashion, terminating when it obtains With probability one there exists a sequence tn E A(P, R) such
a tree whose (empirical) rate is greater than R. More precisely, that

given a distribution H on IRk and a rate R > 0, the algorithm P{IQT. - Q_. >_ 0 -- 0
produces a nested sequence of trees, each of which corresponds to
a successive hyperplane-based partitioning of IRk. At each stage,
the algorithm splits any terminal node v of the current tree whose
corresponding cell V maximizes the ratio AD°(V)/AR(V) over References
all such cells. Here AD*(V) is the greatest reduction in distortion
(with respect to H) achievable by a hyperplane split of V, and [1] L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. Clas-
AR(V) = H(V) is the increase in rate associated with splitting the sification and Regression Trees. Wadsworth, Belmont, CA,

node v. The children of v are labeled by the centroids of the regions 1984.
created when V is split. The algorithm terminates when every
split of the sort described would make the overall rate of the next c2] A. Buzo, A.H. Gray Jr., R.M. Gray, and J.D. Markel. Speech
tree greater than R. Use of the splitting criterion AD*(V)/AR(V) coding based upon vector quantization. IEEE Trans. Aeoust.
amounts to a steepest descent in the rate-distortion plane. Speech Signal Process., 28:562-574, 1980.

[3] E.A. Riskin and R.M. Gray. A greedy tree growing algorithm
11. RESULTS for the design of variable rate vector quantizers. IEEE Trans.

Throughout we assume that the distribution P of the random Signal Process., 39:2500-2507, 1991.

vectors X, has bounded support, and that P has a density with

respect to Lebesgue measure. Our first three results pertain to to
the "true" distribution P, while the last one pertains to random

data.
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SOURCE CLUSTERING FOR CODEBOOK COMPRESSION'

Wai-Yip Chant and Allen Gershot
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codebook whose address is given by the value of pi. Each code vec-
Abstract tor v from the codebook is transformed by the expandor function,

Clustering algorithms can be applied to the design of N codebooks viz. c = h.(v,pjj1,...,pij). Examples of simple expandor trans-
to be shared by M sources, 1 < M < N. We previously introduced formations are scaling, translation, and rotation, whose parameters
a constrained storage vector quantization algorithm for this design are respectively a scalar gain, a vector offset, and a unitary matrix.
problem. In this work, we extend the algorithm to additionally design In the cases of scaling and translation, it is fairly straightforward to
simple parametric ezpandor functions to enhance codebook sharing modify the CSVQ algorithm to jointly design the shared codebooks,
efficiency. We apply the particular case of scaling expandor func- the pointers, and the expandor parameters [7]. In partic.dar, the rel-
tions to the compression of tree structured vector quantization code- atively simple gain-companding CSVQ -,ablen f3- -hi-ing of residual
books. By allowing different levels of the tree codebook to share a codebooks across all or a subset of leiels of a tree. The shared code-
library of feature (residual) codebooks, we were able to achieve in books are stored in a library and the tree nodes are populated with
our experiment a 4 : 1 reduction of storage without compromising codebook pointers and gain parameters. For an 11-level TSVQ of a
rate-distortion performance. For very deep trees, an earlier design source of high-fidelity audio transform coefficient vectors [4], we have
method which effects sharing only within each level of the tree is obtained a compression ratio of 4 : 1 with virtually no rate-distortion
more effective, penalty. This ratio is relatively modest in comparision with the orders

of magnitude of storage reduction obtained for very deep trees grown
Summary level by level with CSVQ [4]. Nevertheless, higher compression ratio

could be attained if rotation is also incorporated into the compand-
Clustering is a popular means to codebook "training," i.e. to reduce ing, as suggested by the asymptotic results of Lee et at. [8]. However,
a "training set" characterization of the probability distribution of a the required rotation matrices increase both the storage and process-
source to a smaller set of representative vectors. The most common ing requirement so that the overall complexity performance tradeoff
clustering algorithm for codebook design is perhaps the generalized is not necessarily improved. This problem will be further explored.
Lloyd algorithm (GLA) [1], also known as the K-means algorithm.
Recently, we introduced what could be considered as a generaliza- References
tion of the GLA, called the constrained storage vector quantization
(CSVQ) algorithm [2], for clustering a set of N sources to share M [1] Y. Linde, A. Buzo, and R.M. Gray, "An Algorithm For Vector
codebooks, 1 < M < N. The CSVQ algorithm was introduced to Quantizer Design," IEEE Trans. Commun., vol. COM-28, pp. 84-
control the storage complexity for one feature at a time in generalized 95, January 1980.
product codes [3]. The algorithm has been applied to improve the [2] W.Y. Chan and A. Gersho, "Constrained Storage Quantization
performance of multistage VQ (MSVQ) [2] and restrict the storage of Multiple Vector Sources by Codebook Sharing," IEEE Thans.
complexity of tree structured VQ (TSVQ) [4]. Chou [5] listed various Commun., vol. COM-38, no. 12, pp. 11-13, Jan. 1991.
other applications of GLA clustering.

In [6], Lindsay et al. described various ways of restricting the ori- [3] W.Y. Chan, "The Design of Generalized Product Code Vector
entatic- of the partitioning hyperplanes of a binary TSVQ codebook Quantizers," Proc. It. Conf. Acoust., Sp., 9 Sig. Proc., pp. II-
to achieve storage reduction. Alternately, the method we described in 389-392, San Francisco, March 1992.
(4] requires the TSVQ codebook to be stored in an equivalent trellis [4] W.Y. Chan and A. Gersho, "Constrained-Storage Vector Quan-
of residual feature codebooks [3]. In other words, TSVQ is equivalent tization in High Fidelity Audio Transform Coding," Proc. Int.
to MSVQ except that TSVQ has path-dependent residual codebooks. Couf. Acoust., Sp., & Sig. Proc., pp. 3597-3600, Toronto, May
The trellis is a consequence of codebook sharing by the conditional 1991.
residual sources in one stage; without sharing, the trellis becomes a [5] P.A. Chou, "Code Clustering for Weighted Universal VQ and
tree. The sharing is instrumented by applying the CSVQ algorithm Other Applications," Proc. IEEE Int. S•m. Info. Th., pp. 253,
to grow the tree one level at a time. Linear growth, as opposed to ex- Budapest, June 1991.
ponential growth, in storage complexity with rate has been achieved [6] R.A. Lindsay and D.E. Abercrombie, "Restricted Boundary Vec-
while incurring virtually no rate-distortion penalty [4]. While this tor Quantization," Proc. Data Compression Conference, pp. 159-
method was used to design binary TSVQ codebooks up to many lev- 165, Snowbird, Utah, April 1991.
els (say 26), for codebooks of moderate depth, it is possible to achieve
sharing of the feature codebooks over the entire tree rather than just [7] W.Y. Chan and A. Gersho, "Generalized Product Code Vector
one level at a time. Quantization," in preparation.

Suppose there are N sources sharing M codebooks, I < M < N. [8] D.H. Lee, D.L. Neuhoff, and K.K. Paliwal, "Cell-Conditioned
Associated with source i E {1 ... N}, is a codebook pointer1p, and a Multistage Vector Quantization," Proc. Int. Conf. Acmisa., Sp.,
parametric ezpandor function hi, with parameters p.,i, .... p.,j. The & Sig. Proc., pp. 653-656, Toronto, May 1991.
code vectors c for encoding the i-th source are obtained from the

'This work was supported in part by the the National Science Foundation,
the State of California MICRO program, Rockwell International Corporation,
Compression Labs, Inc., Hughes Aircraft Company, Eastman Kodak Compasy,
and the Natural Sciences and Engineering Research Council of Canada.
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SELF SYNCHRONISING T.CODES TO REPLACE HUFFMAN CODES

Gavin R Higgie, Electrical and Electronic Engineering, University of Auckland, Private Bag 92019, Auckland, New Zealand

Abstact - This paper describes recent work on the T-Codes, which codeword from a code set can be used as the prefix to produce the
are a new class of variable length codes with superlative self- augmented code set at the next level. The length of the prefix chosen
synchronizing properties. The T-Code construction algorithm is affects the codeword length distribution of the next level code set, so
outlined, and it is shown that in situations where codeword by careful choice of prefix lengths it is possible to produce T-Codes
synchronization is important the T-Codes can be used instead of which match the codeword length distribution required for efficiently
Huffman codes, giving excellent self-synchronizing properties without coding any particular information source (i.e. effectively the same
sacrificing coding efficiency. codeword length distribution as a Huffman code designed for the

Iakfmud source).

When corruption occurs in a stream of data which is coded with Higgie's work [2) also showed that the T-Codes which give maximum
variable length codes, the decoder can lose track of where codeword efficiency for any particular information source generally include at
boundaries are located in the data stream, and so the effect of the least one which has an average synchronization delay of around 1.5
corruption can extend over a large number of received symbols. codewords.
Variable length code sets can be chosen such that the receiver is able Current Researci, Activity
to determine the correct location of these codeword boundaries The work reported in the paper by Higgie [21 used Monte simulation
relatively quickly after a corruption, but this is usually done by techniques to show that it is possible to choose an efficient and
choosing codes in which certain bit sequences occur only at the end of rapidly synchronizing T-Code for any particular application. These
codewords. The receiver must look for these special sequences in the simulations also showed that not all T-Codes are equal in their
received data stream. In some cases it is possible to choose codes synchronization performance and that the task of choosing the best T-
which will self-synchronize as a result of the normal decoding Code for a particular application is not a trivial one. Attempts at
process, but these are relatively difficult to find. justifying why some T-Codes are better than others have recently led

T-Codes to a new technique for theoretically determining the average
The original discovery of the T-Codes was published in 1984 by synchronization delay of T-Codes when they are used efficiently.
Titchener [ 1]. This work gave an algorithm for generating families of This technique offers several advantages over the previously used
T-Code code sets, and showed that all code sets generated in Monte Carlo techniques, and provides insight into how the T-Codes
accordance with this algorithm are self-synchronizing by nature, achieve their enviable synchronizing properties.
These properties are not derived from having specific synchronizing The theoretical technique is now being used in calculating a database
bit sequences, but rather the synchronizing information is spread of the T-Codes which have the best synchronizing performance. It is
throughout the code as an inherent part of its construction. The hoped that this database will be useful in enabling a user with a
construction of the codes is such that when codeword synchronization particular information source to choose a T-Code which will be as
is lost as a result of a corruption, the receiver will automatically re- efficient as a Huffman code designed for the source, but with an
synchronize on a subsequent codeword boundary without any special average synchronization delay of about 1.5 codewords.
measures being taken. This will happen even when the loss or
corruption is not recognized as such. When a data loss or corruption Current research is also focusing on the use of T-Codes in FAX
is known to have occurred, an algorithm is available for the receiver machines and in the JPEG image compression standard, particularly
to determine the point at which subsequent codeword synchronization with respect to transmitting images in these formats over mobile radio
is re-established, channels. This is only one of many potential application areas, as T-

Codes can be used to advantage in any situation where the probability
T-Code Construction Algorithm of data corruption is high enough to make the use of non-

The T-Code construction algorithm is very simple. Code sets are synchronizing or poorly synchronizing Huffman codes difficult.
constructed by augmenting lower level T-Code code sets, with the
lowest level being the code set 0 and 1. The augmentation process Conclusion
consists of writing out a list with two copies of the lower level code The T-Code generation algorithm has been demonstrated to provide

LLevel I Level 2 set, and then sacrificing a variable length code sets which have both the desirable properties of
Prefix 0 Prefix 01 codeword from the first coding efficiency and rapid self-synchronization. For any particular
--> half of the list and using it information source, properly chosen code sets can typically offer

i 1 as a prefix for every average synchronization delays of 1.5 codewords without sacrificing
D0 00 codeword in the second coding efficiency compared to that obtained with a Huffman code

I --> - half of the list. This designed for the source. This means that it is now possible to use
produces a new code set variable length codes in applications where the probability of

Q11 which has nearly twice the corruption is high and the problems of codeword synchronization
0100 number of codewords of have previous excluded their use.
S0101 the lower level code set. References

Table 1 An example of this process
T-Code Construction Algorithm is given in Table 1. 1 I1 Titchener. M.R.: (1984) 'Digital encoding by means of new T-

Codes to provide improved data synchronization and message

T.Code Synchronization Propties integrity', Proc IEE. Pt E, Computers & Digital Techniques. Vol

Titchener showed that every T-Code will have slf-synchronizing 131, (4), pp 151-153

properties, with typical synchronizing delays of a few codewords, but [21 Higgie, G.R. and Williamson, A.G.,: (1990) 'Properties of Low
it was not until the work by Higgie 121 showed that these self Augmentation Level T-codes', Proc. IEE. Pt E. Computers &
synchronizing properties are available without loss of coding Digital Techniques.. Vol 137 pp 129-132
efficiency that the significance of the codes became evident. Any
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Kieffer's Sample Converses for Source any positive real number a, Pr~p(B?) _> e} > 0; (2) there exists a
real a ouch that Prjp(Bo) _ a) = 0. Since it is easier to prove Cue

Coding (2) than Case (1), we confine ourself to Case (1). Let a be a positive
real number to be specified later. Let & = Pr{p(Bo) Ž a). Obviously,
a6 -, 0 as a -. +co. Fix a positive integer m(2/m < 6) such that if

En-hui Yang D= Iz E A'Ip(A.)(z"') S D(R) + 6), then Pr{Di) > I - 6. Let
Department of Mathematics, Nankai University D - D, n {z E A' jp(Bo) < a (using D instead of D, is a trick). InTiamjin t 00071, P R China view of (I), fix M > m/6 and choose N > W so large that if 0 =

a.1n 20z E( AoIJp(B.) < D(R) - e), then Pr(7) > 7. For sull.ciently

large n, define
Abstract-New proofs of recent Kleffer's sample converses

for source coding are given using a sample path covering Idea O-N
originated by Ornstein and Weiss and modified by Shields to- G.= = E A'(n-N + 1) EJo(Vs) > I - U
gether with Dirkhofins ergodle theorem. -0

Throughout the paper, we fix a measurable space (A, A) as our sources

alphabet and a measurable space (A, A) as our reproducing alphabet. &(n - N + I)-' E Jc(Tz) > 7 ,
For our purposes, a source p is a stationary, ergodic process {X.) taking
values in the alphabet A. Ifz = (z,) is a finite or infinite sequence from where T denotes the shift on AOO defined by (Tz)i = z+ 1 , and JD(Z)
A or A, let z, = (z.,z+,,,. .. ,zi) and, for simplicity, mite z2 as and JcI(z) are the indicator functions of D and 0, respectively.
z'. Let {p.jn = 1,2,... be a fixed fidelity criterion in which each p. We next associate with each z E 0, a partition {I})'( of [i,nI into
is a measurable function from A x A* -. Il, +oo). Recently, KielferlIl consecutive sub-intervals. Assume I1,.. .-, !i-I have been defined and
proved the following two sample converses for source coding. J.,- II, = [i, u - 11. The i4(i Ž_ 1) is defined according to the following

Theorem 1 Assume that the fldelity criterion {paIn = 1,2,-...} ' procedure:
suaadditive, i.e., (n + m)P.+m((zi,z2),(Vi,V2)) 5 nP,(z1,9 1 ) + SI IfT'-lziDUCoru>n-N+I,thenput1 i=[u,uj.

mp.(z2s,it), and that there usteo a y' E A for which Epa(Xl,y') < S2 Otherwise, test the membership of TO'-z in 0. If T7--z 5 0,

+oo. Let R > 0. Then for any sequence (R. I in which B. is an nth- put 1 = lu,v], where v is the least positive integer such that

order block code with rate no treater than R, we have p(B.-.+t)(z,) < D(R) - e.
liinfp(B.) 1 D(R) , a.#. SS Otherwise, test whether there exists I < j <am such that
iM ) Tl+'-1 r E C. Ifexiate, put ic = Iu,uI;ifnot,putl. Iu+rn-1I.

where p(B.) = minea. p.(X*,y) and D(R) is the distortion rate func- The total number of all these partitions can be upper bounded by
tion of the source p relative to the fidelity criterion (p. In = 1,2,.. 2 H1'l For each partition l construct an nth-order block code

BIes h na',('}) = B(I.) - "'x B(I11.)), where B(Ie) = Bo if lIls = 1, . if
Theoerm 2 Assume that m(p p,,= ,( , .) an tatfo- wtlh = i, and B11 ,l otherwise. Combining all thes block codes togetherj~e Pmm (ZIS),•It~t) < me{P.Zh~),P(Z2it2.} nd hator ithB•,we get a new nth-order block code B- with rate lees than

each D > 0 there exist a countable subset So = (yi) C A and a count- R + H(6) + I/n. From the above construction, we can deduce that for
able measurable partition (Fi) o/ A such that pi(z,y,) : D, z £ Fj, for any E 0.,
seh , E So, and - & Pr(Xt (= Fi }log Pr(Xi Ea• ) < +oo. Then/or
any sequence (C.) in which C. is an nth-order variable rate code that p(B-)(z*) <_ 6a + D(R) + 6 - 7(c + 6)/2
operates at the distortion level D, we have *-rN 0-1

liminr(C.) _> (D), a.,. + n- (- JD(7'X))p(Bo)(7'2) + n-' E P(Bo)(T2).

where r(C,) is the sample rate function oC,, and 11(D) is the (opera. 1=0 ,-N+1
tional) rate distortion function ofp relative to (p.jr = 1,2,.-.). Since D(R) is convex and nonincreasing, finally we can obtain

Theorems I and 2 are called the sample converse for source coding at D(R) <_ s(H(6) + l/n) + 6& + D(R) + S - 7(c + 4)/1 + (NEp(Bo))/n
a fixed rate level and the sample converse for source coding at a fixed
distortion level, respectively. They are the first general sample converses + J, (z))p(Bo)(z)d# + n, A8B)(1's) d
in source coding theory. For the cue of fixed distortion level, Barron[2] J o-,-( )
and ShieldsaSl proved Theorem 2 for the special case in which A = A is
finite and p. = 0, and Ornstein and Shield44) showed Theorem 2 for tde where -e(s _> 0) is the right derivative of D(.) at R. Letting n -, oo
special case in which A = A is rfite and {p.1 is the Hamming fidelity and then letting a -- oo lead to a contradiction.
criterion.

Both proofs of Theorems I and 2 given in Ill involve to a great extent R iI3RZNC3I
a powerful new ergodic theoremiSb. We present here new proofs of The-
orems I and 2 that use only some simple code construction techniques 1I] J. C. Kieffer, IEEE Trans. Inform. Theory, vol. 17, pp. 262-28,

together with Birkhoff's ergodic theorem and the sample path covering 12d1.

idea originated by Ornstein and WeissIGI and modified 1-y Shielde(1. In 121 A. R. Barron, 'Logically smooth density estimation,* Ph. D. thesis,

fact, the trick lies in how to use subtly the sample path covering ides. Stanford University, Stanford, CA, 1986.

Since both new proofs of Theorems I and 2 are almost the same, in what III P. C. Shields, IEEE Dorns. Inform. Theory, vol. 27, pp. 1$45-

follows, we only give the sketch of proof of Theorem 1. 1647, 1991.

The Sketch of Proof of Theorem 1: First note that using the code 14) D. S. Ornstein and P. C. Shields, Annsle of Prob., vol. IS, pp.

construction technique outlined in J81, we can deduce from the tradition 441-452, 1900.
block source coding theorem the following result: there exists a sequence J$] J. C. Kieffer, Proedings of the Conf. on A. E. Oonvertenee in

(a.), where D. is an nth-order block code with rate no greater than Prob. end Ergodie Theory, Academic Press, pp. 111-146, 1OB0.

R, such that 161 D. S. Omrstein and B. Weiss, Israel J. Math., vol .44, pp. 51-40,
lim sup p(D.) 5 D(R) , a.m. . 1989.M p () 171 P. C. Shields, IEEE Trans. Inform. Theory, vol. 22, PP. 24-266,

Suppose Theorem I is not true. Then there exist a c > 0, a 7 > 0, and 1987.
a sequence (B.), where B. is an nth.order block code having rate R or III J. C. Kieffer, IEEE Dons. Inform. Theory, vol. 24, pp. 674-682,
less, such that 197S.

Prin# %,*.k (z * AJjp(B.)(z*) < D(R) - 1l} > 7. (I)

Let Bo = {(*) be a one order block code with p(Do) = pt(.',y*).
In order to lead to a contradiction, we distinguish two cases: (I) for
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( i=l,-..,n ) and the cross test variables Ci ( i=l,--.,n) , are
calculated by

Some Preliminary Descriptions Vi= 1, if the VCS, caklcul a ive dws nunt - tt mevec

Recently, some video/audio compression algorithms of variable- and
length transform coding are suggested. However, a common
problem associated with the use of variable-length source codes is 1.I, if to CCS, acuaed at th receiver do, unt match tim zemhvett
that channel errors may cause the loss of synchronization, which - - 0, elm
leads to extended errors in the decoded text. In this paper, a trial-
and-error algorithm with cross-length-checks has been proposed for with
the partial correction of these error propagations without recourse to V.in = min ( i: Vi =1 ) and C. = min (j: Cqj =1)
error-correcting codes.

It is affirmative that all the codewords which are the V,;in-th or
A block of N transform coefficients are divided into m groups of (Cmi.-i+l)-th codeword and at the same time in the groups with

length n. Over these codeword lengths cli j (i=l,....m; j=l,...,n), 1.=1 are regarded as the suspected causal codewords. They can be
two sets of parity checks are defined as the volume check sums divided into two sets and their index sets represented by
VCSj (j = 1,.-, n ) by

S1 = ( (i, Vi.) L, =1 andi cz },man
VCS= kcj (modL) S2 = (i, Cm - i+l): Li =1 and i <a),

and as the cross check sums CCSi ( i = ... m+n-I ) by where a can be obtained by

mrin( i.m )
CCSi = .clki-k+l, (ood L) Cm - Vmi, +I.

k -max(1.i-n+1)
Determining the length or Suspected Causal Codewords

where L is an integer larger than the maximum codeword length of

the variable-length code used. in order to resynchronize the decoding procedure, the length of
the suspected causal codewords must be evaluated by using the

Error Propagation Detection Procedure received VCS's, CCS's. For cl1,j inS1 , the codeword length L,(i) is

The length in bits of coefficient groups are transmitted to the
receiver to detect error propagations. After decoding n coefficients,
the receiver is reset to the initial state so as to resynchronize the
decoding procedure when error propagations occur in the past L,(i) = VCSV. I 4k-v., (mod L),
coefficient group. At the end of decoding each coefficient group, the k-1
test variable L ( i = 1, ..-, m ) of the group length are evaluated by kui

I, if the total number of bits for tdie i-th grup does not and for cli in S2 , Lc(i) is
Li__{ match die rumnitted group lenglh; min( , m)

0, else. Lc0i) = CCSC_, - r' dk.c.,-.k+1 (mrod L).
k min(I. Cm-n~l)

Li=l means that channel errors have occurred in the i-th koi
coefficient group and caused error propagations.

Indicating the Suspected Causal Codewords Main Procedure

The reason for the occurrence of an error propagation is that the
first codeword in the error propagation is changed by erroneous bits The suspected causal codewords are searched with the check
into an another codeword of different length, and the following text sums VCS's and CCS's. For one of them, the length L,(i) or l4(i)
can be decoded as a number of coefficients, which are different is evaluated, the decoding of the associated coefficient group is
from the originals. In the view of this, if we can find these causal resynchronized and performed once again. The length check Li is
codewords and determine their length, we can correct the error used to determine the success of the correction. This trial-and-error
propagations by resynchronizing the decoding procedure. For this procedure is iteratively performed for all suspected causal
reason, two sets of test variables, the volume test variables Vi codewords.
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A sample recursive method of co-optimizing source and channel coding as in a) but with an ordering of the indices. Fig Id) shows the inherent
In digital transmission of analog signals is presented. The procedure Is robustness of a good IA to design mismatch
an iterative approach addressing both the adjustment of the
reproduction vectors according to channel errors, as well as the
problem of Index assignment.

1. Introduction
Vector quantization (VQ) plays an important role as a source encoder in
digital transmission of analog signals. The difficulty of designing high
dimensional VQs is a severe obstacle for practical usage. Besides search
and storage difficulties, the two main problems in the design are how to
distribute the reconstruction vectors over the source-space, and how to a) b) c)
choose the code words, or indices, so that the effect of channel errors on the SNR rdBl
performance is minimized. Traditionally, the two problems are treated 1o
separately, but there is a current trend to regard them as one and minimize
the distortion at the receiver using zero-redundant VQs, i.e., the additional
bits normally incorporated for error protection are employed to refine the 6
quantizer without explicit error protection. A VQ trained with the LBG C

balgorithm can be very sensitive to channel errors due to its tendency for
random ordering of the indices. Index ordering, known as the Index - q
Assignment (IA) problem is an important part of the VQ design. 0.00 0.02 0.q4
Unfortunately, finding the optimal IA belongs to the class of NP-complete d)
problems. Figure I a-d) Examples of the robustness to error mismatch for three
IA is discussed for scalar quantizers in [1] More recent work is[2| or [3] VQs. The VQs in a) and b) have identical reconstruction vectors,
and [4] where the IA is a post-process to the VQ design. In [5] the IA is trained with e=o. but an IA procedure is added to the design in b).
incorporated in the LBG algorithm and thereby is a co-optimization of the Haingd nighbor ae conneced it alie. the dQ in c)i
source- and of the channel-coding. Hamming- I neighbors are connected with a line. The VQ in c) is
One difficulty with Channel Optimized VQ (COVQ) is that the channel trained with r=0.05. d) shows the performance of a-c). for a BSC
error probability is a design parameter in the optimization. In a real when the channel error varies from q=O to q=O.05.
transmission situation, this parameter is difficult to estimate. It may even
vary in time, making the design according to a specific value rather 4. Experiments
academic. More important is how robust the design is to a mismatch The capability of the algorithm is thoroughly investigated using a number
between the actual error probability, q, and the design parameter E. of Gauss-Markov sources in 2,3,4 and 8 dimensions. The following table

presents a few of the results, comparable to the tests in [5], at the rate I
2. The method bit/sample.
The iterative approach suggested in this paper is thoroughly described in Table 1. Experimental results obtained using 2 and 4 dimensional
[6] and is only recapitulated here. Let ai(x) denote the total squared error Gauss-Markov sources with correlation 1actors of 0.O and 0.9. The
distortion associated with choosing the i:th of the M = 2k reconstruction training/evaluation sets are large (2.10 /. I10- ) and the channel
vectors, yi, given an observation x, i.e., is binary symmetric.M - 1

a, = (1) N Bit error Corr-0.0 Corr-0.9

The total distortion to be minimized can be written 0.00 4.40 7.91
H-I 2 0.05 3.15 4.71

D= I Ea,(X)IX.Ki I.Pi (2) 0.10 2.27 3.34
io 0.00 4.66 10.2

where the optimal partitioning of the signal space gives the regions 4 0.05 3.15 6.05
K, = {x eR d : ai(x) < a 1(x) V j} (3) 0.10 2.28 4.52

where pk is the probability of receiving the index j given that i was sent
and where P, is the probability of X e Ki. S. Conclusions

The optimization method presented in this paper has proved to yieldThe iterative algorithm adjusts all reproduction vectors after each obser- structured solutions, close to linear mappings of the hyper cube, which
vation X.. The reproduction vector causing minimum expected distortion at offers both a good VQ and an accurate IA. The design parameter can
the receiver is voted winner and is denoted y,. during training, be decreased to zero and thereby obtaining a robust VQ due

I = argmin{a,(X,)} (4) to the incorporated IA. The results obtained, points out that the algorithm
works favourably compared with others.

The individual adjustments, or step sizes y5, depend on the probability of

interchanging, due to channel errors, the code word j with the winner 1. 6. References

Y• = f(t). PAt (5) 11 IN, Rydbeck and C.-E. Sundberg. "Analysis of Digital Errors in Nonlinear PCM
where f(t) is an annealing function with f(T) = 0, T being the predeter- Systems." IEEE Trans. Commun.. vol. Com-24, no. I. pp. 59-65. January 1976.
mined training time. 121J.R.B.D. Marks and N.S. Jayant, "An algorithm for assigning binary indices to
The sample vector updating formulas, in conjunction with steepest descent, the codevectors of a multidimensional quantizer.", Proc. IEEE Int. Coma. Conf..
become Seattle. WA. June 1987, pp. 1128-1132.

Y7'=Y5 +Y;,.(X,-Y 1 ) Vj (6) 131N. Farvardin. "A Study of Vector Quantization for Noisy Channels." IEEE
Trans. Inform. Theory. vol. IT-36. no. 4. pp. 799-09, July 1990.

3. The structure of a robust quantizer 141K. Zeger and A. Gersho, '"seudo-Gray Coding." IEEE Trans. Commun.. vol.
A VQ optimized according to (3) with E > 0 , becomes more conservative, Com-38. no. 12. pp. 2147-2158, December 1990.
in the meaning that the reproduction vectors are shifted towards the center
of mass of the information source, ths a VQ trained without bit errors as [1IN. Farvartin and V. Vaishampayan. "On the Performance and Complexity of
can be seen e.g. in fig lb. and I c. In this figure, code vectors are connected Channel-Optimized Vector Qnantizers." IEEE Trans. Itform. Theory, vol. IT-37.
with a line if their code words are Hamming-I neighbors. Fig Ia) and c) no. 1. pp. 155-160. January 1991.
show the VQs designed with c = 0.00 and e = 0.05 respectively. The 161P. Knagenhjelm. "A Recursive Design Method for Robust Vector
structural ordering in c) compared to a) is striking and is decisive for the
robustness if q e E (i.e. design mismatch). Figure I b) shows the same VQ Quantization". Proc. International Conference on Signal Processing App1icato2

and Technolo3y3. Boston November 1992.
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A New Deterministic Codebook Structure for
CELP Speech Coding

Yu-Hung Kao, John S. Barast
University of Maryland

College Park, MD 20742

Abstract

Low bit rate, high quality speech coding is a vital part in voice telecom-
munication systems. The introduction of CELP (1984, Codebook Ex-
cited Linear Prediction) speech coding provides a feasible way to compress
speech data to 4.8 kbps with high quality. However, the formidable com-
putational complexity required for real-time processing has prevented its
wide application. Using our codebook, we reduce the computational com-
plexity of codebook search, which originally accounts for 2/3 of the com-
putational complexity, to almost nothing; while preserving the same good
speech quality. This tremendous reduction in computational complexity is
achieved by replacing the traditional stochastic codebook by an artifi-
cially constructed deterministic codebook. After a careful study of the
minimization of vector quantization distortions, we found that although
"randomness" is usually observed in speech residuals; it is not necessary
to use a noise-like stochastic codebook to encode the speech residuals. As
long as the code vectors were distributed uniformly over a sphere, very
small VQ errors can be achieved. The most significant advantage of using
this deterministic codebook is extremely fast codebook search. After this
reduction, we have an algorithm about 5 MIPS. It can be handled by even
inexpensive DSP chips, while maintaining the same high quality. Besides
extremely simple encoding and decoding schemes, this codebook also pro-
vides optimal error tolerance property and it doesn't require codebook
storage. We hope our contribution can finally make CELP speech coding
a widely applicable technology.

"Texas Instruments
tMartin Marietta Chair in Systems Engineering
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LOSSLESS COMPRESSION ALGORITHMS FOR HIGH FIDELITY AUDIO COMPRESSION
Talal Shamoon and Chris Heegard

School of Electrical Engineering
Cornell University

Ithaca, New York 14853

1.1 Summary source modeler. Similar structures that use Dynamic

Real-time algorithms for the compression of Markov Modeling for the source modeler have been
high-fidelity audio are presented. The goal of these al- proposed by [3,41. These schemes are hampered by

gorithms is to provide a compact, high fidelity, digital the fact that the adaptation algorithms for develop-
representation for an input stream of audio samples. ing the source model can cause it to grow unman-
We are developing an adaptive transform coding sys- ageably. While the variable-to-fixed length front-end
tem that consists of five specialized functional blocks: of our system implicitly models the source, the data
An octave-based subband decomposition signal trans- structure evolves to accommodate source variations
former [1,21, a bank of adaptive quantizers assisted by piea bounded fashion. Results of our technique ap-
a bit allocator, and a lossless compressor coupled with plied to digital audio requantized via ADPCM quan-
a buffer. tizer banks discussed above are provided.

Further, we provide results of entropy estima-
tion experiments performed on a digital audio source.

*These were performed to better understand the be-
havior of these sources. Our estimator is based on
an extension of the techniques proposed in 151. This
work forms the basis for designing the variable-to-
fixed coder described above. The entropy estimates
are compared to entropy estimates calculated using

Figure 1. High-Fidelity Audio Compression System marginal probabilities from the same source output.
In short, we illustrate an efficient compression

This paper concerns fast adaptive algorithms strategy that allows us to pick up extra compression

for the lossless compression stage. While the tech- gain in our audio compression system. This strategy

niques described herein can be applied to any type is adaptive and dynamically changes to respond to
of data, we specifically seek efficient compression of syncracies in the non-stationary audio source that

digital audio. We also give results from entropy esti- we are tracking
mation experiments for a digital audio source. 1.2 References

A variable-to-variable length algorithm for
lossless compression is presented. This algorithm con- C1 o Talal Shamoon and Chris Heegard, "Audio
sists of two stages: A variable-to-fixed length coder Compression via Wavelets and Multiresolu-in thestyletion Analysis," Proceedings of the 25th Annual
that is based on tree-building algorithms inConference on Information Sciences and Systems,
of Lempel-Ziv, followed by a fixed-to-variable length pp. on March 1991.
arithmetic coder [3]. The first stage parses source pp. 902-906, March 1991.
symbols into a fixed number of frequently occurring 121 Chris Heegard and Talal Shamoon, "High Fi-
strings. This dictionary of strings varies over time, delity Audio Compression: Fractional-Band
and an adaptive procedure that tracks the source's Wavelets," Proceedings of 1992 ICASSP, pp. II-
behavior is outlined in the talk. An arithmetic coder 201 - 11-203, March 1992.
takes the labels of these strings, and their associated 131 Tiothy Bell, John Cleary, and Ian Whit-
frequencies of occurrence from the dictionary coder, ten, Text Compression Englewood Cliffs, NJ,
and generating a compressed, variable length, repre- Prentice-Hall, 1990.
sentation. We compare the performance of this strat-
egy against that of a variable-to-fixed coder working [41 G.V. Cormack and R.N.S Horspool "Data
alone, and that of a fixed-to-variable working alone. Compression Using Dynamic Markov Mod-
While variable-to-fixed coders are effective at exploit- eling," Computer Journal, 30 (6), pp541-550
ing correlation between source outputs, they are lir- 151 Frederick Jelinek and Kenneth Schneider
ited in practice by limitations on data structure size (fi- "On Variable-to-Length-Block Coding," IEEE
nite table length.) Limitations on compression caused
by this phenomenon are obviated by the introduction no ns on InformationeTher vl72.
of the arithmetic coder. In a sense, the structure that
we propose resembles the paradigm of a statistical [This work was supported by NSF grants NCR-
coder (the arithmetic coder) coupled with an adaptive 8903931 and NCR-92073311
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CONSTELLATIONS DESIGNED FOR THE RAYLEIGH FADING CHANNEL

X. Giraud - K. Boulie - J.C. Belfiore
TELECOM PARIS - 46, rue Barrault - 75634 Paris cedex 13 - FRANCE

The error probability of the usual linear d(x,y) = IN(x -y) where N(x) =IlNx; we addrs

modulations (M-PSK or M-QAM) in the Rayleigh fading t lt cod problem in that case. The crping

channel (RFC) varies as the inverse of the signal to noise body is homothetic to S = {x \ d(xO) < l}and we look

ratio. To increase the slope of the error curve, a diversity for S-admissible lattices. Thne distance function show~s

technique or an error correcting code combined with that an S- admissible lattice should not possess two

interleaving can be added. The diversity systems are vectors that have the same value in any component; this

spectral efficiency costly in case of frequency diversity, feature should provide an nth order diversity. Under

or involve additional complexity if multiple antennas are certain conditions N is the algebraic norm of some ra

used. Trellis Coded Modulations (TCM) are an efficient number field K of degree n; in that case, the embedding

way of achieving good performance without sp~ectral of the ring of algebraic integers of K in R" provides an

efficiency loss. However, the construction of well suited S-admissible lattice. Hence, number field theory enable

TCM codes becomes a very difficult task when M-QAM us to define a procedure to find dense n dimenasonal

modulation (M> 16) schemes ar used. Here, we consider lattices matched to the RFC :l) find a totally real

the design of constellations matched to the RFC. We algebraic number field K of degree n with a small

search for n dimensional (n2!2) Lattie which cn pabsolute discriminant; 2) determine an integer basis of

a diversity of order n in the RFC, without the addition of K. The densest n dimensional lattices using this

diversity techniques or TCM. technique are known when 2:5 n 5 8. Hence, we have
The main features of our approach are very much ready a family of n dimensional lattices which provide a

the same as for the AWGN channel; we first determine a nth-order diversity in the RFC. For a normalised rate of

metric mesrn chne symbols insulation as Euclidean =p = 2 bits/dim, the gain is in the range of 10 to 15 dB, at
distance does in the AWGN channel. A careful a symbol error rate of 103, compared to 16-QAM.

appreciation of what a constellation matched to a channel Besides, p can be easily increased as any subset of an 5-

means leads us to define a theoretical frame for the lattice
admissible lattice match the RFC. Finally we address

coding problem : insad of searching packing lattices, we detection; the maximum likelihood deccoder selects the

look for "admissible" lattices with respect to a body channel symbol minimising the channel metric. A

specific of the considered channel, a concept derived from detection algorithm is presented which provides the sune

the geometry of numbers . At high SNR, the distance performance as the exhaustive search.

function of the RFC simplifies and becomes
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MULTILEVEL TRELLIS MPSK MODULATION CODES

FOR THE RAYLEIGH FADING CHANNEL'

Jiantian Wu Shu Lin
Simon Fraser University University of Hawaii at Manoa

Burnaby, B.C., CAwtda V5A 1S6 Honolulu, Hawaii 96822, U.S.A.

The error performance of a trellis modulation (or TCM) code than that of Ungerboeck code. This is because the Ungerboeck code
over the Rayleigh fading channel depends strongly on the minimum has a better distance spectrum.
symbol and product distances of the code[1-2]. Both these distances
should be as large as possible, and they play different roles in deter- REFERENCE

mining the error performance of the code. At low SNR, the minimum 1. D. D. Divsalar and M. D. Simon, " The Design of Trellis Coded
product distance is more important; whereas at high SNR, the rin- MPSK for Fading Channels: Performance Criteria", IEEE Trans.
imum symbol distance becomes more important. Apart from these Commun, Vol. COM-36, pp. 1004-1012, Sept., 1988.
two distance parameters, the path multiplicity (or error coefficient)
is also an important factor in determining the error performance of 2. D. D. Divsalar and M. D. Simon, " The Design of Trellis Coded
a code at low SNR, and it should be kept as small as possible. MPSK for Fading Channels: Set Partitioning of Optimum Code De-

sign", IEEE Trans. Commun, Vol. COM-36, pp. 1013-1022,
The multilevel coding method devised by Imai and ]irakawa[3] Sept., 1988.

is a powerful technique for constructing bandwidth efficient modu-
lation codes from Hamming distance component codes in conjunc- 3. H. Imai and S. Hirakawa, "A New Multilevel Coding Method Using
tion with proper bits-to-signal mapping through set partitioning[4]. Error Correcting Codes," IEEE Trans. on Information Theory,
This method has been used to construct both trellis and block mod- Vol. IT-23, NO. 3, pp. 371-376, May 1977.
ulation codes for the AWGN channel. In this paper, the multilevel 4. G. Ungerboeck, "Channel Coding with Multilevel/Phase Signals,"
coding method is used to construct multilevel multi-dimensional trel- IEEE Trans. on Information Theory, Vol. IT-28, No. 1, pp.
lis MPSK modulation codes for the Rayleigh fading channel. This 55-67, January 1982.
method allowed us to coordinate all the important parameters of a
code such that no single parameter severely degrades the performance
of the code. A specific construction method is proposed. In this
method, the minimum symbol and product distances of a multilevel
trellis MPSK code are expressed in terms of the minimum Hamming
distances of its component codes and the intra-set distances of the Ste A0
signal constellation and its subspaces. In the construction of a code,
all the factors which affect the code performance and its decoding 0
complexity are considered. Good codes have been constructed. The
error performances of some of these codes based on both one-stage A,
optimum decoding and multi-stage suboptimum decoding have been
simulated. The simulation results show that these codes achieve good
error performance with small decoding complexity. Figure 1. The trellis structure of a 2-state rate-1/2 trellis code

As an example, consider the two-level coding scheme in which
the first component code is a two-state four-dimensional binary trel- D24) L%4. I 4. 2
lis code and the second component code is a 4-state eight-dimensional
QPSK trellis code. To construct the first component code, the i S(4.2yM4.3)
single-parity-check (4, 3, 2) code is partitioned into 4 cosets by
the repetition (4, 1, 4) code as follows: Ao = {0000,1111},A 1 = ---- W ___4.3___4)

{1100, 0011), A2 = {1010, 0101}, and A3 = {0110,1001). The inter-
set distance between Ai and Aj (i $ j) is 2, and the intra-set distance -S(4,4YIo)
of A, (i = 0,1,2,3) is 4. Using a two-state trellis code with trellis
structure as shown in Figure 1, the resultant code has minimum Ham-
ming distance 4. The second component code is formed as follows: Figure 2. An encoder of a 4-state couvolutional code over GF(4)
Use a one-to-one mapping from QPSK signal set to GF(4). A four- _

dimensional set partition chain can be obtained by using extended 0* -___ _ -

Reed-Solomon codes. Let RS(n, d) denote a Reed-Solomon code with ------

block length n and minimum Hamming distance d. Form a set par-

tition chain, RS(4, 1)/RS(4,2)/ RS(4,3)/RS(4,4)/{O), where 0 is 10. ----- ---
the all-zero vector. A linear, partial-unit-memory four-state trellis
code over GF(4) can be obtained as shown in Figure 2 where D
denote a buffer with an unit-time delay. This code has Hamming 90' _- . -

distance 3. Combining the above two trellis codes, we obtain an
8-state eight-dimensional trellis 8-PSK code with minimum symbol
distance 3, minimum product distance 8, and information rate 2 -n- ---
bits/symbol. Each state transition has 32 parallel branches. Figure
3 shows the simulation results on bit error performance of the code.
The performance of the code is better than the 8-state Ungerboeck 104
code at Eb/N. > 13 dB. The normalized branch complexity of this
code is only half that of the 8-state Ungerboek code. In Figure 3, we _T.... -. . .- ....
also include the simulation results of Divsalar and Simon's 4-state i10 1 1 2 13 14 1 5 s 39 Is to 30four-dimensional code with R=2.0 bits/symbol[21. It turns out that

the performance of Divsalar and Simon's code is worse than that of obfift)
8-state Ungerboeck's code although its symbol distance is not less Figure 3 The imulation results of the BER per fmasue: Curve 1,2, mid

'This research was supported by NSF Grusts NCR-9115400, BCS-9020435, 3 are the performances of the 4-state Divmslar sad•Sl , ns code,
and NASA Grat NAG 5-931 the ,-state Ungerboech code, sad the example code mspectiuvy.
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PERMUTED MODULATION AND CODED MODULATION FOR INTERLEAVED
SLOW FADING CHANNELS

Frangois GAGNON

Dept. of Electrical Engineering, tcole de technologie supkrieure
4750, Henri-Julien, Montreal (Quebec), Canada H2T 2C8

Abstract
A new scheme is presented to improve the error performance of where eq.(1) holds without permutation and eq.(2) is used for
modulation and trellis coded modulation on slow fading channels. indepedent fades on each coordinate (i.e. permuted coordi-
This technique consists in permuting coordinates of multidimension- nates) and a 450 rotation of the signal set, as in Figure 1 b).
al constellations on interleaved channels. This permutation insures As shown on Figure 1, this rotation improves the error proba-
that each coordinate of the signal is f]ded independently. bilities by increasing the distances between received faded
Permutation alone does not insure good improvements, the choice of signals. By comparing ',oth equations, we find that more than
a particular rotation of the signal set is also critical to obtain perfor- 4dB is gained with a lermutation of coodinates. The same
mance gains. A number of uncoded and coded modulation schemes technique may be used for 8 PSK modulation, and the energy
have been found to be improved with permutation. Theoretical and gain provided by the permutation is now greater than 3 dB.
simulation results show that this simple permutation provides gains It is to be noted that a rotated 16 QAM signal set, once per-
of up to 4 dB with uncoded modulation. For trellis coded modula- muted gives a 49 QAM transmitted signal. Hence, the perfor-
tion, gains of 5 dB were achieved for a 64 state rate 3/4 convolu- mance improvement may also be viewed as a consequence of
tional code and 16 QAM modulation. an increase in the complexity of the signal set.

Summary
In this paper, we present a scheme that improves the IL TCM with Permutation of Coordinates

error performances for slow fading channels. This technique
is used with interleaving, it consists in permuting each coordi- With Trellis Coded Modulation (TCM), the same tech-
nate of the transmitted signals. This permutation may be nique may be used to improve performances. Many 64 state
viewed as an interleaving at the level of individual coordi- TCM schemes [1] were simulated for fully interleaved slow

nates. It improves the error performances by transmitting Rayleigh fading channels. Two results are of particular inter-

signals such that they are not completely deteriorated by est, at a BER of 104, the permutation of coordinates for the

fades. rate 2/3, 8 PSK, TCM provides an additional 1.8 dB gain and

Permutation of coordinates may be used with or with- for the rate 3/4, 16 QAM, TCM a 5 dB improvement is ob-

out coding. It is simply a different kind of interleaving that tained. For the rate 3/4, 16 QAM TCM scheme the best gain

provides up to 5 dB gains as compared to usual interleaving, is obtained without rotation. Note that without coding, a

This technique has been explored both theoretically and with rotation of the signal set was necessary to improve the aver-

computer simulations. It is shown that particular rotations of age intersignal distance. It is quite surprising that such a

the signal set give good performances. Hence some care must rotation is not needed with coding. This may be explained by

be taken when choosing a coded or uncoded modulation tech- an inappropriate mapping with rotated signals, but other

nique when a permutation of coordinates is used. mappings were simulated without improving these perfor-
mances. The 16 QAM performances are particularly notewor-

I. Permutation of Coordinates for Uncoded Modulation thy, since permutation without rotation does not change the
transmitted signal constellation. Hence by simply interleaving

The technique under study is most easily described as the coordinates, improvements of 5 dB are possible, without
an interleaving of the individual coordinates of subsequent changing other aspects of the transmission link.
signals to be transmitted. If, for example, we have signals
(X1,YI), (X2, YV), (4, Y3), (X4, Yd), taken in a constellation of two [I] G. Ungerboeck, "Channel Coding with Multilevel/
dimensions. After interleaving, the signals actually being sent Phase Signals", IEEE Trans. on Inf. Th., 1T-28, January
may be (XY, X2), (X3, Xd, (Y,, Y2), (Y3, Y4). Once received, the 1982.
new signals are corrupted by fades and noise, the coordinates
are then reordered before the usual decisions are taken. If the
interleaving is such that each coordinates of a pair (X•, Y) are
faded independently, the error performance may be signifi-
cantly improved. If fades are independent on each coordinate,
the average error performance is improved since averaging is Q

carried out with two independent variables instead of one. In
this paper, two-dimensional constellations are used through- ..

out but the scheme is easily applicable to other multidimen-
sional constellations. --------

The usefulness of permutation is now presented by
deriving bounds on the error performance with and without
permutation. For high average signal-to-noise ratios, y., the d- 1/2

error probabilities of 16 QAM signals transmitted over a Ray-
leigh fading channel are respectively approximated as:

A) Wido RI•e•om b) Wft a 4aS IPUAWaIe 31 i 39 (2) PFgm 1:RFav4 v Come Wkadm -,wb Oly 0.Camp..m1@Alhdui by& Fade.
Y.Y.The AiONptde of *a I CepnuMis h Mdead by Mll



Unified Analysis on Performance Limits
of Coded Multilevel DPSK in Rayleigh Fading Channels

Tadashi MATSUMOTO, Member, IEEE
and

Fumiyuki Adachi, Senior Member, IEEE

R&D Department of NTT Mobile Communications Network Inc.,
1-2356, Take, Yokosuka, 238, Japan

the transmission performance becomes more sensitive

Abstract to the fading frequency selectivity. It is shown that a

This paper analyzes performance limits of coded larger trmsib value can be tolerated with larger values

multilevel differential PSK (MDPSK) in frequency of M. The optimal code rate for 32DPSK is around 0.3

selective Rayleigh fading channels. It is assumed either (1.5 information bits /symbol), and the maximum

that interleaving degree is large enough, or that there Erms/Tb value is 1.5.

is a sufficient bandwidth for frequency hopping, to In co-channel interference environments, it is

randomize the burst errors produced by fading. The obvious that a larger error correction capability reduces

channel cutoff rate of MDPSK is calculated based on the required average signal-to-interference power ratio

"Gaussian metric"; AWGN, co-channel interference and (SIR). Therefore, the same frequency can be used in

multipath channel delay spread are taken into account, closer cells when lower rate codes are used. This

For practical, reliable communications over cellular increases the system spectrum efficiency. However, the

mobile radio systems employing coded MDPSK, the lower rate codes require larger transmission

three optimal information bit rates that achieve bandwidth, and this decreases the efficiency.

1)minimum required average signal energy per In the analysis of the spectrum efficiency of cellular

information bit-to-noise power spectral density ratio mobile radio systems employing coded MDPSK, the

(Eb/No), service area is defined as the area in which practical,

2)maximum tolerable rms delay spread Trms, and reliable communications are possible. It is shown that

3)maximum spectrum efficiency for a given channel bandwidth, the spectrum

are determined from the channel cutoff rate. It is shown efficiencies are maximized when the information bit

that without fading frequency selectivity, the optimal rate is around 0.5 information bits /symbol for 2DPSK,

information bit rate (= information bits /MDPSK 1 bit/symbol for 4DPSK, and 1.4 bits /symbol for other

symbol) which minimizes the required average Eb/No is MDPSK schemes. For a given information bit rate,

around 0.25 information bits /symbol for 2DPSK, and spectrum efficiency is increased with larger M values.

0.4 bits/symbol for other MDPSK schemes with MŽ 4. The optimal code rate for 32DPSK is around 0.3, and

In frequency selective fading, the lower the rate of the maximal spectrum efficiency is 2.6 times as large as

codes for error correction, the higher the channel that for 1 bit-per-symbol coded 4DPSK.

symbol rate for a given information bit rate 1/Tb, and
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PERFORMANCE OF JOINT EQUALIZATION AND TRELLISCODED MODULATION
ON MULTIPATH FADING CHANNELS"

Mao-Chiag Chiu Chi-chao Chao
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National Tsing Hua University
Hsinchu, Taiwan 30043, ILO.C.

Abstract
In this paper an upper bound on hit error probability of a maximum- and f i

likelihood sequence estimation (MLSE) equalizer for trellis-coded modu- Ai.& = - R.- e,-, .
lation (TCM) systems with diversity reception is derived for multipath -- I Lh-i R
Rayleigh fading channels. Analytical and simulation results show that our Since in general the matrix A' may be singular, let, without loss of gen-
bound is good for all cases considered especially when diversity reception erality, the first M rows are independent and A' = - a.,n.A., for
is used. k = M + 1.....2N,where A' is the kth row of '. Let A be the resulting

M x M submatrix of A' by deleting dependent rows and columns. We can
Summuary show that the pairwise error probability can be Chernoff-bounded by

Sequence estimation and trellis-coded modulation are effective means
to combat channel impairments such as intersymbol interference (ISI) and 1 l3 Nl
channel noise. It is known that MLSE joint with decoding in the maximum- P{F(v s e) _ rV(v) 1v) < 2M 1 '

likelihood sense is the optimum way to detect TCM signals on IS1 channels.
On frequency-selective fading channels, the performance of MLSE for TCM where 0M can be computed from the following recursive relation:
systems were analysed in [1] [2] [3] under the assumption that fading is Initialization:
so slow that the channel remains fixed during an entire error event. In 1+" = J(A-I)ij + INi +
reality, the fade speed of the channel is closely related to the autocorrelation = .. i;

function of the time-variant channel impulse response. In this paper, a
general upper bound on bit error probability of MLSE for TCM systems For (k 2,3,. M) I
on multipath Rayleigh fading channels is derived. For (i : k,.., M;j= M)

We assume that diversity reception is available, so the whole channel _ ''•I c_ .
is modeled as D independent fading channels corrupted by i.i.d. complex % -J
white Gaussian noise. Let g#Ii, 0 <_ i < L, I < d < D, denote the ith tap
coefficient of the dth diversity branch at time k in the equivalent discrete- - ,
time channel model.. Let xk be the output of the TCM encoder at time
k and c be the corresponding output of the channel at the dth diversity The recursive formula is simple and can be easily carried out in a com-

L puter. The final upper bound on bit error probability is computed from

= Ezk-g.i + rk, the system's error-state diagram and by a stack algorithm similar to that
i=0 in (1].

In the following an example is given for an 4-state 8-PSK TCM scheme
where {(,) are i.i.d. zero-mean complex Gaussian random variables with on a two-tap fading channel. The autocorrelation function of tap coefficients
variance o, = (I/2)E{[1i`,) = No. Since the channel is assumed to he is modeed i as
Rayleigh faded, tap coefficients {gf,}) are modeled as independent (in terms
of indices i and d) zero-mean complex Gaussian random variables (but I • 0, i , j,

which are correlated in index k.) 2 ojJo(2wfiT), i =j.

Let v = {vh) be the transmitted information sequence and vYe = {V&(D Analytical and simulation results are shown in Figure 1, where four nor-
ek) be the information sequence at the receiver output. Since {:i) is the malized fade rates fVT = 0.005,0.03,0.05,0.08 are considered. From the
transmitted signal sequence of the information sequence 1v1), let {zk +el} results shown, our bound is good for all the cases considered especially
denote the corresponding signal sequence of {vk a c,). By employing the when diversity reception is available. It accurately predicts the tendency
union-bounding technique, the average bit error probability for an MLSE of the performance curves.
receiver can he bounded by References

11 _< 1 W&(e) '-' P{v)P{F(v e e) > r((v)l, [1] W. H. Sheen, "Performance analysis of sequence estimation techniques
n - for intersymbol interference channel," Ph. D. dissertation, Georgia In-neE vstitute of Technology, Atlanta, 1991.

where E is the set of all error events, Wb(e) is the number of bit errors
of the error sequence e, P{v) is the prior probability of the transmitted [21 W.-H. Sheen and G. L. Stfiber, "MLSE equalization and decoding
information sequence v, and r(v) is the path metric of v. The pairwise for multipath-fading channels," IEEE Trans. Commsn., vol. COM-39,
error probability should be averaged over the fading characteristic, which pp. 1455-1464, Oct. 1991.
gives [31 W.-H. Sheen and G. L. Stilber, "Performance analysis of trellis codes

P{r(vee) > r(v)lv) = J P{t (ve) e r(v)jv,g)p(g').. .p(g) dg' . dgD. over ISI channels," IEEE Tasns. Common., to be published.

We assume perfect channel estimate and the same fading characteristics
for all diversity branches in our derivation. Let gk,, = gki R+ jg.i 1, where
the supscript d is ignored because of our assumption, and r, =~ e+ i7t +iri.
For an error event of length N, let the covariance matrix of the random
sequence (gi,d A, g ,i 9•N.. n, gN,i 1) be Ri. Consider the matrix so,,,

L t

A' = ATI4A.,

where 1 I

0 ... Ai.m

This work wes supported by the Nationl Sdenoe Conil publ of Chinaunder Figure 1: Analytical and simulation results for a 16-state 8-PSK MLSE on
Trah No. NSCp-O do04-Eo eC-0Cu. multipath Rayleigh fading channels with IDT = 0.005, 0.03, 0.05, 0.08.
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I. Introduction
In the maximum-likelihood decoding under a non- ro- 100

Gaussian noise, the decoding region is bounded by -
complex curves instead of a perpendicular bisector - Impulsive noise
corresponding to the Gaussian noise. Therefore, the 10 /

error rate is not evaluated by the Euclidean distance. *6)

The Bhattacharyya distance is adopted since it can C) 10-4"

evaluate the error performance for a noise with an
arbitrary distribution.

Upper bound formulae of a bit error rate and an O-Gaussion noise
event error rate are obtained based on the error-
weight-profile. Using the bound, optimum code is 2= 10 , ,,
searched. (L -20 0

2. Syste Model noise voltage [dBV]
Figure 2 shows the system model discussed here. An

Information bit stream is fed to a linear convolutional F i g . 2 P r o b a b iI i t y d i s t r i b u t i o n
encoder of rate 2/3 and mapped to the 8-AN signal of o f a n i m p u l s i v e n o i s e a n d t h e
equal signal-spacing by natural mapping. The received G a u s s i a n n o i s e 0 f t h e s a I e
signal, disturbed by a non-Gaussian noise, is fed to a v a r i a n c e
viterbi-decoder for maximum-likelihood decoding. The
decoder is assumed to know the probability density of
the noise.

3. U~pie bound of error rate
The Bhattacharyya distance, BD(A,B), between signal

point A and B is given by 0 0
BD(A,B)=-In[ S {Pn(x-xA) Pn(x-xsi3/ 2  dx] . 10-

whole space CI

where Pn(x) is the probability density of the receiving 00 "
noise. The Union bound of event or bit error rate is .0

estimated based on the error-weight-profile methodli] {/3 " 0 Bit error
by using the Bhattacharyya distance instead of the oX * Event error
squared Euclidean distance. 2 E"

4. Optimum code search
To determine the optimum code for an impulsive noise 0-/

channel, the upper bound of the bit error rate is LJ 10-6["

calculated for each code having an encoder with given 10-4 10-2
shift-register length. The best code is selected as
that having the minimum upper bound of the bit error Error rate(Upper bound)
rate. Fig. 3 Relation between the upper

To lighten the computation burden, a suboptimum b o u n d a a d s i a u I a t i o n r e s u I t s.
search is also attempted. In the suboptimum search,
the candidate codes having the maximum free
Bhattacharyya distance codes is searched at the first 10-2
stage. In the next stage, the upper bound of bit error
rate is calculated among the candidate codes and the Uncoded -
suboptimum code is determined. 4-AM i NEW code'-

5. Results of code search 1I
Figure 2 shows the probability density of the I --- UBcode

impulsive noise, modeled from an observation in digital A
subscriber loops. For the noise, the optimum or 2 " --- I
suboptimum code is searched for among codes having 210-4
Massey type encoders with a shift-register of up to 4 f --...

bits. Figure 3 shows the relation between the - --

upper bound and the simulation result. Figure 4 shows * I. -

the result of BER. By using the suboptimum code with a -

4-bit encoder, a coding gain of 20dB is obtained at M

the bit error rate 10-5. It is IlldB more than that
obtained by Ungerboeck's code. The detailed result isreported[ 2]. 10-6. 7 . . . .

(I] E.Zehavi and J.Wolf,IEEE Trans.ITIT-33, pp196-
202(1987). [2] H.Ogiwara and H.Irie, [EICE Trans.,E75-
A,pp1063-1070(1992). 20 30 40

NON-GAUSSIAN NOISE SNR [dB]
___Fig. 4 Bit error rate by simula-

tion of op Ptiu e enc oder shift

I CONVOLUTIONAL MAPPER VITERRI r e g i S t e r I e n g t h =. 2 . 3 ) o r s u b -7ENCODERDECODER o pt iuII ( y =4i) codes and it

L _ _---_ I_-__LB E + .j error rate without coding.
TRANSMlITTER RECEIVER U B c o d e " i s t h e c o d e f o u n d b y

Ungerboeck. [k , m: :2, 0 0:
Fig. I System model . -3, A . & : 4
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TRELLIS CODED MODULATION FOR DIGITAL MICROWAVE RADIO
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3-1-1, Asahigaoka, Hino-city, Tokyo 191 Japan

In this paper, we propose a modified Saito proposed a new scheme, named symbol-
symbol-rate-increased TCM for digital micro- rate-increased TCM, for DMR systemsl2j. It
wave radio. The original symbol-rate-increased accomplishes coding redundancy through band-
TCM accomplishes coding redundancy through width expansion, instead of through signal-
bandwidth expansion, Instead of through set expansion, and acheives a remarkagle
signal point expansion, in order to obtain a coding gain (greater than 5 dB at BER-]0 ).
greater coding gain than the Ungerboeck-type A drawback of this scheme is that it requires
TCM. A drawback of this scheme is that it the bandwidth to be expanded by a fixed factor
requires the bandwidth to ge expanded by a m/(m-l) for 2m QA. For example, the bandwidth
fixed factor m/(m-l) for a 2 QAM system. expansion ratio for the symbol-rate-increased

The proposed scheme permits the setting of TC-256QAN (Figure 1) is 8/7.
the bandwidth expansion ratio to an arbitrary
value smaller than m/(m-i). The simulation Modified Symbol-Rate-Increased TCM Scheme
results clarified that the proposed scheme The scheme proposed in this paper permits
can set lower bandwidth expansion ratio than the setting of the bandwidth expansion ratio
the symbol-rate-increased TCM with only to an arbitrary value smaller than n/(m-i).
slightly reduced coding gain. In the scheme, an m-bit parallel input data

sequence is converted into mI-bit and m -bit
Error Control Schemes for DMR Systems parallel sequences with different data rites,

Quadrature Amplitude Modulation(OCA) is and then the m -bit sequence is encoded by a
widely used in Digital Microwave Radio (DMR) trellis encodei whose coding rate is r. Then
systems. Error control is indispensable for the overall bandwidth expansion ratio is
realizing highly reliable multilevel QAN sys- m/{l(-m )r+m }. It is smaller than n/(m-i),
tems, particularly when the number of constel- if r iN grelter than (m-m2 -1)/(m-M ). As an
lation points is large. Two principal error example, we have designed a scheme for 256QAM
control schemes for DMR systems are block whose bandwidth expansion ratio is 16/15
coding and Trellis Coded Modulation (TCM). (Figure 2).
Block coding, such as BCH code or Reed-Solomon
code, can be easily adopted to DMR[I], because Bit Error Rate Performance
it allows the bandwidth expansion ratio to be Figure 3 shows the bit error rate perform-
set to an arbitrary value. Though block coding ance for three different schemes: the symbol-
is utilized in many commercial systems, thg rate-increased TC-256QAM, the proposed 256QAN
coding gain is rather small(2-3 dB at BER10 ). scheme with a bandwidth expansion ratio of

16/15, and a practical 256QAM scheme with a
(255,239) BCH code. The number of the encoder
states is 32. The coding gain for the symbol-

Datat:Rb)each rate-increased TCM and that for the proposedSscheme are 5"-• and 4.3 dE, respectively,

-- a at a BER of 10 . Though the figure for the
cc -proposed scheme is slightly smaller than that

Sobtainable with the original symbol-rate-
7- increased TCM, it shows that the proposed

-ascheme can attain BER
r Trellisencoder -R(baud) a remarkable im- 1 I I

provement over a
BCH coded 256QAM

8 R(bpeach wiR(s)each wth the same band-
b width expansion 10"1

ratio.
Fig. 1 SymboI-rate-increased TC-256 GAM

References 10.2
11IT.Kodama et al.,

Data ratse: R(bp) each "Error controlDat b)aschemes for dif- 104 ) H

~R(bps) each ferentially en- 10 T1 2M99Cca
lR a coded multilevel UfvdW 2 QAN

QAM transmission 1 ch
systems" Electron.
and commun. in
Japan,Part 3,Vol.

-- -r usnR(bau) 74, No.1, 1991.
-- r 4 • rli ncdri 2]Y.Satto,"Trellis

/ • lcoded modulation 14L .
Sfor multi-state 1010 Is a 2
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FIg. 2 Poposed256O AMchme 173, No.10,1990. Flg.3 M Waerranospeflslm

348



OPTIMAL MULTI-h PHASE CODES FOR PARTIAL RESPONSE
CONTINUOUS PHASE MODULATION
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ABSTRACT 
Richardson, Texas 75080-0688

Multi-h partial response CPM signals are analyzed at pre- 2. EVALUATION OF OPTIMAL MULTI-h CODES
selected number of states in contrast to the standard method The evaluation of the optimal multi-h codes for both

of analyzing them at preselected number of modulation in- 2REC and 2RC signals at any given value of N (or N)
dices. Optimal multi-h phase codes which produce the high- consists of the evaluation of the optimal number of modu-

est minimum Euclidean distance are presented according to lation indices, k and determination of the set of k optimal
the number of states. Three orders of multi-h signaling; modulation indices (ho, hi ... Ilk. il), to maximize the

2-h, 3-h, and 4-h signaling are considered in the optimal minimum Euclidean distance. For any selected value of k,

code search. the average modulation index which is defined as the mean

1. INTRODUCTION value of set of modulation indices can take only discrete
values which are determined by the selection of the set ofIn the literature multi-h phase codes have been exten-~ integers of the numerator of modulation indices.

sively considered with continuous phase modulation (CPM) Since the maximization of the constraint length does not

with regard to their performance, spectral properties, detec- necessarily maximize the minimum Eucidean distance, the

tion etc [1-4. It is known that the performance of CPM direct maximization of the minimum Euclidean distance has

signaling can be improved by combining with multi-h phase to be carried out over all possible values of k to evaluate

codes while maintaining the properties inherent to the phase the optimal codes. In order to reduce the complexity of

continuity of the signals 11-41. calculations and of the resulting signaling schemes, only 2-

A k-h CPM signal changes its modulation index cycli- h, 3-h and 4-h signals with k=2, k=3 and k=4 respectively,
cally at the end of every interval over k values (hl0 , hIl... are considered in the optimal code search. It is important

hk-,). Binary k-h partial response signals considered in this tonote t n the o f possiblerh. valus on
stud geeraly tke he ormto note that even though the set of possible havg. values on

study generally take the form the range 0 < havs. < I differs from one value to the other,

2E 5  
the best value of k and the corresponding h~vg. value along

z( t ) = "-Tcos wt + 2iranhJ g(ci - nT)do + with the optimal combination of modulation indices whichnT cos produces the highest minimum Euclidean distance can be

nT:5 t < (n + 1)T. determined in range 0 < h, 8g. < 1.
(1) At any given value of k, the best combination of mod-

The error rate performance of any wideband CPM signal- ulation indices at each possible ha, v. value is numerically

ing system is usually expressed in terms of the minimum found by searching over all possible combinations of mod-

Euclidean distance of the signals. In fact, the asymptotic ulation indices. Since the primary objective is to maximize

error probability variation at high signal to noise ratio is the minimum Euclidean distance, all special combinations

approximately given by [11, of modulation indices are also considered. These special
combinations include the ones with any number of equal

P 2Z Q( d2iE 6 /1N'O. (2) modulation indices including the constant h signals. Fur-
\--... / ther, in all of the minimum Euclidean distance calculations

It is seen from (2) that the performance of a CPM system the minimization is carried out over all cyclic shifts of the

can be improved by increasing the minimum Euclidean modulation index pattern in order take into account of the
distance. The minimum Euclidean distance can generally be paths that originate at the beginning of all signaling inter-
increased by increasing the constraint length of the signals. vals.
The total number of states N9 is the product of the number References
of phase states N and the number of symbol states.

The complexity of a multi-h signaling scheme mainly [11 J.B. Anderson, T. Aulin and C.E. Sundberg, Digital
depends on the number of modulation indices (or the order Phase Modulation. New York: Plenum Press, 1986.
of signaling) k, the number of states N', and the receiver [21 J.P. Fonseka, "Optimal multi-h phase codes for full
path memory length NR [1, 21. Among them the number response continuous phase signaling," in Proc. IEEE
of states can be considered as the most significant factor Inter. Telecom. Symposium, Rio de Janerio. Brazil, pp.
as it is necessary to compute 2N' number of metrics at the 22.1.1-22.1.5, Nov. 1990.
end of every interval for trellis decoding [1]. Considering [31 W. Holubowicz, "Optimum parameter combinations for
the factors which determine the complexity, it is more multi-h phase codes," IEEE Trans. on Commun.. Vol.

appropriate to analyze multi-h signals at preselected values COM-38, pp. 1929-1931, Nov. 1990.
of NW in situations where the allowed complexity is limited. [4] J.P. Fonseka and R. Mao, "Multi-h phase codes for
Since partial response signals generally have better spectral continuous phase modulation," Electron. Lett. vol. 28.
properties than full response signals, the results presented No. 16, pp. 1495-1497, July 1992.
here are more beneficial than those in [21 especially when
designing bandlimited systems.
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A Demonstration of a Robust Occam-Based Learner
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Machine learning is often modeled as the process of extrap- tween DFC and the Lyapunov exponent for logistic functions
olating samples of a function. This extrapolation requires both was 0.9. These high correlations show that the single measure,
samples and "inductive bias." Bias towards low complexity, as DFC, reflects the essential structure in each, very different, sit-
in Occam's Razor, is particularly important. Kolmogorov corn- uation. A fourth correlation experiment found no correlation
plexity was developed to formalize this process [5]. Important between people's ability to recognize concepts and the DFC of
theoretical results have also been developed using more abstract those concepts. This lack of correlation may be a result of the
measures of complexity [4]. Therefore, there is a strong theo- narrow range of DFC's involved (5% of its full range).
retical basis for Occam-based learning. Kolmogorov complexity In learning experiments, AFD did as well as a back-propo-
is a general measure, which would allow learning of many dif- gation trained Neural Network (NN) on problems well-suited to
ferent kinds of functions (i.e. robust learning); however, it has NN's. However, on other problems such as parity, AFD learned
been proven that its exact computation is not tractable. There a 256 point function from 50 samples whereas the NN required
have been some tractable measures of complexity used in actual all 256 points. The findings were similar for the AIM program.
implementations of Occam-based learning [3], such as the Ab- In both cases, the extrapolations of the NN and AIM were not
ductory Inference Mechanism (AIM). However, these measures robust while AFD consistently learned functions of low complex-
of complexity are relatively narrow, which implies non-robust ity with few samples.
learning. The challenge is to develop robust and tractable mea- The experiments to date have been limited to small (less
sures of complexity. than 10 variables) binary functions. The results on these small,

One approach to this challenge is called pattern theory [6], but non-trivial, functions have consistently pointed to a promis-
where we think of robust complexity determination as the prob- ing ability to find many different kinds of patterns. Therefore,
lem of finding a pattern. Pattern theory uses Decomposed Func- we believe these results are the first demonstration of robust
tion Cardinality (DFC), proposed by Y. S. Abu-Mostafa as a Occam-based learning and help join an important body of the-
general measure of complexity [1, p.128]. We demonstrate that oretical results with practical machine learning.
this measure of complexity allows robust learning, yet is suf-
ficiently tractable to support the learning of non-trivial func- References
tions. We develop support for the generality of the measure
both theoretically and experimentally. Generality is supported [1] Yaser S. Abu-Mostafa, editor. Complezity in Information
theoretically by proving its relationship to the conventional mea- Theory. Springer-Verlag, New York, 1988.
sures of circuit complexity, time complexity and program length.
Generality is supported experimentally by using a decomposi- (2] Robert L. Ashenhurst. The decomposition of switching func-
tion program (referred to as AFD) derived from the work of tions. In Proceedings of the International Symposium on the
R. L. Ashenhurst [2] and others. Theory of Switching, April 1957.

The experimental work includes the measurement of the DFC
of a large variety of functions, determining the correlation of [3] A. R. Barton and R. L. Barton. Statistical learning net-

DFC with more specialized measures within their domain of ap- works: a unifying view. In 1988 Symposium on the Interface:

plication, and machine learning experiments. The DFC of over Statistics and Computing Science, page 12, 1988.

800 non-randomly generated functions was measured, incud- [4] Anselm Blumer, Andrsej Ehrenfeucht, David Haussler, and
ing many kinds of functions (numeric, symbolic, chaotic, string- Manfred K. Warmuth. Occam's rasor. Information Process-
based, graph-based, images and files). Roughly 98 percent of
the non-randomly generated functions had low DFC- (versus less
than 1 percent for random functions). The 2 percent that did [5] Ming Li and Paul M. B. Vitimyi. Two decades of applied
not decompose were the more complex of the non-randomly gen- Kolmogorov complexity. In Proceedings Structure in Corn-
crated functions rather than some class of low complexity that plerity Theory, pages 80-101, IEEE, 1988.
AFD could not deal with. It is important to note that when
AFD says the DFC is low, which it did some 800 times, it also [6] Timothy D. Ross, Michael J. Noviskey, Timothy N. Tay-

provides an algorithm (or a description of the pattern found). lot, and David A. Gadd. Pattern Theory: An Engi-

AFD found the classical algorithms for a number of functions. neering Paradigm for Algorithm Design. Final Techni-

The correlation coefficient between DFC and a ranking of cal Report WL-TR-91-1060, Wright Laboratory, USAF,

the complexity of images by people was 0.8. The correlation WL/AART, WPAFB, OH 45433-6543, August 1991.

between DFC and the compression factor of two commercial
data compression programs was about 0.9. The correlation be-
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Summary for 1993 Inter. Symp. on Information Theory

Artificial neural network training algorithms, based upon directions for the PP regression function and improve them
gradient search minimizations of cost/loss functions when the through a process of iterative backfitting. Each ridge function
training set contains many high-dimensional inputs, are time- g, is trained to model the residual j' resulting from the dif-
consuming and can only address the issue of an appropriate ference of the actual response y and the output of the other
network architecture (network topology) either through re- m- I ridge functions. The number m is selected so that the es-
peated training of different networks or the addition of penalty timated residual error is below a pre-assigned threshold. Given
functions so as to control the problem of 'overfitting' that re- that we are selecting g,, we first use SIR to calculate the di-
suits from 'overtraining', a counterpart to the classical statis- rection w, and, keeping the direction fixed, we use Gaussian
tical estimation issue of the balance between bias and vari- kernel functions to smooth the resulting scatter plot {(1j, #7)}
ance (e.g., Geman, et al. [1992]). We propose combining ideas between the scalar response residual j to the jth input vec-
drawn from the nonparametric regression approaches of projec- tor. At the conclusion of the iterative backfitting process, in
tion pursuit (PP) (Huber [1985]), the recent idea of sliced in- which we cycle repeatedly through the m terms in the regres-
verse regression (SIR) (Li [1991]), backfitting (Hastie and Tib- sion equation, we then use backpropagation to approximate the
shirani [1990]), and the design of scalar smoothers via Gaussian smoothed terms in the PP equation by small neural network
kernel smoothing (Hastie and Tibshirani [1990]), to decompose subnets that now have scalar inputs and outputs.
the neural network design/training process into one involving Concerned by the hypothesis of elliptically symmetrically
gradient methods only at the final stages where we need only distributed I required by SIR, we have developed a related
fit scalar-valued functions of scalar inputs, method that uses a new projection index r-ctivated hy the

From PP we take the class ot regression functions continuity of the unknown regression function g. As in SIR, we
m slice the output values into H intervals and estimate projection

V g=(.a), directions based on the groups {f h, h = 1, H} of input values
that share output values in the same interval. For example, we
find a single projection direction

where the regressor vector (input) is x, the response (output)
variable is y, and we need to select the 'ridge functions' {gi)} H

and the projection directions {v�} as well as the number of _w = argmin{a 110 1= 1) Z fT(L-x)(x - ,)r 3 .
terms m. This model can be embedded in a neural network h=1 {•!•1
where we may use several nodes to approximate each of the
ridge functions. Our goal is to improve the efficiency of fit- We have applied these nonparametric regression-based
ting this model to training data by introducing a fairly direct training processes to the oonstruction of a neural network to
method for extracting the projection directions. We need then forecast daily extremes (daily minimum, evening peak, morn-

only rely upon time-consuming iterative methods to approxi- ing peak) of demand for electric power, using data supplied

mate the scalar-input ridge functions by scalar-input network by a midwestern utility, and will compare our results with

node functions. those we have achieved previously (Yuan and Fine [1992]) using

Our experience with backpropagation (BP) methods ap- backpropagation-based methods.
plied to forecasting electric load time series (Yuan and Fine
[19921) suggests that often the resulting neural network has References

several sigmnoidal nodes operating about the origin where they Geman, S., E. Bienenstock, R. Doursat 119921, Neural networks
are essentially linear; e.g., for the standard logistic node a(z) = and the bias/variance dilemma, Neural Computation, 4, 1-58.
[l+e-21- 1 this could be the region Izi :5 1. Hence, we select ini- H ie, T., R Tibshirani [1990], Generalized Additive Modek
tially g9 to be linear. SIR provides a direct calculation method Chapman and Hall.
for calculating the weight vector jw when the 'true' model is Huber, P. [1985], Projection pursuit, Annals of Statistics, 13,

Y = 9('z +,r) + e, 435-475.

Li, K. -C. [1991], Sliced inverse regression for dimension reduc-
for noise e independent of input x and X elliptically symmetri- tion, Jour. Amer. Statistical Assn., 86, 316-342.
cally distributed. While this is not likely to be our situation, Yuan, J.-L., T. Fine [1992], Forecasting demand for electric
we can use the SIR algorithm to provide reasonable projection power using autoregressive neural networks, Proc. Conf. on

* Prepared with partial support from NSF Grant Information Sciences and Systems, Princeton, NJ.

No. ECS-9017493

351



A Measure of Relative Entropy between Individual

Sequences with Application to Universal Classification

Jacob Ziv and Neri Merhav

Department of Electrical Engineering
Technion - Israel Institute of Technology

Haifa 32000, ISRAEL
Abstract where

A new notion of empirical informational divergence between two indi- H= - qz(a, s)log qz(a1s). (4)

vidual sequences is introduced. If the two sequences are independent EA E•E

realizations of two stationary Markov processes, the empirical rela- Analogously to the single source case, where -n-' logq(z) is effi-
tive entropy converges to the true divergence almost surely. This new ciently estimated by n-'c(z)logc(z), we introduce an empirical quan-
empirical divergence is based on a version of the Lempel-Ziv data tity Q(zIJx) which will be shown to have the property.
compression algorithm.

A simple universal classification algorithm for individual sequences lim [-- log p(z) - Q(zlx)l=
into a finite number of classes which is based on the empirical diver- - [_

gence, is introduced. It discriminates between the classes whenever almost surely w.r.t the product measure p x q, for every finite 1. Fol-
they are distinguishable by some finite-memory classifier, for almost lowing (3), the function Q(zllx) can be decomposed into two terms,
every given training sets and almost any test sequence from these the first of which is an estimate of the empirical entropy associated
classes. It is universal in the sense of being independent of the un- with z, i.e., n- 1 c(z)logc(z). and the second, denoted by A(zllx) is
known sources. an estimate of the divergence between qz(.) and p(-) with the prop-

erty, lim.... [A(zIlx) - D(qzllp)] = 0 ahlost surely with respect to
Summary the product measure p x q. for every finite f. In parallel to the fact

that the entropy is estimated by self LZ incremental parsing of z, here
Suppose one observes a sequence x = (x.1 . .x,) emitted from an un- intuition suggests that A(zllx). which is an estimate of the cross en-
known l-th order stationary Markov process p(.) over a finite-alphabet tropy D(qzIlp), will be associated with cross parsing of z with respect
A with IAI=A letters, and wishes to estimate the nth order entropy, to x.
or equivalently -n' logp(.). While the straightforward approach of Specifically, the cross parsing procedure of z w.r.t x works as fol-
calculating the I-th order conditional empirical distribution is com- lows. First, find the longest prefix of z that appears as a string in x,
putationally prohibitedly complex for large I and is impossible if I is i.e., the largest integer m such that (z1 , z2. z,,-) = (zi ... ,. i+M-n)

unknown, it has been shown in [11,[2] that the Lempel -Ziv (LZ) code- for some i. The string (Zt, %... Zm) is defined as the first phrase of
word length for x divided by the length n, is a computationally effi- z with respect to x. If rn = 0 (i.e., z, does not appea: in x), the first
cient, reliable estimate of the entropy, and hence also of -n-1 logp(.). phrase of z with respect to x is z1 . Thus, the case m = O is treated as

More precisely, let p(X1 , - ..... Xn) = I-,7.- p(xlds-n.) where s ,= though m = 1. Next. start from z,.+, and find, in a similar manner,
(,-1+1, X-1+2, .... r,) for i > ( and where si = (So, ziX2 ... Xi) for the longest prefix of z,m+m,:m+ 2 ... . zn, which appears in x, and soon.
i < 1, so being tihe initial state; s, E At. and W' is the set of all length The procedure is terminated once the entire vector x has been parsed
t vectors with components in A. with respect to x. Let c(zfx) denote the number of phrases in x with

Let c(x) denote the number of phrases in x resulting from the incre- respect to x.
mental parsing of x [1]. i.e., sequential parsing of x into distinct phrases Intuitively, A(zljx) may serve as a reasonable discrimination func-
such that each phrase is the shortest string which is not a previously tion for universal classification of individual sequences. Indeed, in con-
parsed phrase. Then, the LZ codelength for x can be approximated trast to the probabilistic framework in which the classification problem
by c(x)logc(x) and lim___ . .- ' [- logA(x) - c(x)logc(x) ] = 0 al- is normally posed, we show that a classifier based on the comparison
most surely. In fact, this property still holds as long as p(.) is more of A(zsix) to a threshold, results in an asymptotically optimal per-
generally a stationary ergodic process. formance for almost every individual tested data sequence among all

Here we generalize this result to the case where there are two sta- finite-memory classifiers that are trained by given training sequences
tionary tth order Markov sources, p(.) and q(.). Let x and z be real- from each class, have a rejection option, and that assign to each class
izations of p(.) and q(-), respectively. Given x and z, we would like to a small as possible set of vectors so as to make the sources distin-
estimate reliably -n- 1 logp(z) and similarly, -n-1 logq(x). In par- guishable. We assume that any competing finite memory classifier is
ticular, we seek an easily calculable function of x and z, independent consistent in the sense that if a test sequence, to be classified, appears
of t, which discriminates between two unknown Markov sources p(-) in the training set it will be classified correctly. It should be pointed
and q(.). To this end, recall that the divergence D(qI1p), defined as out that while the order of the optimal competing finite memory clas-

Iq(x) sifier is normally unknown, the discrimination procedure based on the
D(q -•p) = linisup E ( log 9(1) above described cross-parsing, is independent of I and computationally

ý is A' p( x) efficient.

is intuitively interpreted as a measure of distance between p(.) and q(.)
[2]. In the Markovian case considerded here, we have References

Sqa, log q(als)
Dpp)=-- , (2) [1) J. Ziv and A. Lempel, "Compression of Individual Sequences

via Variable-Rate Coding," IEEE Trins. Inf. TheoryVol. IT-24,

where p(als) and q(al.9) are the conditional probabilities of a letter No. 5, pp. 530 -536, September 1978.
a E A given a state s E A,' under p(.) and q(.). respectively. Let
qs(a1n....a1+i) = q.(af+l) be the relative frequency of an (t + 1)- (2] T. M. Cover and J. A. Thomas Elements ofInformation Theori,
length string at+' E A'+i. Then, it is well known that Wiley. New York, 1991.

- logp(z) = n/lz + nD(qx,1p) (3)
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sion function and p be the probability measure of X. The kernel regresion

Abstract estimator of R(z) is defined as follows:

Radial Basis Function (RBF) network have been studied intensively ([1],
[9], [8], [3], [21,[12], [131' Besides its applications several theoretical results f,(z) ( 4 K(5'L)Y)
have been obtained. E.g., (1) RBF net can be naturally derived from regular- E=i K(=:jX)

ization theory ([9]), (2) RBF net has universal approximation ability [4], (3) w Rd
RBF net has also best approximation ability ([3],[5]). where, h is smoothing parameter and K > 0 is a p integrable kerne on

In this paper, connections between RBF network and Kernel Regression Estimator eq.(4) is studied in [6, 7]. The probabilistic neural network proposed

Estimator (KRE) are built up. Recent theoretical results about KRE are by [11] is one type of direct extensions of Parzen Window estimator.

used as tools to obtain the theoretical suits on RBF net in several aspects. Connections between RBF net and KRE
First, the statistical consistencies of RBF nets are proved in various situations, Let K(r') = 0(r2

), E = 0.2I, h2 = al, and wi = Yi,, = 1,.., n, we
which extend the current results on the approximation ability (e.g. universal see that eq.(4) is identical to eq.(3). That is, a spherically symmetrical kernel
approximation,.._, etc) of RBF .set from deterministic case to more practical K(r 2 ) is a type of radial basis function, the smoothing parameter h represents
stochastic case. Second, the convergence rates of RBF net are provided in the size f of the basis function's receptive field, and Yj acts as an approximate
different sitautions, which is more useful than merely convergence of network solution of soi. Thus, we can consider the KRE eg.(4) as a particular case of
approximation in the case of infinite number of hidden units. For example, RBF net eq.(3). Assumption E = o0I is in fact commonly used in the existing
if the mapping function to be learned is bounded and of a orders of smooth, studies on RBF nets ([1],[9], [8], [21).

the L2 convengence rate of RBF net made of basis functions with a compact Furthermore, in parallel to eq.(2) we denote the total approximating error

support is up-bounded by O(n- -), which also means that for a given error
bound c•, the number of hidden units is about the order of O(ICo0-3'7). of KRE eq.(4) by
This gives us some quantative insights on the designing of RBF net. Third, 1 N

the problem of selecting the appropriate size of the receptive field of radial ('RE(q , F..) = - [Y. - .MXi)[' (5)

basis function is investigated and how the selection of size is influenced by a ili

number of factors is elaborated. These studies are new in the literature and
quite useful for the further theoretical analysis of RBF as well as for guiding and for eq.(2), we let C6F..,1 (y, f.) denote the 4j obtained by minimiz-

the design of RBF net in practice. ing w1 ,cii = 1,-..,n and E simultaneously, i.e., e _ is the minimal

RBF net and KRE error obtainable by a RBF net of the idealistic type. Let c48FT-._t.(Y, A)

We consider the normalized version of RBF net ([8]) denote e6F for a RBF net of Type-I defined by eq.(3).

Lemma LetK(r
2

) = 0(r
2 ), wehave: (A) eBF._,PI(Y,f) <_ e4K,(Y,fA);

A - wi _([z - ci]YE - - (1) g _,_ _S_(Yf_); 
(S RB-.1,( ) :- C #-

i i'-[ - Xi r ~RDF-.~Pt (. f.)) .5 'KEd J~)~ RBF-.pi Y,..RDF.TVP.
. E(z) I x=l •([_ c.]iEilz c]) rqKRE(Y, f,); Ei-r'aF-(Yf4) _< EDRBF-TI,-.1(Y,fA) <- ECO 5 (y, f.)'

where 0(r2) is some prespecified basis function satisfying some mild condition, under the same receptive field specified by E h2l; (C) 1RF-1o (Y, M) <

The most common one is Gaussian function 0(r2) = e-, but a number of ,Br_-TV 1 1 _1(Yf.); WRBF-. (Y f,) EcRBF-Tsp,-,,(Y'.).

alternatives can also be used([9]). ci is called center vector which locates 0(r2 ) references
centering around ci. wi E R' is a weight vector corresponding to the center [1] D.S.Broomhead and D.Lowe, Multivariable functional interpolation and

vector ci. E is a d x d positive matrix which is usually chosen as E = &21 adaptive networks, Complex Systems 2, pp321-323 , 1988.
with a called the size of receptive field of the basis function. [2] S.Chen, C.F.N.Cowan and P.M.Grant, Orthogonal least squares learning

For a given fixed 0(r'), in eq.(1) there are three sets of the parameters: algorithm for Radial basis function networms, IEEE Tress. on Neural
(1) wi, i = I,.. ., n, which are the weight vectors of the output layer of a RBF Network•s 2, 1991, pp 3 02-309.
net, (2) the center vectors ci, i = 1,.-., n and (3) the size o". The last two sets [3] F.Girosi and T.Poggio, Networks and the best approximation property,
constitute the weights of the hidden layer of a RBF net. Theore.ically, all M.I.T. Al M .No.11o, MIt, 1989.
the parameters can be determined based on a given sample set (Xi,Y.), i J.e an ow Layre nra newT1k9
1,.-, N by minimizing the following total approximating error [4 E.J.Hartman, J.D.Keeler and J.M.Kowaki[ Layered neural networks

with Gaussian hidden units a universal approximations, Neural Cames-

SN o ation 2, 1990, 210-215.

LRBF(Y,fn)= M -l - f.(X,)I' (2) [5] K.Hornik, Approximation capabilities of multilayer feedforward net-
works, NN 4, 1991. 251-257.

where 0 < q < oo and the usual case is q = 2. [6) A. Krzysak, The rates of convergence of kernel regresion estimates and
However, the minimization with respect to all the parameters simulta- classification rules, IEEE Trans. on Information Theory, St, pp668-679.

neously is a hard problem. It is usually assumed that a, and c,,i = 1,. I n 1986
are determined from the samples {X,,j = I,. ,N) ([10], [8], [31, [2]). In [71 A. Krzyiak, On exponential bounds on the Bayes risk of the kernel
this case, the minimization of cBFr(Y,fý) can be simplified considerably classification rule, IEEE Trim,. on laformaiioa Theory. 37, pp490-4 9 ,

since now it is performed with respect to w,,i = , -.,n. A special case 1991.
is that q = 2 in which the solution is given by W = yKT(KKT)-' with [8] J.Moody and J.Darken, Fast learning in networks of locally-tuned pro-
W = [wl, w.n], Y = [YI, .. ,YN] and K = [k,j]_N . k,. = Oi/ Oi, cauing uni'., Neural Computahio 1 1989, pp28l-294.

,6 = O(X. - c.]'E-i[X, - ciJ). [9] T.Poggio and F.Girosi, A Theory of networks for approximation and

A special way af determining cji = I,..n: quite simple: a subset learning, M.I.T. AI Memo, No. 1140, MIT, 1989.
{Xi,i = I,...n) is randonily sele.ted among (Xi,i = 1,. -N) and every
selected sample is directly used as a center vector, i.e., e= = =., - I, .1, n 10] M.J.D.Powell, Radial basis functions for multivariable iAterpolation: a

and review. eds, J.C.Nfason and M.G.Cox, Alpontlims for Apprezimastia,

andz) = w([z - X IE i' r - Xj) Clarendon Pres, Oxford, 1987.

E. 00([z - XI'E-I[z - X, (3) 11] D.F.Specht, Probabilistic neural networks, Neural Networks 3, 1990.109-
118

In sequel, we call the RBF nets obtained by the minimization of all the pa- [121 N.Weymaere and J. Martens, A fast robust learning algorithm for fed-
rameters the idealistic type nets, and we call RBF nets given by eq.(3) Type-I forward neural networks. Neural Networks 4, 1991, 361-369.
nets. Let (X, Y), (XI, Y1)," , (X., Y,) be independent identically distributed [13] L. Xu, Adam Krysyak and E.Oja, Rival Penalized Competitive Lesirsig

?' x R' -valued random vectors. Let R(z) = E{YIX = x) be the regree- for Mlustering Analysis, RBF net and Curve Detection, IETE Via. om

Neural Networks, 1992 (to appear).
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ON THE FINITE SAMPLE
PERFORMANCE OF THE

NEAREST NEIGHBOR
CLASSIFIER*

Demetri Psaltis$ Robert R. Snappl,
and

Santosh S. Venkateshl

ABSTRACT

The finite sample performance of a nearest neighbor classi-
fier is analyzed for a two-class pattern recognition problem. An
exact integral expression is derived for the m-sample risk Rm
given that a reference m-sample of labeled points, drawn inde-
pendently from Euclidean n-space according to a fixed proba-
bility distribution, is available to the classifier. For a family of
smooth distributions characterized by asymptotic exapansions
in general form, it is shown that the m-sample risk R. has a
complete asymptotic series expansion R,4 _, R. + E- ckM-k/n
(m - oo) where R, denotes the nearest neighbor risk in the
infinite-sample limit. Improvements in convergence rate are shown
under stronger smoothness assumptions, and in particular, R. =
P.ý +O(m- 21

/n) if the class-conditional probability densities have

uniformly bounded third derivatives on their probability one sup-
port. This analysis thus provides further analytic validation of
Bellman's curse of dimensionality. Numerical simulations cor-
roborating the formal results are included, and extensions of the
theory discussed. The analysis also contains a novel application
of Laplace's asymptotic method of integration to a multidimen-
sional integral where the integrand attains its maximum on a
continuum of points.
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variance a2. Then any mixture of the form qja(pi,o2) + 2)(p,a?)

The relative value of labeled and can be uniquely decomposed into its component densities.

unlabeled samples in pattern recognition * Thus u = oo yields the information that the underlying distribu-
tions are either (aif(z),jg(x)) or (Ig(z), qf(()), but no information

Vittorio Castelli Thomas M. Cover is available on whethz: f(z) or fl(z) = g(z). Thus for I = 0
Stanford University Stanford University labeled samples,

R(O, u)= for all u.

Labeled data are therefore needed. The first labeled sample helps
Abstract enormously.

We attempt to discover the role and relative value of labeled Theorem. When the training set contains an infinite number of
and unlabeled samples in reducing the probability of error of unlabeled samples, the first labeled observation yields a probability of
the classification of a sample based on the previous observation
of labeled and unlabeled data. We assume that the underlying error

densities belong to a regular family that generates identifiable R( 1, oo) = 2R( I - R*)

mixtures, for the classification of a new sample.
The unlabeled observations, under the above conditions, carry The expected probability of classification error is thus reduced to
information about the statistical model and therefore can be
effectively used to construct a decision rule. When the training within a factor two of the Bayes risk.

set contains an infinite number of ui.labeled samples, the first Theorem. When the number of unlabeled samples is infinite, the
labeled observation reduces the probability of error to within risk converges to the Bayes risk ezponentially fast, i.e.
a factor of two of the Bayes risk. Moreover subsequent la-
beled samples yield exponential convergence of the probability R(L, oo) = R" + 0 (e-0)
of classification error to the Bayes risk. We argue that labeled
samples are exponentially more valuable than unlabeled sam- where a = - log (f 2,Fi VT, (.TM2( dp(z)).
pies and identify the exponent as the Bhatthacharyya distance. Labeled samples can reduce the risk exponentially fast, but unlabeled

samples reduce the risk only polynomially fast. Under smoothness
Summary conditions on the family F, similar to those that allow efficient esti-

Assume we sample from two populations, 9 = I and 9 = 2, with mation of parameters [3], there exists a procedure such that

prior probabilities Yq and 4 = 1 - qi. Let observations from population R(l, u) = R* + 0(1 /u) + O(e-10).

1 be distributed according to density f1 (z), with respect to some

measure u, and observations from population 2 according to f 2(z). Roughly speaking, labeled samples are exponentially more valuable

We observe I independent samples together with their classifications, than unlabeled samples.

{(X 1,0j),..,(Xh,01 )}, where the 9i are Bernoulli(r/) and the Xi are

i.i.d. - fe,(z), and we observe u unlabeled samples {X, .. , X.}. The References
totality constitutes the training set. [1] Teicher, Henry. "On the mixtures of distributions" Ann. Math.

Let X be a sample, similarly drawn, which we wish to classify with Statist. 1960, 32 244-248.

minimum probability of error. Let R(l, u) be the probability of error

of a given decision rule when the training set is composed of I labeled (2] Teicher, Henry. "Identifiability of finite mixtures" Ann. Mat&

and u unlabeled samples. Statist. 1963, 34 1265-1269.

If f,(z), f2(z) and Yj are known, the likelihood ratio test (3] Lehmann E.L. Theory of point estimation 1983, John Wiley and

I if 11fi(X) > 1 Sons, New York.

Decide 9(X) = (1- ')f 2 (X)

2 if tf,(X) 1 [4] Cover T.M., Thomas J.A. Elements of Information Theory.

2 f (1- W)f 2(X) 1991, John Wiley and Sons, New York.

minimizes the probability of error (Bayes risk) which is equal to [5] Duda R.O., HartP.E. Pattern Classification and Scene Analysis.
- =1973, John Wiley and Sons, New York.

= R {"9 E~,[min (vqf(x),( t-17)f2(r))] •

[6] Andrews H.C. Introduction to Mathematical Techniques in Pat-
If fl(z) and f2(z) belong to a regular family )r. the distributions and tern Recognition. 1972, John Wiley and Sons, New York.

the prior probabilities may be estimated from the labeled data. If an

infinite number of labeled samples is available, the risk is given by 'This work wan partially supported by NFS Grant NCR-.91453602.
Vittorio Casteili (vitto•joluieliaafaqd.edu) and Thonas Id. Cover (covssO..

R(,-c, u) = R" for any number u of unlabeled samples. stantord.edu) are with the laformatiou Systems Laboratory, Depannteat of Elec-
The distributions and prior probabilities can also be estimated using trical Engineering. 4055 Stanford University, Stanford. Califoraia 94305.

the unlabeled observations, under the additional hypothesis that the

family of mixtures (1] generated by Jr is identifiable [2]. For exam-

pie. T can be the family of Gaussian distributions with mean p and
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On the posterior probability estimate of the error rate
of nonparametric classification rules
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Technical University of Budapest The University of Manitoba
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ABSTRACT We address the problem of estimating the error prob- The formal definition of the estimator that we investigate is
ability of nonparametric classification rules. Instead of the well the following: Let , denote the training sequence with (X,, Y,)
known counting-type estimators we propose a so called posterior deleted and - the estimate of the a posteriori prob-
probability estimator, which plugs a nonparametric estimate of ability Pj(x) from the d.ta f.,, Then our estimate for the error
the a posteriori probabilities into an algebraic expression of the probability is
error probability. We explore the properties of the plug-in estima-
tor. Unlike the standard estimators, the variance of our estima- = - 1 j p(n.-1) (X

tor is shown to have some remarkable distribution-free properties ; .(j'f.,•)(X, ",J) (3)

for the k-nearest neighbor, kernel and histogram rules. We pay The most remarkable property of the estime is summarized in the
special attention of histogram classification rules, and show the fost result:
consistency of the estimate in this case. Investigating the bias of following result:
the estimate we also obtain rate-of-convergence results under mild Theorem 1 For any histogram, kernel and k-nearest neighbor
conditions on the distribution. classification rule, for all n and I > 0

I. INTRODUCTION 
Pr{IL(nP) - EL(,P)I t) t <2e-cnl

2

and

Let the random variable pair (X,Y) take its values from Rd a n Var(L(p)) -L
{0,1}. It is well known that the decision rule g : d- {0,1 n 8n
which minimizes the error probability Pr{g(X) 0 Y) is given by regardless of the distribution of (X, Y), where the constant c de-

the Bayes decision: pends on the dimension only.

S i 2The proof is based on McDiarmid's extensioi of Azuma's martin-

g*(x) 0 if Po(t ) r Pi (s ) gale inequality and geometrical considerations. The upper theo-
1 otherwise rem suggests that using the proposed estimate could be favourable

in practice as compared to counting-type estimates. To get more
(pte prbailte se the P,(x)E are nt o ,b insight to the properties we also investigated the bias of the esti-
posteriori probabilities. In practice the P.(x) are not known, but mate. Here we list some of the results that we obtained for the
a training sample of n independent identically distributed (i.i.d.) case of the cubic histogram classification rule with cube-size h > 0.
random variable pairs The first of them shows, that under the usual conditions on h the

fn= ((Xj, 1), (X 2 , Y 2 ), (X. ,~ Y.)) estimate is strongly consistent for all distributions.

Theorem 2 For the cubic histogram rule for all distributions
is given, where the (.V,, Y,) have the same distribution as that of L(-) ELý_, -- 0
(X, Y), and G, is independent from (X, Y). Most nonparametric

classification rules can be formulated as with probability one whenever h - 0 and nhd - oo as n - oo.

1= 0 if P.on)(X) > p"n)(X) The next one is an interesting property.
9.(X) = gn(z,G) I otherwise, Theorem 3 For the histogram rule EL(P) < EL,, that is, L(P)

is always optimistically biased.
where , I G) is an estimate of P.(r) from the sam- The next rate-of-convergence results provide more insight into the
pie (,,. The error probability of the rule g. is given by behavior of the estimate:

L. = Prfg.(X) 0 YjC-) = I - E(Pg,.(x)(X)If.), (2) Theorem 4 If the distribution of X is of compact support, then

Examples of this kind of classification rules are histogram, for the histogram rule there exists a constant C such that for all n

k-nearest neighbor and kernel rules. EJL!, - L,: < -.

It is always a crucial question to estimate the error proba- n

bility of the classification rule. The most standard methods are If in addition the support of the distribution is convex and satisfies
based on counting the number of errors on the training data. Such p(A) _ mhd for all measurable A for some m > 0, then
estimates are the resubstitution, holdout and del'-ted (leave-one- C,
out) estimates. These estimates have usually small bias, but their EILe - L.1 :<57
variance can be undesirably large. Another possible strategy is

plugging an estimate of the a posteriori probabilities into the ex- for some Ci. If Po(r) is uniformly Lipschitz, that is, for some L

pression (2) of the error probability. In the case of nonparametric IPo(r) - Po(y)j -< Ljjr - yll for any z, y , then

rules of form (I) it is natural to use the estimates that define the EIL'nt' - L,., < LA.
classification rule.
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A BAYESIAN APPROACH FOR CLASSICIFICATION
OF CONTINUOUS-TIME MARKOV SOURCES

Erdal Panayirci
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Abstract: A Bayesian approach for classification of Markov where A- is the complement of &•, p(Hi) is the prior probability
source is developed and studied. Each of M sources is described of the i - th source and, p(xlyi, Hi) is the conditional probability
by a continuous-time, discrete-state Markov chain All states and density of x given both the training sequence yi and the x are
times of transitions between states can be observed perfectly but generated from the i - th source.
the transition rate matrices which establish the parameters of the
sources are not known a priori. A Bayesian training algorithm The posterior densities p(xly., H.) in (2) are difficult to com-
using a fixed amount of memory digests the training samples that pute in general and depends on the prior densities of the unknown
consist of a metnber function from each chain. This leads to an parameters which are usually unavailable. Recently, Merhav and
iterative computationally simple classification algorithm. Jiv [1] developed a suboptimal Bayesian test statistic for clas-

sification of discrete- time,discrete-state Markov sources whose
transition probabilities are not known explicitly. They showed

Extended Summary that the test does not require knowledge of prior densities and
achieves,within a constant factor, the minimum error probability

The general Bayesian classification problem can be described in Bayesian sense.Unfortunately, the main assumption of the ap-

as follows. Let P, E E be the parameter set of the s - th source proach that the prior density p(.) must be bounded,i.e. for all

I < s _< M, where e is the parameter space. We consider 0 E 0,

the unknown parameter set {0,}'f 1 as both independent of each 0 < F,, - (O • p,5.. < oo
other and of the active source, and identically distributed ran-
dom variables each governed by a prior probability density func- does not allow to apply this method to those problems whose pa-
tion(PDF) p(0°),s = 1,2,..., M.Let y. = (y.1, y, 2 ,. . ,-sYon),s -= rameter set have infinite support.
1,2,...,M, be a training sequence from the a - th source.Let
x = (zi, Z2 ,...t , zt), i = 1, 2,..., n be a test sequence to be classi- The study reported in this paper defines and solves a classifica-
fled,produced by one of the M sources, henceforth called the active tion problem based on a Bayesian approach involving information
source. The index of the active source is unknown and considered sources each described by a continuous-time Markov chain,whose
to be a discrete random variable w taking values {1, 2,..., MI. sample functions can be observed directly but whose parameters

are not known apriori. As opposed to the approaches presented in
The classification problem is that of identifying the active [11, the posterior densities in (2) are computed exactly by choosing

source upon observing x and Y = {Y1, Y2,... , YM). The Bayes appropriate prior density functions for 0. We show that a Naturel
decision rule 6(xjY) which is optimal in the sense of minimizing Conjugate prior density exists for the problem investigated here
the error probability of classification can be defined as and that the posterior PDF's have the same functional forms as

the prior PDF's. Thus the classification analysis can be done by
operating solely on the parameters of the prior densities updated

6(xIY) =s if by the training sequences. Naturel conjugate PDF's form a rich
{p(Ht)p(xlyt, H 1 )) class of distributions, giving the classifier considerable flexibility

is maximum for t = s E {1,2,..., M) (1) in choosing a prior density for 0 by setting suitable values for
the prior parameters. The decision making and training algo-

Note that the decision rule 6(.) is a partition of the obser- rithm derived in this way are optimal in Bayesian sense, as well
vation space U" of all possible test sequences x into M disjoint as computationally simple, recursive and require a fixed amount
regions R,, R 2 .... , R,, whose union equals U,. Therefore the con- of computer storage regardless of features in x and Y.
ditional error probability p6 (eIY) associated with a decision rule
6 = 6(xIY) is defined as Rerne

M 1[lN.Merhav and J.Jiv,"A Bayesian approach for classification of
pi(elY) f ' P(H,) E p(xly,, H,) (2) Markov sources,JEEE 7Trns.infom. Theory, vol.37,no.4,July

I x¢, 1991.
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A Computer Algebra Algorithm for the Adjoint Divisor

D. Polemi, M. Hassner, 0. Moreno, and C.J. Williamson

Abstract. Using the algorithm in [1] for desingularizing a The adjoint divisor of C is A = -h Aph, with degree
singular plane curve, we describe a polynomial time algorithm, 6 = k bp/,,, furthermore 6 = 2dimk k[C]/k[C].
which can be used for computing the adjoint divisor, finding Step D. Find the genus of the curve C.
the genus or adding points on the Jacobian of the curve. We Using the computation of 6 in Step C, the genus of C is
also do a complexity analysis of the mentioned algorithm. The g = (d-i)(d-2) - 16. The time complexity of the above al-
algorithm can be implemented in the IBM computer algebra gorithm is of the order O(qirmdeogq), where r is the mul-system SCRATCHPAD. tiplicity of C at its worst singular point; it is better than

Summary. We denote by k = Fq a finite field of q = p' el- other algorithms since the desingularization technique in
ements where p is a prime number, and by k the algebraic Step A does not require field extensions.
closure of k. Consider a projective plane singular curve Example.Let C : f(x,y) = X2 + XY + Y4 = 0 over k = F 2
C of degree d, defined over k, specified by a polynomial with an ordinary singular point Pi = [0,0,1] of multiplicity
f(z, y) E k[x, y] which is irreducible in kix, y]. By defini- r = 2, and k[C] = k[z, y]/(z 2 + xy + y4). An integral basis of
tion C is the variety C = { (a, b) E k : f(a, b) = 0 ). k- is {1,y,py 2 ,y/x} and C = {a E kV: fi,(a) = 0), where
The affine coordinate ring k[C] of C is the quotient ring fl I Y12 - Y2, fl2 = Y1 Y2 - zY 3 , fl3 = Y1Y3 - (X + Y1),
k[r, y]/I where I is the principal ideal generated by f. We f22 = y= 2 3 -Yy - X Y- , fI3 = y2 -y
denote the field of rational functions of C by k(C). The and r-'(Pl) = {P1 l = (0, 0,0,0), P 12 = (0, 0, 0, 1)). The I.u.p.
next is an outline of a construction for the adjoint divisor, around P11 and P12 is Y1. We rewrite Y2 = y12, Y3 = Y32 - Y12,
Step A. Construct an afline non-singular model C and x = Y1 Y3 - Y1. Thus ordp,,Y 2 = 2, ordp,,Y 2 = 2,
(smooth curve) of the curve C. ordp,1 Y3 = 2 and ordp,12 Y3 = 2, ordpix I - and ordp12 x = 1.
For this step we use the algorithm in [1] which can be out- Let w = dxlx, then ordp,,w = -1 and ordp1 2W = -1. Hence
lined as follows: A = P11 + P12 and g = 1.
1. Compute an integral basis {uO, ..., u,} of the integral Following similar methods as in Huang and lerardi

closure k[C] of kLCI considered as a k[X]-module. (k[X] [3](§5), adding points on the Jacobian of a plane singu-
is the ring of polynomials of one variable.) lar curve can also be done using our algorithm.

2. Introduce new variables {X, Y1, ..., YJ) which corre- We can generalize the algorithm of [1], which is for desin-
spond to the basis {uO ....u,u}. Then the non-singular gularizing plane curves, to the case of an arbitrary curve,
model is C = { a E -+1 : fij(a) = OVi,j}, where using similar methods as in [4]. In this way we can general-
I < i, j _5 n, fij E k[X, Y1,..., Y,,] are polynomials of ize our algorithms above. Furthermore, since the teqniques
the form fj jY _ X2=0 cij(X)Y,0 and c• E k[XI. of [4] depend heavily on the theorem of the primitive ele-
The coordinate ring of C is k[Cl = k[X, Y1,..., Y,]/(f,). ment, we can also obtain an effective method to generalize
There is a natural map w : C -- C inducing the map our results in the case of an arbitrary curve, using [2].
?" : k(C) -- k(l') on the field of rational functions of the
curves [1](p. 9 ). References
Step B. Compute the points Pk. E 7r-'(Ph) lying over

the singular points Pk = (ak, 0 h) E C. [1] M. Bronstein, M. Hassner, A. Vasquez, and C.J.
In particular, find the solutions of the systems of equations Williamson. Computer algebra algorithms for the con-
fi.(ak, Y1 , ... , Y,.) = 0 where i = 1, ... n, j = 1, ... n. struction of error correcting codes on algebraic curves.
Step C. Compute the adjoint divisor of the curve C. IEEE Proceedings on Information Theory, June 1991.
i. Form the differential w = r*° (_ d- 0) in the field ofa Form [2] B. Buchberger, G.E. Collins, and R. Loos. Com-

differentials R(C). puter Algebra, Symbolic and Algebraic Computation.
ii. Compute the local uniformizing parameter (l.u.p.) Springer-Verlag, New York, 1982.

around each point Ph, E 7r-'(Ph) by forming the matrix
II HI 1 < i,j < n. If 8-'s (Ph, ) = 0 for some i, then Y [3] M.D. Huang and D.J. lerardi. Efficient algorithm forih u the Riemann-Roch theorem and for addition in the ja-is the ILu.p. around Ptj. cobian of a curve. IEEE Symposium on the Foundations
iii. Express the variables X, Y, .... Yn in terms of the L.u.p. of Computer Science, pages 678-687, 1991.

Yi, and estimate the orders, ordp.,0X, ordp,.,Yj j = 1, ...n.
Furthermore, compute the orders, ordp•.,w, of w at Pk,t. [4] D. Polemi, C. Moreno, and 0. Moreno. A construction
iv. The adjoint divisor of the curve C at Ph is of a.g. Goppa codes from singular curves, submitted for

Ap/, = -ordph. w P&.,, of degree 6h = r, -ordpw. publication, 1992.
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Codes over Gaussian Integers

Klaus Huber, FI 17d
Deutsche Bundespost Telekom

Research Institute
P.O.Box 10 00 03
6100 Darmstadt

Germany

the Mannheim weight of a vector r = (ro, rl,.. .,r-I) over 9,

1 Introduction as wM(r) = E wM(rj). Similar to the usual Hamming distance
codes we characterize linear Mannheim error correcting codes by

In this contribution we give an algebraic approach for coding over the triple [n, k, dM] where n is the length, k the dimension, and
two-dimensional signal space for QAM-like constellations. The
two main points are an isomorphic mapping of fields GF(p), p =-tC
1 mod 4 onto a subset of the Gaussian integers, and a new two- the minimum Mannheim distance of the code. We start with the
dimensional modular distance called Mannheim distance. design of perfect icyclic One Mannheim Error Correcting (OMEC)

codes which are able to correct errors of Mannheim weigth one.
2 !g, Mannheim Distance, and Error Cor- Then Mannheim error correcting codes having df 2! 3 are de-

recting Codes signed and decoders working in a similar way as Berlekamp's ne-
gacyclic codes for the Lee distance (see [1], pp.207-217). The codes

Gaussian integers are those complex numbers which have integers are 90-degree rotationally invariant and are very easy to encode
as real and imaginary parts (for Gaussian integers see e.g. [2], and decode. Synchronization is also very easy. The coding gains
pp.182-187). Primes of the form p M 1 mod 4 can be written in which can be achieved are considerable, in particular if simple code
exactly one way as sum of two squares. Hence such primes p concatenations are considered. For primes p = 3 mod 4 we can use
are the product of two conjugate complex Gaussian integers: p = gp which is isomorphic to GF(p2 ).
a2+b0 = r-7r* where r = a+i-b and * denotes complex conjugation To give the flavour of the ideas, consider the perfect In, n- 1,3]
ir* = a - i b. Let [I. denote rounding to the closest integer and OMEC-codes defined by the parity check matrix
define rounding of a complex number by [x+iy] = [z]+i[y]. Then H o
the modulo function H = a ,a ,.. ,04)g • 

---
p() = g mod s = y = g - [.-'] •. where a is a primitive element of 9,. Hence a -' E (+i), and all

maps GF(p) - where G, denotes the residue class of the Gaus- errors of Mannheim weight < 1 will produce different syndromes.
sian integers modulo 7r. In figure 1 93+2i is displayed. Decoding is straightforward: Take the received vector r = c + eand compute the syndrome (a) = H - rT The location of an error

* o Figure 1 : •+having wM(e) = 1 is then given by I = log. s mod 11-31 and its
value by a -- 1 .

* * Example Letp= 13, ir=3+i.2, ando= 1+i, then

H = (1,1 +i,2i)
Clearly the inverse mapping then immediately follows as tus assume that at the receiving end we get the vector r =

= g = + ur mod p,(whereI= u+W.( + i,i,-1 + ), then s = H. rT 
= -2 = all and we find that at

To profit algebraically from the representation of GF(p) as position 2 = 11 mod 3 we have an error value ofs- 2 = i , e =
Gaussian integers, we introduce a two-dimensional modular dis-
tance which we call Mannheim distance. The Mannheim distance
dM(a,f) bet-een two Gaussian integers a and /3 is defined as
dM(o, 0) = Ree{3} + Im{7}, where -t = (P - o) mod r, i.e. the References
Mannheim-distance is the well-known Manhattan-distance modulo [11 E.R.Berlekamp, "Algebraic Coding Theory", Aegean Park
a two-dimensional grid. (The streets/avenues of Manhattan and Pr.es 1984.
Mannheim form a rectangular grid.) In a straightforward way we
define the Mannheim weight of y E G. as wA#('r) = dri(-1,0). and [2] G.H.Hardy, E.M.Wright, "An introduction to the theory of

numbers", fifth edition, Oxford 1979.
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CONSTRUCTION OF LINEAR BLOCK CODES OVER GROUPS

Ezio Biglieri Michele Elia
Dipartimento di Elettronica * Politecnico * Corso Duca degli Abruzzi 24 & 1-10129 Torino (Italy).

Let 9 be a finite group with a multiplicative operation and identity From the point of view of Hamming distance, linear codes over non-
element e. A block code C of length n over 9 is any non-empty subset abelian groups 9 are bad. In fact, we prove that under certain mildof the n-fold direct product gn, i.e., of the set of all the n-tuples of conditions any (n,k) systematic linear code over C is decomposable
group elements. We assume the group order I11 to be finite. The into k repetition codes, and consequently we have the following upper
dimension of a code C is k = loglgl ICI symbols per block, where ICI is bound to its minimum Hamming distance:
the code size, bounded above by i1cr. The code rate is r= k/n. The d (Hamming distance between two code words is the number of positions d k (2)
in which they differ. Let I denote the index set of the n-tuples of C.
An information set of C [1] is any index subset 3' g I of size 1IJ = k Bound (2) improves upon a previous result by Forney [1], who proved
such that every k-tuple of elements of G occurs in J' precisely once as that d ini - 2k + 2 forek d n/2 and s = 1 tar ko> n/2.the code words run through C. Codes exist without an information set. By examining in more detail the construction of linear codes overthe odirect prodsructhrof C. b e iself withti say informsatio grp. abelian groups, we prove that they can be characterized by a parity-The direct product of v by itself n times, say h n forms a group, check matrix H that describes the parity-check symbols yl,- -, y,,-A linear block code over 9 is a subset of Gn that form s a group, i.e., i 1 y e p e s n h m a p w r f t e g n r t r f G
is a subgroup of 94. This paper is devoted to the description of such in (1) by expressing them as powers of the generators of 9.
subgroups. The simplest case is that of a cyclic C:

In algebraic coding theory, the "classical" construction of linear Theorem 1. Consider the (n,k) tinear code C over the cyclic group Zicodes concatenates a k-tuple of information symbols with n - k check of order t. The parity check matrix H is an (n - k) x n echelon matrix
symbols chosen so as to satisfy certain linear parity check equations. We over the parity The mi triu H istan d o theod is
show that this construction can be mimicked to generate linear codes over the ring Zt . The minimum Hamming distance d of the code isover groups, equal to the minimum number of linearly dependent columns of H.

Definition 1. An (n, k) systematic block code C with block length n Example 1. Let n = 5 and k = 2. A (5,2,3) code over Z2 is defined
and dimension k over a group Q is a subgroup of g" with order 1g9k by the parity check matrix over Z2formed by the n-tuples H= I[ 10 0

(XI, x2, -.. k, Y1 ., Yn-k) (1) 1 0 0 0 1

with y3 = fi(xi, x2, ... , xk) where 4i are (n - k) maps of 9k into 9. It is easy to check that the minimum number of linearly dependent
columns is 3. Thus, the minimum Hamming distance of the code is 3.

For linearity, the maps 4i must be homomorphisms: If g denotes a generator of Z2, the code words have the form
(gxi, gX:• gZI+X2, gX•, g•).

Proposition 1. The (n, k) systematic code with code words (1) is A similar theorem can be proved for general abelian groups.
linear if and only if the maps O are homomorphisms of G* into G.

Theorem 2. Consider the linear systematic (n,k) code C over anA more compact definition of a linear code can now be provided. abelian group A of exponent dn. The parity-check matrix H is aWe denote by X(1) the elements of ',. m(n - k) x mn echelon matrix over Zd,. The minimum Hamming
distance d of the code is given by the minimum number of linearlyDefinition 2. A linear (n, k) systematic block code C over a group C dependent columns in matrix H over the ring Zd,, where certain sets

is the image of an endomorphism I of 9": of columns are accounted for 1.

1P(X(k) I y(n-k)) = (X(k) I [,(X)](nk)) Example 2. Let n = 5 and k = 2. A (5,2,3) linear code over Z2 x Z4

where 0 is a homomorphism of Ct into g exists. The code is defined by the parity check matrix over Z4
1 0 1 0 -1 0 0 0 0 0

The following proposition shows that the actual algebraic structure 0 1 0 1 0 -1 0 0 0 0
of a linear code does not carry information about the properties of the H 1 3 1 0 0 0 - 1 0 0 0
code itself. 3 1 2 2 0 0 0 -1 0 0

1 1 2 0 0 0 0 0-1 0
Proposition 2. All linear (n, k) systematic codes over the same group 0 1 1 2 0 0 0 0 0 -1S are isomorphic. Direct computation shows that he minimum Hamming distance of this

code is 3. Its code words have the formWe are especially interested in linear codes that cannot be obtained 11+&2 zj+rj+2 x2
by concatenating shorter codes. A group C is called indecomposable [2, 1lgg 2g• g+ +2  + + 9+2zi+:•+ji
p. 1211 if ; {e}, and ifg = xb×X implies either h = {e} or X = (e}. g +g+2Consequently, we define linear indecomposable codes as follows.

Definition 3. A linear (n, k) systematic block code is called indecom.
posable if it is an indecomposable group. References

The code words of a decomposable code can be written (possibly [1] G. D. Forney, Jr., "Linear codes over nonabelian groups are not goodafter reordering its components) as the concatenation of two words, Hamming distance codes," submitted for publication, September 1991.
each one with its information set and such that the parity check symbols [2] J. J. Rotman, An introduction to the Theory of Groups. Dubuque. Iowa:
depend only on one word or the other: Win. C. Brown Publishers, 1988.

with n - 4, + , an each -, d1p1 d only on2k,. 1, while ea This research was sponsored by the Italian National Research Councilw ith n = k + 1 i + 1 , a n d ea ch y/, d e pe n d s o n ly o n x , .. .. x k, w h ile e ac h C ) u n e "P o t o F i a z a o P sp r .
zi depends only on Zk, +1 ... z,. If this is the case, we write C C, xC. (CNR) under "Pr=getto FinalCzzato TXsporta."
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DEBRUIJN SEQUENCES, IRREDUCIBLE CODES AND CYCLOTOMY

E. R. Hauge and T. Helleseth

University of Bergen, Department of Informatics, HiB, N-5020 Bergen, Norway. E-mail: ErikR.Hauge@ii.uib.no, Tor.Helleseth@iiuib.no
Partly supported by the Norwegian Research Council for Science and the Humanities (NAVF).

Abstract
The cycle join algorithm is applied to construct deBruijn se- We define the mapping 4 : GF(2") --+ GF(2)" by 0S(0) =

quences from irreducible cyclic codes. The number of sequences (0,0,-. -,0) and 0(al) - (at.o, ar+E.0'- ., aI+(n-i)E.0). It follows
obtained by this construction is shown to be related to the cyclo- that 0 is a vector space isomorphism and that the two elements
tomic numbers. The Matrix-tree theorem and Gaussian sums give a 0,(6), 0(8 + 1) E GF(2") are conjugated for all 0 E GF(2"),
bound on the number of sequences constructed in this way. 0(1) = (1,0, ...,0).

For any eE = 2" - 1, the cyclotomic classes Ci, 0 < i < E in
Introduction GF(2") are defined as follows:

A binary deBnfijn sequene of length 2" is a sequence such
that all n-tuples occur exactly once in the sequence. The binary C, = + j <e}.
deBruijn graph of order n, is a directed graph with 2" nodes, each
labeled with a unique binary n-dimensional vector, and an edge The cyclotomic number (i,j)E is defined for 0 : i,j < E by
from node S = (8o,so,...,8,-) to node T = (to, tx,...,tn-i) if
and only if (sl,82,...,s,-1) = (to, tl,...,t- 2). Any nonsingu- (i'j)E=#{(ý'e)JýE i, +1=%eE i}.

lar feedback function A(so, s1,... ,Sn-1) = sO +g(s1,32," .,Sn-1) The cyciotomic numbers have been extensively studied in the liter-
decomposes the deBruijn grapb into disjoint cycles if we let thec
the successor of the node S = (80,O,.. l,8-,n-) be the node .r.(t, su2,...,sn-sr, f(to,ie sod S )). From such a decomposition The crucial observation is that under the mapping q0 above, the
one can construct deBruijn sequences by the well known cycle join cycles in the irreducible cyclic code generated by h(x) correspondmnethod, wh cons isucts ofjoinisequengs a thewellkn n cycls p e joint to the cyclotomic classes. Further, the number of conjugated pairsmethod, which consists of joining all the cycles stepwise into a between the cycles equals the cyclotomic numbers. The exact numbernode S = (8o,.j1,',n tw c yc1 a a conjugate node a of deBruijn sequences obtainable in this way can now be found
(ode S+=1,81 ... S - 1) E C Afterntecangcnugathe sceso of from the Matrix-tree Theorem on the graph where the cycles of f

S( whic corres II*,* -1)EC2.fto r irchangingof the suncssons o) S are nodes and the edges correspond to conjugated pairs, since each
and (tree in this graph represents a deBruijn sequence. Hence, we can
the two cycles will be joined to one cycle. Repeating this process obtain an algebraic expression for the number of deBnnjn sequences
will eventually lead to a deBruijn sequence. obtained by -this construction in terms of the cyclotomic numbers.

The number of deBruijn sequences that can be obtained from Using Gaussian sums to approximate the cyclotomic numbers we are
this construction will depend on the number of conjugate pairs on able to show the following result.
all pairs of cycles generated by the function f, which is the starting
point of our conistruction. Theorem. T.e number of deBruijn sequences constructed by the

We apply the cycle join method to construct deBruijn sequences cycle join method starting from the cycles generated by an irreducible

from irreducible cyclic codes, i.e. f is a linear recurrence with an polynomial h(x) is at least
irreducible characteristic polynomial. We give an algebraic expres- E-l

sion for the number of deBniijn sequences constructed in this way 1 2I - 2E - (E - )2/2n1
in terms of the cyclotomic numbers. E

Methods and results

Let "- References

f(Asosi,' ... sn-) = Zh, [11 L.D. Baumert and RJ. McEliece, "Weights of irreducible cyclic
i=0 codes," Information and Control, vol.20, pp. 158-175, March

" n-1 1972.where the characteristic polynomial h(x) = En hxr is irre-
iwi+ o [2] H. Fredricksen, "A survey of full length nonlinear shift register

ducible of degree n over GF(2). Then f will generate E cycles of cycle algorithms," SIAM Review, vol. 24, pp.195-221, April
length e in the deBruijn graph, where. eE = 2" - 1 and n is the 1982.
smallest integer such that 2" 1 (mod c). [31 T. Storer, Cyclotomy and Difference Sets, Chicago: Markham:

Let h(x) be the minimum polynomial of an element (3 = a Publishing Company, 1967.
for some primitive (2" - 1)-th root of unity a in GF(2"). We can
express oý by

n-I

, =Z•aj.d , 0<j<2"-l.
i-0
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M-SEQUENCES AND DUAL BASES OVER GF(qm)

John J. Komo and William J. Reid M
Electrical and Computer Engineering Department

Clemson University - 211 Riggs Hall, Box 340915
Clemson, SC 29634-0915 USA

1 0 0 ... 0 0
Abstract

An m-sequence over GF(qm) can be expressed as a vector of 0 b2  b3  b b
m-sequences whose conment mn-sequences are shifted versions of 0 b3  b4  ... bm 0
an in-sequence over GF(q). The amount of shift between
components of the mr-sequence over GF(qm) is given as a ratio of B' (3)
elements of the trace dual basis corresponding to the basis
expressing GF(qm) over GF(q). An efficient algorithm, which does
not require evaluation of the trace, is developed for obtaining the 0 bin.1 bm ... 0 0
ratio of trace dual basis elements to the first element. The dual basis
can then be completely obtained by evaluating the first dual basis 0 b. 0 ... 0 0
element. Another algorithm is developed which efficiently evaluates
this first element. Included in this algorithm is a sequential Ile ratio of dual basis elements can be obtained, using (3), as
evaluation of the trace which can be sequentially obtained directly in
terms of the coefficients of the primitive polynomial that generates kGF(qmn)" M7 "=),m./A = binj hm-,+Ij ], il,.,-,(4)

Summary 
1

where
Let , X.) be the trace dual basis of the basis

1,y,...,ym-) }generated by the primitive polynomial h(x)¢ , q and m odd or q even
expressing GF(qm) over GF(q). Also, let g(x) be the degree in bm (5)
primitive polynomial with root a that generates the ni-sequence c q odd and n even.
over GF(q) and f(x), which divides g(x), be the degree n primitive
polynomial with root a that generates the vector m-sequence d over If h(x) is a trinomial of the form h(x)=xm+hlx+ho, B' is a
GF(qin). Then, for some eo, d can be expressed as [11] monomial matrix and the shift factors k., i=l,2,.r-i, are

k .
Mr-i e0+zkiw obtained from y m'`b¥my asd= •y¥ T "c, (1)

(q-2 +i, q and in odd or q even

where Tic indicates a left shift of c by i elements, r- o, q-1
k . k m.i= •i 2,., -I (6)

z=(q''-l)I(q m -l), gcd(w,q'-l)=l, and Y The shift of the -(j= .3 mll,+.qn-i. (6)

jth component relative to the Oth component is then given as 2 q- q m
zký-w iod(q-L 1), where w is used for choosing one of the The determination of the dual basis as opposed to the ratio of
V(qm- )/m basis or primitive polynomials for expressing GF(qm) dual basis elements requires the evaluation of 2m-.1 orce functions
over GF(q) and V-) is the Euler * function. as shown in A. An algorithm for the evaluation of the trace directly

The dual basis can be obtained in terms of B=A-' where [2] in terms of the coefficients of the primitive polynomial h(x) that
generates GF(qlm) and traces of smaller powers of a is also
developed here as

'(l) uio tr mZ))= - h.- t m(a j) - ihm- i= l,2,...2 . (7)

tr'oo' trrn(9?) tr',(y 3) ... tr"'('y") I r-1 ni

A (2)
As usual, tr,(I)--m and for iýin tI'n(a') can be expressed as a

tr•('o''l) trml ('n) te e+l) ... tr,(ym-2)i lineacombination of nl (a'), j=0,,...,.nm-i. Tlhuso can be
obtained by solving for the first column of B and the remaining dual
basis elements obtained by multiplying (3) by )• or the entire dual

Representing the components of the m-sequence generated by h(x) basis cantb obtained by solving f or all of B.

as a,,e=u (&'f), a modified A, A' (exact if 0-1), with initial

conditions a6=l and i=O, i=l•,2,...jn-I can be evaluated without References
calculating the trace. Due to the symmetry and triangular nature of
A', B, the modified B, reduces to [I] J.J. Komo and MI. S. Lam, "Primitive polynomials and

m-sequences over GF(qm)", IEEE Tram. lp~orm. Theory, to
appear March 1993.

[2] R. J. McEliece, Finite Fields for Cowuter Sciends and
Engineers, Kluwer Academic Publishers, 1987.
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Linear Recurrences on 2D Convex Lattices and
Decoding of Some Codes from Algebraic Curves t

Shojiro Sakata
Toyohashi University of Technology

Department of Knowledge-Based Information Engineering

Abstract: We present a theory of linear recurrences defined on corvex
lattices in the 2D plane and propose a generalization of the 2D Berlekamp-
Massey algorithm which finds a minimal set of linear recurrences capable of
generating a 2D array on a 2D covex lattice. Furthermore we show that
this algorithm is applicable to decoding efficiently some kinds of algebraic
geometry codes. in particular codes introduced by S. Miura and N. Kamiya.

t This manuscript is a revised and extended version of the paper which was

presented partly at Symposium on Information Theory and Its Application

(SITA'91), at IbUsuki, Japan, on Dec. 11-14, 1991.
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BOUNDS FOR LINEAR BLOCK CODES OVER RINGS

Magnus Nilsson
Department of Electrical Engineering

Linkoping University
S-58183 Linkoping, Sweden

Uner Bound on the Minimum Euclidean Distance
Theorem 1. Consider a linear block code C over Zq, of

Linear block codes over rings are discussed for q-ary PSK block length n and including M codewords. Let t be the
over a Gaussian channel. An upper bound on the minimum t
Euclidean distance is given and proved. A lower bound on smallest integer, t_<n, such that M 5nthe block error probability is discussed. m s g n c tqn.

Introduction The minimum Euclidean distance dEtln, between two
codewords in C is then upper bounded by

We discuss bounds for the following PSK-optem:

N-,() 1() I ~ mi:5 2fiENt sin-

Prgof of theorem 1. We first remind that for any linear
T-msmi.w, Recet code, the difference between two codewords is a codeword.

The minimum Euclidean distance between two codewords
The code is a Hum blok cod over of block length n and then equals the minimum Euclidean weight of a codeword.
the modulation is q-ary PSK with energ EN per dimension. Consider the following subset S of the set of n-tuples over Zq:
The channel adds white Gaussian noise. The detector has q
congruent regions and the decoder makes error correction. S={y; cl(p)__ t and ci(y) = 0 for i > I.
The modulator, the channel and the detector together form a t
memoryless additive q-ary channel. Thus, y = x + z (mod q), The ni. oy
where the probability of an error pattern z is a function of The7nuber ofn-tuplesinSis I S Ii BY
the SNR and of the compoii of &.

assumption, M ISI>qn. Since the code is a subgroup in Zqn,• to• Let q. m and n be positive integers and let H thr must Ibe two n-tupl es, T/and y'• in S which are in the

be an m by n matrix with elements in Zq. Then,
same coset with respect to C. Then, z=-yV -y2 is a codeword

C={ z; jHT - 0(rood q) } in C. We need an upper bound on wv<z). We have ci(yj)=
= ci) = 0 for i > 1, which implies that ci(0 = 0 for i > 2.

is a linear block code Zq. Furthermore, wL(yl)_< t and wL(r) . t which implies that
wL(z) s 2L Thus, cl(xz) + 2 c2(4) s 2t and ci(z) - 0 for i > 2.

Deflniton 2. Let ybe an n-tuple over Zq and let ci () be the Under this condition, wE( is maximum for cl(x) = 0 and

nurmbe of symbols in y which are equal to i or (q-i). Then, c2(iO=- t. The upper bound Is theng -ez by defln-Mon 3. .

=) -(cl(Y),c2•, ... CrY) Lowerbound on W block error .gnc2.(
Assume fixed q, n, and SNR. Then, each possible error

Id Foreyenr- pattern 3q has a fixed probability P(;i). Assume a linear code
Swith M equally likely codewords. Then, independently of
which codeword is transmitted, the code can correct at most

Defin 3. L ybe anr n-tuple oer Tq. one erroz pattern in each cometm The number of conets is

WE() -2 2 (n22( )) We def•ne V to be the set of the ý mostlikelyerr pattems.
The best possible linear code then is a code for which all
error pattes in V belong to distinct cowets. Thus,

is the Eucig d e nmm~.i alh of y. Pe-P *4zI - 1 ~ i
QDe1nttoL.Lety be an n-tuple over Zqand let Iy I bethe el •V

minimum ofyi and (q-y). Then,
Consider a list of all N o error patterns, arranged in

n r order of decreasing prbbiliRy. The lhit is then actually a list
WL(p) =, 1 = I ici(y) of composition classes. The number of error patterns in each

class can easily be calculated as a multinomlal coefflcent

=multpid by a power of two. The bound is than quile eaW to
calculato because there is at most one composition cla

is the Lee ,of y. 364 which is partly inside and partly outsideV.



ON DESIGNS AND FORMALLY SELF-DUAL CODES

George T. Kennedy * Vera Plesst

National Security Agency Department of Mathematics
Fort George G. Meade, Maryland 20755 USA University of Illinois at Chicago

Chicago, IL 60680

Abstract Type I codes which are not self-dual often have
a larger minimum distance for a given length thanBinary formally self-dual (f.s.d) even codes are thle self-dual codes. In fact there are extremal f. s. d.

one type of divisible [2n, n] codes which need not be codes where self-dual codes cannot exist. We con-

self-dual. On occasion a f. s. d. even [2n, n] code struc some se ex can d ist te on
can avea lrge i-tinmurndisanc thn a[2n n)struct some of these extremal codes and list the open

can have a larger ginimum distance than a [2n, n]s cases where the existence of extremal f. s. d. even
self-dual code. We give many examples of interest- codes has not been determined. Also, we give an infi-
ing f. s. d. even codes. We also obtain a strengIi- nite family of f. s. d. even codes which are not equiv-
ening of the Assmus-Mattson theorem. If C is a alent to their duals, using the Turyn construction.
f. s. d. extremal code of length n we 2 (od 8)[n - 6 It is well-known that one can obtain designs from
(mod 8)], then the words of a fixed weight in CtU Ct vectors of a fixed weight in an extremal self-dual code
hold a 3-design [1-design]. Finally, we show that the by means of the Assmus-Mattson theorem [1]. One
extremal f. s. d. codes of lengths 10 and 18 are unique. can extend the Assmus-Mattson theorem to the words

Summary of a fixed weight in C U C' as follows:

A code C is formally self-dual code (f.s.d.) if C Theorem 2. Let C be a [2n, n] extremal f. s. d. even
and C' have the same weight distribution. A code code and consider the set S of vectors of a fired weight
is divisible if the number of vectors of any weight in C and in C'. Then the set S holds a 3-design
is divisible by a constant 6, greater than one. The whenever 2n =- 2 (mod 8) and a 1-design whenever
Gleason-Pierce theorem characterizes the fields over 2n = 6 (mod 8).
which a formally self-dual divisible code can exist and Extremal type I codes exist at length 10 and 18.
shows that 6 must be either 2, 3 or 4. In all cases but xemalt y I co dst a length 10 and 18.one a formally self-dual divisible code is in fact self- Delsarte [2] constructed a [10,5,4] f. s. d. code and ex-
oneaformallyself-dual. Wdihisis e ce t is ifap ict se- hibited the underlying 3-designs by means of inversive
dual. We consider this case in this paper, which is planes, while Assmus and Mattson [1] constructed a
the case of binary f.s.d. codes with b = 2. We call [18,9,6] f. s. d. code as an extended quadratic residue
such codes f.s.d. even codes or simply type I codes. code. They exhibited the underlying 3-designs as a

The classification of self-dual codes with vectors of code.Te exhibit th e u rlyn 3-eigns
minimal weight 2 is trivial, since a vector of weight We provene ofollowing about these codes:
2 in such a code is a direct summand. The existence
of f.s.d. even codes with a fixed number of vectors of Theorem 3. Any two f.s.d. even [10,5,4] codes are
weight 2 is complicated. We prove the following: equivalent.

Theorem 1. 1. If mi are positive integers such that Theorem 4. Any two f.s.d. even [18,9,6] codes are
r ~equivlnt.

mi = n(n > 2), then there exists a f.s.d. even

code C of length 2n with A 2 = F (--). Furthermore, References
i= 

2f1

C is equivalent to its dual.
2. If • mr = n- r/2 where r is even, then there [1] E. F. Assmus Jr., and 11. F. Mattson, Jr., "New

5-designs," J. Comb. Theory, vol. 6A, pp 122-
exists a fs.d. even code C of length 2n with A2 = 151, 1969.

S("2). Again C is equivalent to its dual.
2 [2] P. Delsarte, "Majority logic decodable codes

derived from finite inversive planes," Inform.
*The author thanks the University of Illinois at Chicago for Contr., vol 18, pp. 319-325, 1971.

their hospitality while this work was in progress.
tThis work was supported in part by NSA Grant MDA 904-

91-H-0003.
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GREEDY CODES

Richard A. Brualdi 8 Vera Plesst

Department of Mathematics Department of Mathematics
University of Wisconsin University of Illinois at Chicago

Madison, WI 53706 Chicago, IL 60680

Abstract and we order the vectors in Vi by following the vec-
tors z 1 ,x 2 ,.. .,Zm with the vectors Y1 I @ Zi, 11.

Given an ordered basis of F2" and an integer d, we

define a greedy algorithm for constructing a code of X2 ,... ,yi E Zm:

minimum distance at least d. We show that these
greedy codes are linear and construct a parity check

matrix for them. A special case of this algorithm Since V, = F•n, this defines an order for tfe vectors
gives the lexicodes, thereby providing a procf of their of F2' which we call the order induced by B or, for
linearity which is independent of game theory. For short, the B-order of F2".
ordered bases which have a triangular form we are Let B be an ordered basis of F2 and let d be an in-
able to give a lower bound on the dimension of greedy teger with 0 < d < n. Applying the greedy algorithm
codes. Some greedy codes are better than lexicodes. (for the chosen d) to the B-order of F• we obtain a

Summary code C = C(B, [) whose minimum distance is at least
d. The code C is the B-greedy code of length n and

Let n and d be integers with 0 < d < n and sup- designed distance d. The lexicodes are a special case
pose that the set F2" of binary n-tuples has been listed of B-greedy codes.
in some order. Choosing the first vector on the list Our main result is that B-greedy codes are always
and then apply recursively the rule: linear and we show how to enhance the greedy algo-

Choose the next vector on the list whose (Ham- rithm in order to determine a parity check matrix of

ming) distance to each previously chosen vector is at the code. We also show that it suffices to consider

least d. only B-greedy codes of even designed distance. The

defines a binary code with minimum distance at least B-greedy codes for which B is a triangular ordered

d. Such greedy codes were discussed in [2,3] in the basis are called triangular-greedy codes.

case that the binary n-tuples are listed in lexico- We present computer data which shows that these

graphic order. codes have dimension within one of the best codes

Let B denote an ordered basis Y,,.. .Y , Y, of known [4].

F2'. The ordered basis B induces an order of the
vectors of F2' defined recursively as follows: Let
Vo = {(0,0,. .. ,0)} and let References

Vi = (yj,....,y) (i = 1,2,. n) [1] R. A. Brualdi and V. S. Pless, Greedy codes, to
appear in JCT (A).

be the subspace of F•' spanned by the vectors
{ye,.. yt b}. The subspace V0 contains a unique vec- [2] J. H. Conway and N. J.A. Sloane, Lexicographic
tor and hence its vectors are ordered. Suppose the codes: Error -orrecting codes from game theory,
vectors in Ve-c have been ordered IEEE Trans. Inform. Theory, vol. IT-32, 1986,

337-348.

Xl, X2... , xm (m = 2'-). [3] V. I. Levenstein, A class of systematic codes, So-

We have the partition viet Math. Dokl., 1:1, 1960, 368-371.

[4] T. Verhoeff, An updated table of minimum-
Vi = Vi- I U (Yi D •i1) distance bounds for binary linear codes, IEEE

*Research partially supported by NSF Grant DMS-8901,15 Thins. Inform. Theory, vol. IT-33, 1987, 665-
and NSA Grant MDA9O4-89-H-2060. 680.

?Research partially suppoit-'d by NSA Grant MDA 901-91-
H 0003.
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ON THE UPPER BOUND OF THE SIZE logT(rn)
OF THE r-COVER-FREE FAMILIES l< C3T!0,n) (2)

MIKL6S RUSZINK6 
n r2

RESEARCH GROUP for INFORMATICS and ELECTR. for some absolute constant c3 and any n. Their proof is rather
HUNGARIAN ACADEMY of SCIENCES and involved. Here we shafl give a simple and purely combinatorial

MATHEMATICAL INSTITUTE of the HUNG. AC. of SC. proof of this result.
BUDAPEST, P.O.B. 127, 1364 HUNGARY References

Abstract [1] Nguyen Quang A aid T. Zeisel, Bounds on constant
weight binary superimposed codes, Probl. of Control and

The notion of the r-cover-free families was introduced by Information Theory 17 (1988), 223-230.
Kautz and Singleton in 1964 [17]. They initiated investigat- [2] N. Alon, Explicit constractions of exponential sized fam-
ing binary codes with the property that the disjunction of any ilies of k-independent sets, Discrete Mathematics 58
< r (r > 2) codewords are distinct (UD, codes). This led them (1986), 191-193.to studying the binary codes with the property that none of the [3] Zs. Baranyai, On the factorization of the complete uni-
codewords is covered by the disjunction of < r others (Super- form hypergraph, Proc. Colloq. Math. Soc. Jdnos Bdlyai
imposed codes, ZFDr codes; P. Erd6s, P. Frankl and Z. Fiiredi (10. Infinite and finite sets, Keszthely, Hungary (1973).
called the correspondig set system r-cover-free in [7]). [4] A. G. Dyachkov and V.V. Rykov, Bounds on the length of

Since that many results have been proved about the max- disjunctive codes, Problemy Peredachi Informatsii, Vol.
imum size of these codes. Various authors studied these prob- 18, No 3 (1982), 7-13.
lems basically from three different points of view, and these [5] A. G. Dyachkov and V.V. Rykov, A survey of superim-
three lines of investigations were almost independent of each posed codes theory, Probl. of Control and Information
other. This is why many results were found first in information Theory, Vol. 12, No 4 (1983), 1-13.
theory ([1], [41, [51, [14], [151, [16], [171), were later rediscovered [6] P. Erd6s, P. Frankl and Z. Fiiredi, Families of finite sets
ir' combinatorics ([2], [6], [7], [10]), or in group testing ([12], in which no set is covered by the union of two others,
[13]), and vice versa. Journal of Combinatorial Theory, Series A Vol. 33, No.

We shall approach this area from the combinatorial side. 2 (1982), 158-166.
Our main goal is to estimate the maximal size of the family [7] P. Erd6s, P. Frankl and Z, Fiiredi, Families of finite sets
of subsets of an n-element set with the property that no set is in which no set is covered by the union of r others, Israelcovered by the union of r others. nwihn e scvrdb h no frohrlreJ. of Math. Vol. 51. Nos. 1-2 (1985), 79-89.

Summary [8] P. Frankl, On Sperner Families Satisfying an Additional
Let S be an n-element set. 2s is the set of all subsets of S. (s) ConditionJournal of Combinatorial Theory, Series Adenotes the set of all k-subsets of S (k ) 0). If jSj = n, then Vol. 20, No. 1 (1976), 1-11= (•). We denote by [ne toc set {1, 2S ... fn}, and logzS is [9] P. Fankl and Z. Fiiredi, Colored packing of sets, Annalsalways of base 2. A set system A C 2 s is called k-uniform if its of Discrete Mathematics, Vol. 34, (1987), 165-178members are k- sets. It is usually supposed that the underlying [10] P. Frankl and V. R6dl, Near perfect coverings in graphsset of the set systems is [n]. and hypergraphs, Europ. J. Combinatorics 6 (1985), 317-set of l the st st s ristinct if U= a 326.We call T' C 2S r-distinct, if U I A, 0 U,~ Bi for [11] R. G. Gallager, Information Theory and Reliable Com-any {Ai,A 2 ,.....At.} $ {B 1 ,B12 ,.....B,}, 1 _< k e < r;A 1,A2,...,Ak,ABL, B, .... ,B2e F. F" C 2 s is r-cov<r-free, if munication, Wiley (1968), problem 5.8A0 iI A2, -. , Ak B1, B2, hod foBtEP.r C 2d istinctoA f, if E [12] F. K. Hwang, A method for detecting all defective mem-A q Al U •A2 U ... U Ar holds for all distinct Ao, A,._r E bers in a population by group testing, J. of the American
.F. F* C 2s is < r part intersecting, if 1A, 0 A,] < Statistical Association, Vol. 67, No 339 (1972), 605-608.1 min f Ai 1, JAj 1) for any distinct Aj, Aj E TF* holds. We de-nome byI T(r,), forn)T(n anyin AA Tr ) holds. We - [13] F. K. Hwang and V.T. S6 s, Non adaptive hypergeometric

note by T'(r, n), T(r, n), T*(r, n) and T'(r, n, k), T(r, n, k), ru etnSui c ah ugrc,2 18)group testing, Studia Sc. Math. Hun garica, 22 (1987),
T*(r,n, k) the maximum cardinality of the corresponding set 257-263.
systems in general and in k-uniform case, resp. We will pro- [14] S. M. Johnson, On the upper bounds for unrestricted bi-
vide upper bounds on these functions for r fixed and n tending nary error-correcting codes, IEEE Trans. on Inf Th.,
to infinity. Vol. it- 17, No. 4 (1971), 466-478.

The following upper and lower bounds were proved in [1], [15] S. M. Johnson, Improved asymptotic bounds for error-
(4], [5], [7], (131: there exist two (absolute) constants ci, c2 such correcting codes, IEEE Trans. on Inf. Th., Vol. it-9, No
that 4 (1963) 198-205.

ri o _ (1) [16] S. M. Johnson, A new upper bound for error-correcting
2 n r codes, IRE Trans. on Inf. Th., Vol. it-8 (1962), 203-207.

for any n. In most papers the lower bound is proved by prob- [17] W. H. Kautz arid R.C. Singleton, Nonrandom binary su-
abilistic methods. In [13] V.T. S6s and F.K. Hwang used a perimposed codes, IEEE Trans. on Inf. Th.. Vol. it-10
greedy-type algorithm to generate < r part intersecting fami- (October 1964), 363-377.
lies for proving the lower bound. The upper bound was proved

r
using the observation that, by definition, • (r) < 2". The

gap between the upper and lower bounds is rather large. Dy-
achkov and Rykov obtained a better upper bound [4]:
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The MR2W (bound of four) bound yields a more pre-
cise but less explicit result. Nonconstructive results
[I] of Cohen and Frankl entail that the intersection of
the first axes' bissector with this corner lies entirely in
Y41". Theorem 1 shows then that the whole triangle

{(O, 0), (0.5, 0.5), (1, 0)) is in Y 21-. Manin [31 showed the

Packing Radius existence of a continuous function ct,(6) which is the
vs "true upper bound" on the rate. Analogously define

Covering Radius j32(6) as the "true lower bound" on p. We do not know
if ;92 is continuous in this corner. All that is known is

Patrick Solh, 6 > )32(6) > H-'(1 - -2(6)).
Philip Stokes,
CNRS, MS,.

250, rue A. Einsteni, 5 Right Half-Square
06 560 Valbonne, France

This means p > 0.5.

Key words:Binary Codes, Covering Radius, Packing

Radius, Asymptotic Bounds 5.1 Linear Codes

A simple construction shows that the line segment {p =

1 Introduction 0.5,0 < 6 < 2) lies entirely in YP'. By Theorem 1 the
triangle spanned by this segment and the point (1,0) lies

Let C,, i = 1,2,.... denote an infinite family of binary entirely in Y•"'. Now recall the Janwa's bound [2]

codes with length ni, covering radius ti, minimum dis-

tance di. Assume that the limit p (reap. 6) of the ratio -'
k(di

(resp. -4) for large i exist and call it normalized covering ri < n, - D" 1.

radius (resp. distance). Our aim is to study the set Y2 n,

(resp. y4i,') of points (p, 6) of the unit square achieved
by binary families of codes (resp. of linear codes). We Families of linear codes with k, = 1 (for i large enough)
address the following questions for both domains lie on r p , - -. Farni!i csf linena codes with ki > 2 (for

1. bounds on the extreme points i large enough) lie under p = I - 2. which is a side of
the preceding triangle. This settle the three questions for

2. convexity this corner in the linear case.

3. continuity at the border.

Both sets split naturally into four subdomains according 5.2 Unrestricted Codes
to the position of p and 6 w.r.t. 12 It is easy to see that p < 1- • is valid for all (fam-

ilies of ) codes with at least two words. The Plotkin

bound yields 6 < 2 for families of codes with at least

2 Convexity three words. A careful study of 3-word codes based on
the Sloane-Mattson [5, 4] linear programming methodol-

Question 2 is still unsolved. A weaker result is the fol- ogy shows that there are such codes on the line p = 6. So
lowing Y2 consists of Y21, plus the triangle with sides the bis-

Theorem I Let (z, y) E Y4" (resp. E Y,). Then every sector and the first two Janwa bounds. The status of the
point oft the line between (.r, y) and (1.07 lies in 1'"' (-esp. triangle (1/2,2/3)(4/7,4/3)(2/3,2/3) is still unresolved.

Y2 ). 6 Acknowledgement

3 We thank G.D. C-hen, S. Litsyn, H-F. Mattson, jr for3 Upper Left Corner helpful discussions.

(0.5 < 6 < 1, 0 < p < 0.5)) The Plotkin bound shows
that this corner is empty. References

4t rner [1] G.D. Cohen, P. Frankl,"Good Coverings of Ham-

4 Lower Left ming Spaces with Spheres-, Discr. Math 56 (1985)

(0 <_ 6 < 0.5, 0 < p < 0.5)) Let B(6) denote any bound 125-131.

on the rate as a function of the distance. Eliminating the [2] H. Janwa. "Some New Upper Bouinds on the Coy-
rate by the sphere covering bound yields ering Radius of Binary Linear Codes- IEEE Trans.

on Information Th.. IT-35 (1989) 110-122.

p >_ H-1( - B(6)), [3] Y. Manin, "What is the maximumi number of points

where H is the entropy function. Taking B to be the of a curve over F2?" J. of the Fac. of Sc. Univ.

Elias Bound yields the following weak but elegant result Tokyo 26 (1981) 715-720.

6 < 2p(l - p). [4] H.F. Mattsonjr. "Simplifications to ..- J. Comb.
Th. ser. A 57,2 (1991) 311-315.

[5] N.J.A. Sloane "A New Approach to the Covering
Radius of Codes". J Comb. Th. set. A 46 (1986)

Figure 1: Linear Codes Figure 2: Unrestricted Codes



Constructive Non-Existence Proofs for
Linear Covering Codes

Raen Struik PRooF Suppose code C1 has a codeword of weight to ; 0. We can put the
Eindhoven University of Technology parity-check matrix H for code C into the following form:

Dept. of Mathematics and Computing Science
P.O. Box 513, 5600 MB Eindhoven, the Netherlands ( A 0n

1 Introduction n-w W

A code C C F has covering rudis (at most) r, if d(x, C) < r for allxE -. 1 . All syndromes of the form (*, 1) should be the sum of one or two comatos
For linear codes, the covering radius is the highest weight of any cosetleader of matrix H, hence to + to (n - wo) = to (n + I - to) Ž! 2-"
of the code. A basic question concerning the covering radius of codes is to
determine K(n, r), the minimum cardinality of any block-code of length n 2. The columns of matrix A, I-cover F'-2 using matrix Ao. Now appli-
and covering radius r. For linear codes this question amounts to determining cation of Lemma 2 proves the statement.
l(m, r), the minimum length of a linear code with codimension m and covering 3. Via elementary row operations on matrix H we obtain a sero-column in
radius r. We show how techniques from coding theory can be successfully matrix A,. Now we can apply the 'inversion property' (Lemma 3). 0
applied to improve bounds on l(m, r) found in the literature [3-7].

Remark 6 Notice that Property I is weaker than Property 2, since Prop-
erty 2 together with the sphere-covering bound implies Property 1. Often

2 Preliminaries significantly better bounds for K(n, 1) are known. 0

Let C be a code of length n with covering radius r. As an application of Lemma 5 we prove the bound 1(2m - 1, 2) ? 2' + 1 for
A trivial lowerbound for the size of a covering code is given by the Sphere- m > 3, improving by one the minimum value of 1(2m - 1, 2) implied by the
Covering Bound Van Wee bound. This bound was conjectured by Brualdi, Pleas and Wilson

(n [3], but up to now only the case mn = 6 has been settled [4,5]. The proof is
II ,= i >_ 2" (1) surprisingly simple.

i=0

The Van Wee bound [1] improves on this bound, whenever (r + 1)1 (n + 1): Example 1(2m - 1, 2) 2! 2- + I for all m> 3

IC ( -..).. _ _ ( > 2" (2) Paoov SupposeC is an [n =2"-, 2" -(2m -1)]-code with covering radius
-:0 two. We infer from Property I of Lemma 5 that, for n > 3, code C1 does

As a direct consequence we obtain not contain the all-one vector. If a codeword of weight to 6 0 occurs in C',

then we have K(v, 1) < to 2.-(2.-2) with v + to = n, according to Property
If n is even, then K(n, 1) ?! 2"/n (3) two of Lemma 5.

For even v we have the lowerbound K(v, 1) ? 2*/v, cf. equation (3). ThusBlokhuis and Lam [2] showed that arbitrary coverings and sphere-coverings we obtain the inequality v to > In" for even v. Since v + to = n we have in
can be linked. - -4

fact equality and to = n/2 = 2'-1. We infer that the even weight subcode

Definition 1 Let S C F1 and let A be a k x n matrix. S is said to r-cover of C1 of dimension k > 2m - 2 is in fact a one-weight code with d = 2--
JF' using matrix A, if {s + w AT I a E S and tot(w) 5 } = F42. 3 hence it satisfies the divisibility constraint 2h- I ld (cf. Lemma 4). However,for m > 3 this divisibility constraint is not satisfied.
Lemma 2 If S r-covers Fk using matrix A, then the set Hence 1(9,2) ? 33, l(11,2) ? 65, 1(13,2) > 129, etc. 3
C := {w E F"2 I w AT E S C F; has covering radius r. In particular,
K(n,r) < IS 2"-. 5 Remark 7 In a similar way we can prove the next bounds: 1(16,2) Ž 363,

1(18,2) ? 725,1(20,2) 2! 1449,1(22,2) > 2897. 0
Linear codes can be slightly modified without changing the covering radius, as
is demonstrated by the following trivial 'inversion property.' For codes with Our approach can be extended into several directions, enabling us to prove

even covering radius this property was already mentioned in (4]. the bounds 1(6, 2) = 13, 1(7, 2) = 19, 1(8, 2) Ž 25, 1(9, 2) 2! 34, 1(8, 3) = 14,
1(9,3) Ž 17, 1(10,3) 2! 21, 1(12,3) 2! 31, 1(13,3) > 38.

Lemma 3 The linear codes with parity check matrices H = (I-r)' References

resP" H' 0 Y--- have the same cove[ing radius" ( 1] G.J.M. van Wee, *Improved Sphere Bounds on the Covering Radius
of Codes," IBE Traua.Injons.T seort, Vol. IT-34, pp. 237-245, March

Lemma 4 If C is an [n, k, dI-one weight code without sero-positions, then 1988.
d(e - 1) = n2e-. In particular 2e- Id. 0

[2] A. Blokhuis, C.W.H. Lam, 'More Coverings by Rook Domains," Journal

S New Bounds for Linear Covering Codes of Comtisatr.ial Theory, A 36, pp. 240-244, 1984.

[3] R.A. Brualdi, V.S. Plea, R.M. Wilson, "Short Codes with a Given Cover-
A linear covering code imposes restrictions on the form of its dual code. This ing Radius," IEEE •ea.sInfornm. Theory, Vol. IT-35, pp. 99-109, January
observation enables us to transform the problem of designing a 'good' linear 1989.
covering code into the problem of designing a (dual) linear code with a lot of
structure imposed onto it. Techniques from coding theory might show that [4] R.A. Brualdi, V.S. Plese, "On the Length of Codes with a Given Covering
such a dual code can not exist. We demonstrate the main idea for covering Radius," in Coding Theoryn end Design Theory, Pasr 1, D.R. Chaudhuri,
radius two. ~Ed., New York: Springet-Verlag, 1990, pp. 9-15.

Lemma 5 Let C be an [n, n - m]-code with covering radius two. Then the [5] 0. Ytrehus, "Binary [18,1112 Codes Do Not Exist-Nor do [64,5312 Codes,"

weights to * 0 in C" satisfy the following properties: I[EE 7Tsa.Iaform.TTeovm, Vol. IT-37, pp. 349-351, March 1991.

1. w(n+l-w) > 2`- [6] A.R. Calderbank, N.J.A. Sloane, "Inequalities for Covering Codes,"
IEEE D•ens. Isform. Theory, Vol. IT-34, pp. 1276-1280, September 1983.

2. w2(*'-)-('-) > K(n-w,i) [7] ]. Simonis, "The Minimal Covering Radius t[15,6] of a Six-
3. ifweight to cannot occur, then weight (n+ l)- to can not occur either Dimensional Binary Linear Code of Length I1 is Equal to 4," IEE

Trasslefotrn.Theory, Vol. IT-34, pp. 1344-1345, September 1988.
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Perfect Tilings of Binary Spaces
Gerard Cohen Simon Litsyn Alexander Vardy Gilles ZUmor
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Abstract. We study partitions of the space F2' of all the binary n-tuples Proposition S. The code C is a perfect binary code with minimum dis-
into disjoint sets, such that each set is an additive coset of a given set V. Such tance 3, and Co is a linear subcode of C. Furthermore, if (V, A) is a proper
a partition is called a perfect tiling of F2" and denoted (V, A), where A is the set perfect tiling then ICI = (Col • JAI, rank(C) = IVI + rank(A) - rank(V) - 1,
of coset representatives. A sufficient condition for a set V to be a tile is given in andC is linear if A isa group.
terms of the cardinality of V+V. A perfect tiling (V, A) is said to be proper if V
generates F2n. We show that the classification of perfect tilings can be reduced
to the study of proper perfect tilings. We then prove that each proper perfect Proposition 3 shows that each perfect tiling is uniquely associated with a per-
tiling is uniquely associated with a perfect binary code. A construction of proper fect binary code, and provides a means for constructing perfect codes from
perfect tilings from perfect binary codes is presented. Furthermore, we introduce perfect tiings. The converse construction is also possible.
a class of perfect tilings obtained by iterating a simple recursive construction.
Finally, we generalize the well-known Lloyd theorem, originally stated for tilings Proposition4 (Converse of Proposition 3). Let C be a perfect binary code
by spheres, for the case of arbitrary perfect tilings. of length n with minimum distance 3. Let r be a linear code of dimension -y,

Given a body in the n-dimensional Euclidean space, is it possible to tile such that C + r = C. Let H(r) be a parity check matrix of r. It V\{o} is
the space with exact copies of this body? This problem has been extensively the set of rows of H((r• and A = {H(r)cS : c E C}, then (V, A) is a proper
studied in the classical literature, see [6[ and references therein. We study perfect tiling of F2 --'.
here the binary version of this problem. Let F2" denote the n-dimensional
Hamming space, i.e. the set of all binary n-tuples with addition term by term Note that y is possibly 0, in which case V is a sphere and A = C. If -y 96 0,
modulo 2. A given set (body) V tiles F2" if it is possible to perfectly cover F2n many non-equivalent perfect tilings may be constructed from the same perfect
with disjoint additive cosets of V. Note that the set of coset representatives A binary code. In this case the construction of Proposition 4 is not explicit, as
is also a tile of F2". Without loss of generality we assume that both V and A there is no obvious way to find the code r. Several explicit constructions of
contain the 0 element. Evidently, each element z of F2" must have a unique proper perfect tilings from perfect binary codes will be presented elsewhere.
representation of the form x = v + a, where uEV and aEA. Thus we have The correspondence between sets V,A such that V+A = F2" and coy-
the following definition of a perfect tiling: (V, A) is a perfect tiling of F2" if erings by spheres of radius I has been initially noticed in [1]. The relevance
V + A = F2" and (V+V) n (A+A) = {0}. of their rank, however, seems to have been overlooked. We will hereafter

If both V and A are groups, (V, A) is a perfect tiling of F2 iff A = F2"/V. elaborate on this issue. First we show that many proper perfect tilings have
Hence in the sequel we consider only nonlinear tilings where at least one of a recursive structure analogous to the structure of perfect tilings exhibited
the sets V, A is not a group. A well-known example of a nonlinear tile is a in Proposition 2. Suppose that (V, A) is a proper perfect tiling of 1"2, with
sphere, in which case the set of coset representatives is a perfect binary code. rank(A) < rank(V) = n. Then (A, V) is a perfect tiling of 2 . Applying
Tilings by generalized spheres have been studied in [2] and [3]. The following Proposition 2 to (A, V) yields
proposition shows that many more perfect tilings exist. V = Vo U (a, + cl + VI) u... U (a- + c-, + V.),

Proposition 1. If IV+VI < 2V1 there exists a group A, such that (V, A) is where for i = 0l,1.... m, (A, Vi) is a proper perfect tiling of (A), c,cl, . .c,,
a perfect tiling, are the representatives of JP2"/(A), and a, E (A). The same argument can now

In particular, since IV( :_ 1V+Vl _< (I'l) + 1, any set of cardinality 4 is a be applied to each of the tilings (A, V.), provided that rank(V.) < rank(A)
tile by Proposition 1. If IV+VI is large it is sometimes possible to show that for all i = 0,1,... m. This defines a class of tilings obtained by recursively
no tiling is possible. Certain bounds on the cardinality of V + V for a given iterating the construction of Proposition 2. The recursion terminates only if
set V may be found in [7. a proper perfect tiling with rank(A) =rank(V) is encountered. Such a tiling

is said to be of full rank. Full-rank perfect tilings have been constructedWe shall say that (V, A) is a proper perfect tiling of F2'" if (V, A) is a perfect by Etzion and Vardy in [4]. In view of the foregoing discussion they may be
tiling of F2' and V generates F2", i.e. (V) = F2", where (V) denotes the span considered as the "building blocks" of all the perfect tilings.
of V. We now prove that the classification of perfect tilings can be reduced
to the study of proper perfect tilings. For demonstrating the non-existence of certain tilings the following gener-

alization of the Lloyd theorem may be useful. Let x.(V) =
Proposition 2. A set V is a tile of F2" iff it is a tile of (V). Furthermore all be a character of the group algebra QF, (cf. [5[, chap. 5). For a perfect tiling
the sets A, such that (V, A) perfectly tiles F2", can be constructed as follows. (V, A), define the sets U, N(U), A' and N(A') as follows:
Denote m = 2"n-- 1, where r is the rank of V.

I. Let Ao, A1,... A, be some re+l, not necessarily distinct, subsets of (V) U = {u : Xy(V) = 0) N(U) {j : 3u E U with wt(u) =
such that for all i, 0 < i<m, (V, A,) is a proper perfect tiling of (V). A' = {a' : X.,(A) 4 0} N(A') = 3: a' with wt(a') = j}.

2. Let co = 0, cl .... cn be a set of representatives of F2 "/(V).
3. For 1 < i<m, let vi be any element of (V). Note that the set A' may be regarded as the code formally dual to A.

Then A=AoU(v1 +c, +Al)u...U(v-,++c,,.+AA,,).
Proposltion 5. In the above notation N(A') C_ N(U) and (U( >_ [Il.

The foregoing proposition shows that all the perfect tWings may be con-

structed from proper perfect tilings. Therefore, we shall henceforth assume References
that n = rank(V), and identify F2' with (V). With an appropriate choice of
basis for F2", it may be further assumed that V D Bn(Q, 1), where B,(Q,1) is [1] A. Blokhuis and C.W.H. Lamn, "More coverings by rook domains," J. Com-
a Hamming sphere of radius I in F2n. Some of the facts which we were able bin. Theory A, vol.36, pp. 240-244, 1984.
to demonstrate for proper perfect tilings are listed below. [2[ G. Cohen and P. Frankl, "On tilings of the binary vector space," Discrete

1. If IV+VI = 21V!, V ;q a tile iff (V+V) is not a group. Math., vol. 31, pp. 271-277, 1980.
2. Obviously, if n = (V( - 1 then V = B.(Q, 1) is a tile, and A is a perfect 13) M, Deza, "The effectiveness of noise correction or detection," Problems of

binary code. If n = IVI - 2 then V is also a tile, and A is a shiorteucd Inf Trans., vol.1 (3), pp. 29-39, 1965.
Hamming code. (41 T. Etzion and A. Vardy, "Perfect binar,, ,ades: constructions, properties,3. If IV1 < 8 and (V, A) is a proper perfect tiling, then A is a group. and enumeration," IEEE 71rans. Inform. Theory, submitted.

Let (V, A) be a perfect tiling, and let H(V) be an nx(IVI- I) matrix having 15[ F.J.MacWilliams and N.J.A.Sloane, The Theorl of Error-Correcting
the elements of V\{O} as its columns. For X E FIv1-I, set a(z) = H(V)z' Codes, New York: North-Holland, 1977.
and defin- the rodes C and Co as follows: 161 C.A. Rogers, Packing and Covering, Cambridge University Press, 1964.

C = {c 6 F2'vl-' : s(e) E A) Co = (c E jIVi-' : s(c) = 0) 171 G. ZAmor, "Subset sums in binary spaces," Europ. J. Combin., vol.13,
pp. 221-230, 1992.
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We prove that the code of the title is Steiner systems). Acknowledgement. The
unique by showing it can be extended to author is grateful for support from ENST,
a constant-weight-4 code of type (10,30,4). Paris, and INRIA, Rocquencourt, where this
The uniqueness of the latter code was work was done.
proved by Witt in 1938 (in the language of
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OPTIMIZATION OF TRANSMITTER PULSES FOR TWO-USER DATA COMMUNICATIONS

Michael L. Honig and Upamanyu Madhow
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SUMMARY 2-input/2-output digital filter. The MSE in this case is given by [21

Two-user data communications is considered in which 1V(2T) +.t + IIQI2 112
the users each transmit Pulse-Amplitude Modulated data signals MMSE = To 2  2 df (5)
through linear, time-invariant channels with transfer functions -11(2T) (• + lQI Il2X• + 11Q2112) - 1QQ2 12
Hi(f) and H2(f), respectively. The received signal is the sum of We now wish to find transmitter pulses, specified by
the outputs of these channels plus white Gaussian noise. Assuming P1 (f) and P 2(f), to minimize the expressions for MSE given by (3)
that the symbol rate is the same for each user, and that the users are and (5) subject to the average power constraints
not allowed to coordinate their transmissions on a per symbol basis, T(2T) r
we study the problem of optimizing their transmitted pulse shapes. T f Y_ IPip(f k/T)12] d Hi, i=1,2. (6)

Two types of receivers are considered: the matched -1/(27) k=-K4I
filter detector, which attempts to demodulate each user To specify the solution to these optimization problems
independently, while treating interference from the other user as we need the following notation. For every f e [-I/(2T), 1/(2T)J
wide-sense stationary noise, and the Minimum Mean Squared Error define ki(f) to be any integer for which
(MMSE) linear detector, which jointly demodulates both users IHi(f-k-IT)•3 IHi(f-k/T)I for all integers k. Provided that
simultaneously. For each case necessary conditions are derived for IHi(f)|, i = 1, 2, satisfy some relatively weak conditions (i.e.,
the transmitted pulse shapes that minimize the Mean Squared Error IHI (f)I cannot be a constant times I H 2(f) I on a set of positive
(MSE), subject to an average power constraint, and conditions are measure), then the MMSE transmitter filter for the MMSE linear
given for which the corresponding solution is unique. Our results detector is given by
generalize those in [11, in which the MMSE linear transmitter and 1
receiver filters for a single-user channel are derived. Pi Hi(f --kiT) I

Useri, iu {l, 21, generates a sequence ofpulses P - 2  In-q./T)12 4. - (7)

si(t) = I bI)8(t-kT) (1) fe Gi(f), where If I < ll(2T), G(f)=GiI(f)(-.Gi2(f),
k

where (b{) I is the sequence of transmitted data symbols from user GiI(f) = {f: IHi(f-k./T) I > 445-, 1 (8a)
i, and I1T is the symbol rate, which is assumed to be the same for
both users. The received signal is then ; 2

y(t) = h1*pi*s,(t)+h 2 *pt*s 2(t)+n(t) (2) Gi2(f) [f: ' •/T)1 2 > (8b)

where p I (t) and p2(t) are the pulse shapes for each user, h I(t) and
h2(t) are the impulse response functions associated with HI(f) and
H 2(f), respectively, "*" denotes convolution, and n(t) is white where i * j. For f 4 Gil r-Gi2 and for k * k., IPi(f-k/T) =0.

Gaussian noise with spectral density r2. The constants X- and X2 are selected to satisfy the constraint (6).
We show that the solution to (7)-(8) is unique, subject to appropriate

For the matched filter detector the output of Hi(f) is the restrictions on Hi(f
input to the filter with transfer function P!(fW):i.(f), where Pi(f) is
the Fourier Transform of pi(t). The output of this filter is sampled Note that where IPi(f)I *0, it has the same form as
at rate 1fT, which produces the estimated sequence of symbols the MMSE transmitter filter for the single user channel with tramfer

/ . The MSE for the matched filter receiver is function Hi(f). The MMSE transmitter filters for the matched filter

2 receiver also has this property. Since meas(G 12(-)G22)=0, the
E E(b=) - bV) = preceding results imply that for the MMSE receiver and the type of

2 1/(2T)f .2 multiple-access channel considered, Frequency Division Multiple

Toal 1 J 4I(II2-1)2+ IQ*Q2 12+EI.I-df (3) Access (FDMA) is optimal. This is also true for the matched filter
-I -li2T) detector. Specific examples of Hi(f) and H2(f) along with

where oa = EL(bV)) 2J1,=21o•,and optimized pulse shapes and an associated comparison of MSE are
planned for presentation at the conference.

[QiQf)h = Pd!f-(k-l-K)/Tl H,-(k-l-KYTJ, (4)
3ItKRIENCKS

i=1,2, k=l ..... 2K+1. The three tems in the integrand can be
clausihed as MSE due to ISI, multiple-access interference, and 1. T. Berger &W, D. W. Tuft, "Optimumn Pulse Amplitude Modkldon. Put 1:

noise. Tammidt.-Receiver Design mad Boud ftm l0fonailk. Th'eoy," IEEE
Tram. on Iqeorm. Theory, Vol. IT-13. No. 2, pp. 196-206, Ap 1967.The MMSE linear detector in general offers a

significant performance improvement relative to the matched filter 2. M. Honig, P. Ceupo, mad K. SWeASOtz, "Squppuioa of NW- a.d Pu-tBd

detector. The MMSE linear detector for this multi-user channel Crouik by LUer Pte- and Pest-tlleig", IEEE Jomura on Sdected

consists of matched filters followed by symbol-rate samplers, and a Arear in Comm.. Vol. 10. No. 3. pp. 614-629, Apil 1992.
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A discrete-time symbol-synchronous code-division Theorem 1: Let the real sequence matrix S =
multiple-access (S-CDMA) system is considered [3'1,. .... K] consists of K L-dimensional sequences
where K independent users spread their real-valued Fk of equal energy L. Then,
encoded symbols Bk, k = 1,..., K, by individual real
signature sequences Fk of length L 'chips' and, then, CSYM,,(S) • •log(1 + Ka~ [bits/chip]
transmit the L-dimensional symbols Bksk over a

Gaussian multiple-access (GMAC, [1]) channel with with equality if and only if the L rows of S are or-
noise correlation matrix E[NNVT] = 721 L (T denotes thogonal and have equal norm K, i.e. SST = KIL.
transposition and IL is the L x L identity matrix). This upper bound is equal to the sum capacity of
Moreover, the same symbol-energy constraint is as- a GMAC with noise variance a2 and K chip-inputs
sumed for all users, i.e., E[Bk] < 4 and g = L. of equal energy 4C [1, p.378]. Therefore, it can be
For convenience, the L-dimensional observation vec- concluded that (chip-)dimensions can be used most
tor at the output of the GMAC channel is written efficiently in a fair communication as long as SST =
as KIL in S-CDMA. Note that a necessary condition

V = S6 + (1) for SST = KIL is K > L. Moreover, SST = KIL is
the necessary and sufficient condition for a sequence

where the sequence matrix S = [ 5l,..., SJ] and the multiset to meet Welch's lower bound on the sum of

symbol vector B = [BI,... , BK]T. Finally, an opti- the squares of the inner products between all pairs
mum multiuser receiver is supposed which makes a of K equal-energy sequences [3].
joint maximum-likelihood decision of all information In the presentation, Theorem 1 will also be gener-
data. alized for the case of two-dimensional modulation.

The goal of this presentation is to find those se- Additionally, further properties of Welch-bound-
quence multisets, consisting of K not necessarily dif- equality sequence multisets will be mentioned.
ferent sequences, which enable the K users to com-
municate reliably and fairly with maximum sum rate. References
As a consequence, equation (1) is viewed as a S- [1] Cover, T.M., Thomas, J.A.: "Elements of Infor-
CDMA channel having a capacity region C(S) which mation Theory", John Wiley and Sons, Inc., 1991.
is a function of the sequence matrix. The criterion of [2] Verdd, S.: "Capacity Region of Gaussian CDMA
goodness for a sequence multiset is chosen to be the Channels: The Symbol-Synchronous Case", Proc.
largeness of the symmetric capacity Cam.,(S) per chip 24th Allerton Conf., pp. 1025-1034, October 1986.
where Cam(S) is defined by the maximum achiev- [3] Massey, J.L., Mittelholzer, Th.: "Welch's Bound
able equal-ratc point in the capacity region C(S). It and Scquence Sets for Code-Division Multiple-Access
is achieved with zero-mean Gaussian distributed en- Systems", Sequences 91, Positano, Italy, 17-22 June
coded symbols of maximum allowed variance Cc [2]. 1991 (Springer-Verlag, Ed. R. Capocelli).
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Abstract average bandwidth given by (2) is bounded by Bo. The problem can
be formulated entirely in terms of the n eigenvalues of the correlation

The determinant of the correlation matrix between n time-limited matrix since det(R) = det(A), the bandwidth constraint is expressed
unit-energy signals can be seen as a measure of orthogonality of the only in terms of A, and the constraints on R can also be represented
signal set. The problem of designing a signal set that maximizes this by positivity and trace constraints on A. The average RMS problem
determinant is considered under the average as well as the maximum is now expressed as:
root mean square (RMS) bandwidth constraints.

max det(A) (3)

Summary subject to A,ŽAi > +, > 0, (4)

In multiuser communication, an important signal design problem trace(A) = n, (5)
is to choose a set of unit-energy signature signals that are optimally truce(AI) <5 b with b = Bo(2T)2n. (6)
orthogonal. This corresponds to an autocorrelation matrix that is as
dose as possible to the identity matrix. If there is no constraint on Non-trivial solutions for A exist when b is restricted to the range
the bandwidth, it is possible to choose orthogonal signals. However a (n, n(n + 1)(2n + 1)/6).
nontrivial constraint on the bandwidth necessitates that the signals The first result in this paper simplifies the nonlinear optimization
be non-orthogonal. The optimality measure on the correlation ma- problem (3) - (6) by showing that the ordering constraint in (4) can be
trix is defined in this paper to be its determinant. This measure is relaxed to only a positivity constraint and the inequality constraint
chosen due in part to its significance in the PAM synchronous Gaus- in (6) can be changed to the corresponding equality constraint, The
sian CDMA channel where the capacity region was characterized in new constraints are thus A Ž 0, trace(A) = n and trace(AII) = b. A
the high signal-to-noise ratio regions via the total asymptotic effi- proof of this result involves showing the suboptimality of any set of
ciency which in turn was shown to be upper bounded (achievably) eigenvalues that either violates the ordered property or fails to use all
by the determinant of the correlation matrix [1]. The bandwidth of the bandwidth given in the constraint. The problem is then solved
each time-limited signal is defined to be its root mean square (RMS) using the Lagrange multiplier technique which involves finding the
bandwidth (d. [2]). Lagrange multipliers numerically as a solution to a set of nonlinear

In this paper we consider the problem of finding the optimally equations. These equations are then solved by standard numerical
orthogonal unit-energy signals whose maximum RMS bandwidth is techniques.
bounded by B0. A solution to this problem is found by solving the The next result of the paper gives a constructive procedure for
problem with i -,eaker constraint, that of an average RMS bandwidth finding a positive unit-diagonal definite matrix R of size n with the
bounded by B0 , and establishing (constructively) the existence of a specified optimal eigenvalues. The procedure involves finding the op-
solution to the latter problem that consists of signals with equal RMS timal correlation matrix by starting with R(M) = A and performing
4tndwidths. These signals will therefore also be a solution to the at most n - I rotations given by, R(&+.) = UW)RQI)UQV)T, such that
maximum RMS bandwidth problem, for if there were another signal with V - U(*-1)U(m-2)...U(M), the correlation matrix R = VAVT has
set meeting the latter constraint and having a higher determinant, unit-diagonal elements and in addition, the matrix VAIIVT has equal
this set would supplant the original solution to the average RMS diagonal elements. This ensures equal bandwidths of the optimal sig-
bandwidth problem. nal set, thereby solving the maximum RMS problem simultaneously.

The main result in [2] provides a closed-form solution for the set The problem of finding the optimal signal set is now identical to the
of signals that achieve the minimum average RMS bandwidth among problem solved in [2].
all signal sets that have a given correlation matrix R. The signals Finally, if n is such that a Hadamard matrix of dimension n ex-
have the following form: ists, a single unitary (Hadamard) transformation is also shown to

yield a signal set that solves the maximum RMS bandwidth problem.
st(t) = (2/T)1/2 Fc c sin(rt/T), 0 <t < T, 1 < k <_ n, (1) Hadamard matrices exist for all dimensions which are a power of 2

3-1 but also many others, (d. (3]).

where T is the duration of the signal and n is the number of sig-
nals. The solution for the coefficient matrix C = {ckj) is given by References
C = AI/ 2V, where A =diag(Xi,...,A%), Ajt Aj+ 1 are the ordered
elgeavalues of R and V is the matrix of elgenvectors of R in its spec- [1] Verd6, S., 9Capaity region of Gausia CDMA channel: the
tral decomposition, R = VAVT . Furthermore, these signals have symbol-synchronous case,' Proc. of the Twenty-forth Allerton
individual and average EMS bandwidths given by Conference on Communication, Control and Computing, Aller-

ton, IL, pp. 1025-1034, October, 1986.
[2] Nuttall, A.H., "Minimm rms bandwidth of M time-limited sig-

where 1 is defined to be a diagonal matrix with Haj = P. nsa with specified code or correlation matrix,* IEEE Thnm.c-
In light of the result of (2] stated above, the average RMS band- tion. on Infornation Theory, vol. IT-14, pp. 699-707, September

width problem can be equivalently posed as that of finding a non. 1968.
nsgative definite unit-diagonal correlation matrix R with maximum
determinant under the constraint that the corresponding minimum [31 Hall Jr., Marshall, Combinaterial Theory, Blalsdell Publishing

Company, Waltham, MA, 1967.
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Abstract - This paper proposes and compares three broad- overlapping time instants) and CDMA (where the users are assigned
band modulation/demodulation schemes for use in a multi- orthogonal spreading codes) provide orthogonal modulation/demodu-

path fading environment. They are all based on CDMA, are lation schemes. In a multipath fading environment, these access tech-
of a broadband nature in order to combat frequency selective niques perform as follows:
fading and achieve a certain degree of orthogonality in order a FDMA still provides an c-thogonal modulation/demodulation
to enhance spectral efficiency. scheme. The spectral nulls, however, degrade the FDMA perfor-

I. INTRODUCTION mance significantly when not combined with frequency hopping
and/or interleaving.

In multi-user communication systems where the users access the same . TDMA still provides an orthogonal modulation/demodulation
channel, the optimum receiver is in the general case a joint detection scheme, if the users are separated in time such that no inter-user
receiver, i.e., the data symbols of all users have to be detected jointly, interference occurs. The system bandwidth is limited because of
For a large number of users, this receiver is very complex and in most equalizer complexity.
cases practically not implementable. To avoid joint detection, orthog- * Conventional CDMA does no longer provide an orthogonal mo-
onal modulation/demodulation schemes are desirable where a single dulation/demodulation scheme, and the Qualcomm approach [2]
user detector has the same performance independently of the number provides only orthogonality on every single channel path, such
of active users. that the system becomes interference limited for single user de-

In an AWGN environment, FDMA, TDMA and, for proper spreading tectors.
code choices, CDMA are examples of such orthogonal modulation/de- Thus, FDMA and TDMA provide orthogonal modulation/demodula-
modulation schemes. When properly implemented, FDMA and TDMA tion schemes even in multipath fading environments, but yield the
keep inter-user orthogonality even in multipath environments, whereas stated d ven On the th hand CDMAro ffers the aoe

stated disadvantages. On the other hand, CDMA offers the above-
conventional CDMA causes inter-user interference due to the lack of mentioned advantages.
a sufficient number of orthogonal spreading codes. In order to over-
come the spectral nulls of multipath fading channels, mainly wideband IV. PROPOSED ACCESS TECHNIQUES
communication systems based on TDMA and CDMA are currently con- We therefore suggest and compare the following approaches to or-
sidered for future mobile communications systems. CDMA offers many thogonalize the users in a sCDMA system in a multipath fading envi-
advantages, but suffers from the above-mentioned inter-user interfer-
ence in multipath environment when a single user detector is applied. r onente
This presentation suggests and compares several approaches to orthog- * Code frequency division multiple access (CFDMA) is a new ac-

onalize the users in a synchronized CDMA system in a multipath fading cessing scheme. It spreads an narrowband FDMA system with a

environment. spreading sequence in a CDMA fashion. CFDMA is orthogonal
on each channel path, but different channel paths interfere.

II. MODEL • Code lime division multiple occess (CTDMA) [1] spreads a con-

A discrete-time multi-user communication system as shown in Fig- ventional TDMA system in a CDMA fashion, where all users

ure 1 is considered. Each user k (k = 0, 1 .... K - 1) modulates its in- spread with the same sequence. An inverse filter receiver garan-

formation sequence bk[. ] with symbol rate Rs by converting it into the tees an orthogonal modulation/demodulation scheme even in a

corresponding transmission sequence ri[. ] with chip rate Rc. The total multipath fading environment.

transmission sequence z[. ] = a_. " Xk[. ] is then transmitted through a _ Code code division multiple access (CCDMA), as proposed by

common noiseless channel with impulse response h[.I and is further dis- Qualcomm as CDMA [2], scrambles a CDMA system (spread

torted by a noise sequence z[. ]. The corresponding received sequence by orthogonal Walsh codes) by an additional PN sequence. As

y(.] = h[.],.[.]+z[.] then serves each demodulator #k as input for CFDMA, CCDMA is orthogonal on each channel path, but dif-

its estimate bk[ .) of b[ .]. The goal is to design orthogonal modula- ferent channel paths interfere.

tion/demodulation schemes, i.e., the demodulator performance is the V. CONCLUSION

same independently of the number k __ K of active users.
CTDMA is the only scheme that keeps full modulation/demodula-

III. CONVENTIONAL ACCESS TECHNIQUES tion orthogonality. On the other hand, the number of possible users is
limited by the maximum excess delay of the channel impulse response.

In an AWGN environment, FDMA (where the users are assigned In CFDMA and CCDMA, only partial modulation/demodulation or-
non-overlapping spectra), TDMA (where the users are assigned non- thogonality can be provided, but user capacity of the system does no

longer depend as severely on the maximum excess delay of the channel.

b[ modulator 201.] demodulator 0 These accessing schemes are proposed and compared in performance

#0.] 1 #0 to, for different situations.

1,[.] modulator r,(I z1.1 noise demodulator 1i LITERATURE
- # #1 [1] Ruprecht, J., Neeser, F.D., Hufschmid, M., "Code time division multiple

access: An indoor cellular system", Proceedings of the 42nd IEEE Vehic-
lsar Tecinology Conference, pp. 736-739, Denver, 1992.

b-i[.] omodulator K1-I) ( 2] Salmasi, A., Gilhausen, KS., 'On the system design of code division mul-

#((-)-(2
tiple access (CDMA) applied to digital and personal communication net-
works", Proceedings of the 41Vh IEEE Vehicular Technology Confereare,

Figure 1: Multi-user communication system pp. 57-62, St. Louis, 1991.
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CHANNEL CODING FOR ASYNCHRONOUS FIBEROPTIC
COMA COMMUNICATIONS

M. Dale R. Gagliardi
TASC Corp. Univ of Southern Calif
Reston, VA Los Angeles, CA

Code Division Multiple Access (CDMA) has been modified waveform encoding, to aid in mitigating this
proposed as a possible format for fiberoptic networks. The crosstalk buildup and produce more efficient individual
baseline CDMA uses on-off keying (OOK) of binary data channel performance. While the advantages of channel
with a unique coded pulse sequence transmitted for each coding are well known for the classical Gaussian noise
on-bit. Multiple accessing is achieved by having multiple channel, the application to the optical CDMA crosstalk
sources, each with its own code sequence, superimpose channel is somewhat diverse, and care must be used
their transmissions over a common fiber. The fibers can inserting commonly accepted coding 'gains".
then be interconnected via STAR or other fiber systems to The channel coding is applied directly to the CDMA
form the distribution network Data bits are separated out at fiber links. The channel coder converts the data bits to
a receiving terminal by recognizing (correlating) the proper binary synbols, which are then sent over the fiber fink as
sequence of the desired source. Pulse code sequences OOK symbols encoded with the transmitter code sequence.
can be passively generated from an initial OOK laser pulse Forward error correction in the form of Reed-Solomon (RS)
by serial or parallel delay lines, and sequence correlation block codes and convolutional coding (CC) were
can be achieved optically by corresponding matched delay considered. It was assumed that all systems use the same
lines. After correlating the desired sequence to a peak laser pulse width, number of transmitters, and channel data
value, photodetection followed by threshold comparison rate. The CDMA code sequence were adjusted to
can be used to detect the presence or absence of each bit. accommodate each type of coding. Figure 1 and 2 show
Minimal interference multiple accessing is achieved by example results for RS and CC, indicating the reduction in
using only sets of pulse code sequences that have low the PE crosstalk floor from the uncoded case, as a function
pairwise crosscorrelations. Optical CDMA has the of the CDMA sequence weight.
advantage of permitting completely asynchronous in conclusion,we have shown that channel coding can
transmitters, relatively simple, off-the-shelf laser sources, indeed be more effective in reducing the PE floor. Both
standard photodetectors, and improved power levels due Reed-Solomon block codes and convolutional codes were
to the laser pulsing. In addition, pulsed CDMA combines considered, with both showing improved PE performance
the higher speeds of optical signals with the more over the uncoded OOK-CDMA system at the same
developed electronic processing to provide maximum information bit rate. The convolutional codes tended to
performance efficiencies in converting digital data to optical produce lower PE floors for the lower code weight values
transmission. and hence would tend have the highest network capacities.

A prime disadvantage with CDMA is the sacrifice in This result is important since the channel coding is applied
per-channel data rate (relative to the speeds available in with electronic hardware external to the optics. Hence the
the laser itself) that occurs in the insertion of code channel coding should have limited impact on the overall
addressing. Another important CDMA concern is the system cost.
development of digital crosstalk between channels when
multiplexing many simultaneous sources. Channel The use of PPM as a channel coding technique was also
crosstalk is the ultimate limit in link performance, and considered, since is also reduces the PE floor at the
produces an asymptotic floor to the error probability (PE) expense of data rate. It was shown that the PPM system
that can only be reduced by slowing the data rate with was not as effective as the uncoded and error correction
longer and higher weight CDMA sequences . This raises systems at the same data rate. Furthermore PPM requires a
the question of whether external channel coding can be modification of the optical encoding and decoding
more effective in reducing the PE floor, processing from the standard OOK-CDMA format.

In this paper we consider the use of external channel
coding in the form of either forward error correction or
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A SIGNALING TECHNIQUE FOR MULTIPLE
ACCESS LASER COMMUNICATIONS

John E. Hershey, Nabeel A. Riza, and A. A. Hassan
GE Corporate Research and Development Center, P.O.Box 8,

Schenectady NY 12301 USA.

Summary

A multi-dimensional signaling technique is described for use where c is the speed of light, 8, = 21ri/N is the angular spacing
in asynchronous multiple access laser communications. This of the liquid crystal modulators, and ac is a phase modulation
technique is based on interferometric signaling and can be thought equal to + 1 or -1. In general, ac is a complex valued code symbol
of as temporal and spatial coding of light. Transmitter imple-
mentation requires a coherent source (a laser), signal modula- a, = riexp{j il},
tion electronics, and some special optics. Spatial modulation
is accomplished via an aperture populated with liquid crystal ri being the amplitude modulation and Oi is the phase modula-
(LC) modulators with different users having different LC dis- tion of symbol i; this yields a more elaborate expression for the
tributions. These distributions are chosen to yield low cross- received intensity. A codeword (or signaling mask) for user k is
correlation between the (Fraunhofer) diffraction patterns. The given by
large spatial bandwidth (e.g., 106 pixels) of each laser trans- Ak = (a,(k), ... ,aN(k)),
mitter aperture is utilized for user coding, while temporal cod- and the multiple access codebook is given by
ing is used for information signals. Signal recovery is based
on incoherent optical detection, spatial sampling, and electronic A = {AI, ... , Au},
or optical matched filtering of the received optical beam Fres-
nel/Fraunhofer diffraction pattern. With electronic filtering, low where N can be thought of as the block length of the code,
to medium (e.g., 3 Mbps) data rates can be achieved. With a and U is the number of users. As in sequences used in spread
lenslet array-based incoherent optical correlator, up to 100 Mbps spectrum applications, A is designed to have codewords with
data rates can be tolerated. low cross-correlations and auto-correlations.

Assume the liquid crystal modulators are evenly placed on At the end of each signaling interval, a 2-D correlator in the
a circular plane of radius R. For a laser with angular frequency receiver crosscorrelates the sampled intensity with stored user
w it can be shown that the light intensity I(x, y) at position specific intensity functions to decide what transmitters are on.
(x, y) of the receiver plane at a distance L from the transmitter The capability of this system to discriminate among multiple
is approximately given by users is demonstrated, and pr-liminary results on the design of

A is shown.

N N R
I(X Y) E E ,aq cos u-

p=- q----

[(cos 0, - cos 0,) x + (sin 8, - sin 0,) yj]},
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VARIaBLE WEIGHT OPTICAL ORTHOGONAL CODES FOR CDMA

NETWORKS WITH MULTIPLE PERFORMANCE REQUIREMENTS
Guu-chang Yang

Department of Electrical Engineering
National Chung-Hsing University

Taichung, Taiwan, R.O.C.
Abstract a similar vein, the synchronization "figure of merit" is (wi() - ) for

An optical orthogonal code (OOC) is a collection of binary sequences with multiple-access synchronization and wv(j) - A.,o, for single-user synchroniza-
good auto- and cross-correlation properties; they were defined by Salehi and tion. (Here, A(i) is the auto-correlation associated with codeword's of weight

others as a means uf obtaining cod division multiple access (CDMA) on fiber W,(s)-
optic networks. Up to now all work on OOC's have assumed that the weight From above, we can see that the weight of a user's signature sequence

of each codeword is the same. In this paper we develop bounds on the size will strongly affect that user's perf.ormance. Therefore, by assigning code-
of OOC's when this assumption is removed. In addition, we demonstrate words with different weights we are able to accomodate multiple performance
construction techniques for building such "variable weight" OOC's. The re- requirements among the network's users.
suits demonstrate that it is possible to assign codewords with different weights 2. New Results
among the users. Changing the weight of a user's signature sequence affects This paper will detail new techniques for analyzing variable weight OOC's
that user's performance: therefore this approach is useful for CDMA fiber and related sequences. New methods of constructing such codes have been
optic networks with multiple performance requirements among the users, found and new bounds on the size of such codes have been derived.

Summary 2.1. A New Bound

1. Background and Motivation Define 0(n, W, L, A_, Q) to be the cardinality of an optimal variable weight
As the demand for personal communication services continues to rise, mul- optical orthogonal code with the given parameters - i.e.,

tiple access techniques become ever more important. Code-division multiple

access (CDMA) is a kind of spread spectrum technology that enables many

users to share the same channel without interference by employing a unique We have derived a new upper bound on 0(n,W,L,A\, Q) for A,, >_ Aý
signature sequence to distinguish different users' transmission. (A., E L).

Optical orthogonal codes (OOC's) were introduced by Salehi el. al [1-2] as Theorem: Let A,, >_ ) (A., E L). Then
a means of obtaining code division multiple access among asynchronous users
on fiber optic networks. An OOC is a family of (0,1) sequences with good (n - 1)(n -2)... (n - A,)
auto- and ci,---correlation properties, and a variable weight OOC is an OOC(, W, L, A, Q) <

in which the weight of each codeword is not constant over the code. I: Z iUi(wi - J )(niv - 2) .. (u•, -A,),'A,,

Throughout this summary, we use W, L, and Q, to denote the sets {wo, wi, We vote at this point that the technique used to prove this theorem is

...,}, {A0,A1 .. . A, and {q0,q...,}, respectively, immediately applicable to binary codes employed for CDMA when the auto-

Definition: A - (n, W, L, A,, Q) variable weight optical orthogonal code C is correlation and/or the cross-correlation constraints are specified in terms of

a collection of binary n-tuples such that the following three properties hold: aperiodic correlation as well.

"* (Weight Distributution) Every n-tuple in C has a Hamming weight 2.2. New Constructions

contawned in the set W; furthermore, there are exactly q" -JC codeword Several new approaches for constructing variable weight OOC's have been

of weight u, - i.e., qj indicates the fraction of codewords of weight wi. found. Among them:

"* (Auto-correlation Property) For a-y x = [zozi..-.. , x-i] E C with * We can use the balanced incomplete block design technique [3] to con-

Hamming weight wi E A and any integer r, 0 < r < n, struct (n, {( + 1,), {2,2}1, Q), (n, {2tu, w), {2,2),} ,Q), (n, {2w +
n-1lw), {2,2), I,Q), (n, {2w+ 1, w+ 1), {2,2), 1, Q), and (n, {2u+ 1, w+

<A,. 1, w), {2,2,2), 1, Q) variable weight OOCs for even w. (n, {w + 1, w),

"* (Cross-correlation Property) For any x = [xo,xi......-] E C and {1,1},1,Q), (in, {2w,u),(2,1,l1,Q), and (n,{2u, i 1,w), 12,1). 1,Q)

any y = [Yoi,y .- .l] E C such that x 6 y and any integer r, variable weight OOCs for odd w. Among these constructions, the car-
.- I idinality of the (n, Ito + 1, wl, 1 )1, 1, 1, Q) variable weight OOC reaches

E Atyt ! ,. the upper bound of the last section; hence it is optimal.
'=o @ We have generalized the recursive construction method of i4 to '.n-

Note: OOC's were defined in terms of periodic correlation: thus the struct variable weight QOC's. The recursive construction technique
addition in the subscripts above - denoted "(D" - is all modulo-n. uses the codes which are cunstructed by previous techniques to pro-

The definition of a variable weight OOC is a gen, alization of the defintion vide infinite families of codes.

for OOC given in [1-2]. The use of OOC's for multiple access is described in References
[1-3]. (1] J. A. Salehi, "Code Division Multiple Access Techniques in Optical

* The auto-re rrelation constraint guarantees that each signature sequence Fiber Networks-Part I: Fundamental Principles," IEEE Transactions

is unlike cyclic shifts of itself. This property is used to enable the re- on C o r tunicaenonl pp. 8483 Aug.,a1989.
ceivr t obtin yncroniatin. n Communications, pp. 824-833, Aug., 1989.

ceiver to obtain synchronization.

e The cross-correlation constraint guarantees that each signaturo se- [2] J. A. Salehi and C. A. Brackett, "Code Division Multiple Ac cess Tech-
quence is unlike cyclic shifts of the other signature sequences. This niques in Optical Fiber Networks-Part II: Systens Performance Analysis

property is used to enable the receiver to estimate its message in the " IEEE Transactions on Communicatwns, pp. 834-850, Aug., 1989.
presence of interference from otl'er users.

A reasonable "figure of merit" for a code is the number of interfering uoers (3] G. C. Yang and Thomas Fuja, "Optical Orthogonal Codes with Unequal

necessary to cause the code to fail. For instance, assume synchronization has Auto and Cross-correlation Constraints," Proceedings of The Twenfy-

been achieved; then the only errors the &ih user can make are 0 - I errors, Sixth Annual Conference on Information Sciences and Systems. Prince-

and they can only occur when enough other users interfere to make the cor- ton, New Jersey, March, 1992.

relation at the i& receiver exceed w.(,). (Here, tW(,) is the Hamming weight [41 M. J. Colbourn and C. 1. Colb'urn, "Recursive Constructions for Cyclic

of i& user's codeword.). Since each of those other users can contribute at Block Designs," J. Statistical Planning and Inference, vol 10, pp. 97-

most Ac, to the correlation, the performance "figure of merit" is w,.,/A,. In 103, 1984.
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OPTICAL SPECTRAL AMPLITUDE CODE DIVISION MULTIPLE ACCESS SYSTEM

Malth Brandt-Pearce and Behnaam Aazhang
Department of Electrical and Computer Engineering

Rice University, Houston, Texas 77251-1892

A system is proposed and analyzed which fully utilizes the band- case can be approximated by a negative binomial distribution. For the
width available in the optical medium. This optical code-division mul- laser system, letting Akj(h, tW) = f,',' Ekj(t)I2 dt and letting the inter-
tiple-access system illustrated in Figure 1 has its signature sequences ference in frequency band j be 1J -i Ai, [bi¶')At4 (T - rK, T)+

on-off encoded on the frequency bands of the optical beam. Two sub- +

optimal detector options for multi-user operation are considered: an b(t)Akj(0,T- rk) + Ad, the optimized single-user detector has the

optimized single-user detector and a multistage detector. The anal- form _ Ex(A1 A, + A)Me-AT p() >

ysis is performed using a large deviation theory approximation and E =n ( ()
further verified by simulation. The advantages of this system over = =A(A)N1eATPiJ(A) < 1
the conventional time-encoded system incluae the larger number of with P1, (A) a convolution of all possible interference distributions, and
low crosscorrelation sequences available and the implementation of ef- the multi-stage detector has the form
ficient decoders for low error probability detection. i >

1. Summary NiAt,,n = 7, (2)

Two of the possible optical sources with bandwidths broad enough =<

axe: a coherent mode-locked laser source and an incoherent source, where I, is an estimate of this interference based on the previous stage

such as a superfluorescent fiber source. The mode-locked laser is more of detection and -f is the threshold.

difficult to implement than the incoherent source yet less noisy due The primary performance analysis tool is large deviation theory

to its Poisson photoelectron count statistics, compared to the doubly [1], through which the probability of error is derived by computing

stochastic Poisson statistics of the incoherent source. This paper con- the expected value over uniformly distributed delays rk of the syn-

centrates on the laser based system, which can be considered a best chronous OCDMA system in [1]. Using this scheme, an approximation
case yielding a lower error probability, mentioning the differences with to the performance is obtained, which is verified by simulation to be
the incoherent source system when applicable, very accurate for all sequences considered. The coherent laser optical

The novelty of this system is in the CDMA encoding, which is source case is analyzed, considering a correlation detector, an opti-
achieved by spatially spreading the optical spectrum and on-off modu- mized single-user detector, and a multistage detector. The advantage
lating the resulting frequency bands. .he spreading is accomplished by gained by the increase in code size is quantified and compared to time-

the use of a diffraction grating and the encoding is done via an ampli- encoded systems, as illustrated in Figure 2. More than twice as many
tude mask. The system is composed of K users, labelled k = 1,..., K, users can be supported using spectral encoding than time encoding if

each transmitting continuous binary information b&k) E {fo1, I = a multistage detector is employed. Yet as explained before, at such
-1,0, 1,. The symbol b(,') on-off modulates the optical beam, bandwidths, the time-encoded system can only employ a correlation

" -" ,m, the optice bE detector, whose performance is shown to be unacceptable for a largewhich is then encoded by a mask representing the sequence A,,, E number of users.

{0, },j = 1,..., J. The mask allows frequency bands corresponding

to Aj = 1 to pass and blocks the other frequencies. The total inte- REFERENCES
grated intensity of the modulated signal in one frequency band over
the bit period (0, T I is [1] M. Brandt-Pearce and B. Aazhang, "Unequal received power ef-

b 1 oA T I E,(t) 2dt+ fects on single-user and multi-user detectors for optical cdma,"
I= .)A Ii(t)d Proceedings of the 22nd Annual Conference on Information Sci-

K 't1 t+b -hences and Systems, Princeton University, Princeton, NJ, March,E A [,,b~0)T I E° , + () -IE,,,(t)1 2dt +Ad 1992.

where Ek,,(t) is the optical field of user k in frequency band j and rk is Lenses Gratings 100
its delay with respect to the desired user, user one. The number of low
crosscorrelation encoding sequences available to the spectral amplitude 10- (a)

encoded system is a factor of J more than for the time-encoded system,
since the auto-correlation constraint can be completely relaxed. The 10"2

sequences of interest for the frequency encoded system are codes with
fixed weight w and minimum distance 2(w - I), for a maximum overlap -6 I0*' (b
of one frequency band. Mask

The detection is based on spreading the signal spatially exactly to"0
as in the encoding stage, and then detecting the individual frequency LaW

bands using a photodetector array integrating over the entire bit in- 10"W

terval. One of two proposed detection algorithms then follows: an Iaxmaike MA E
optimized single-user detector or a multistage detector (1). The degra- $iueCC h'aurfa"m 10' (c)
dations to the system considered in this model are the multiple access l0.
interference, the noise due to photoelectron statistics, and the dark Symbol 0 .50 i0 150 200 250

current noise. The photoelectron counts of the J frequency bands, Ia- Deftcdm K, mnnb of active users
belled N, j = I. J, are Poisson distributed with parameter r, for
the laser based system. The statistics for a truly incoherent source, Figure 2: (a) Time encoded sys-
i.e., thermal light, depend on the shape of the spectrum but in this Phoeodetscl Array tem using correlation detector, (b)

*This work is supported i part by NASA/Johnson Spce Center under grant Figure 1: Optical spectral ampli- .._ using multistage detector,

NGT-50447 and by the Advanced Technology Program of the Texas Higher Fdu- tude encoded communication sys- (c) Spectral encoded system using
cation Coordinating Board under Grant 003604-018 tem. multistage detector
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IMPROVED CONCATENATED CODING/DECODING

FOR DEEP SPACE PROBES

Dale C. Linne von Berg
Stephen G. Wilson

Deparutent of Electrical Engineering
University of Virginia

Charlottesville, VA 22901

Deep space communication systems are traditionally designed to decoder than behind it in time. The improvement in link efficiency withuse a concatenated coding scheme employing an Inner and mi outer code this "optimized" scheme is about 0.4 dB. dearly not a huge amount, butin order to obtain reliable communication at low SNR. The Consulta- fractions of a decibel am precious in this regime.
tive Commiutee on Space Data Systems, CCSDS, uses a concatenated Simulations also show that use of larger-than-normal decodercoding system with a rate 12, menmory order 6, convolutional Inner delay is helpful at very low SNR conditions. The usual rile of thumb
code and a Reed Solomon (RS) block outer code over GF(256). Eight (five constratm lengths) suggests 30 bit decoder delay, but we observe
RS words are organized into eight columns in a 255x64 bit data frame. that 60 bit delay is a simple way to gpin another 0.15 dB. Finally, relax-
Before the data frame Is transmitted, the data is trellis encoded by rows. ing the restriction on bandwidth can significantly improve performanceOn the receiving end, decoding is performed in two steps: the Inner at low SNI. By replacing the rate 112 lner code with a rate 1i4 codedecoder uses the maximum-likelihood (soft) Viterhi algorithm xn the optimized at low SNR [3], the bandwidth is expanded by a factor ofouter decoder uses RS algebraic decoding method& Paaek has shown two, but by keeping the memory order of the Inner code constant, thethat the performance of the CCSDS scheme can be improved by provid- decoder complexity remains constant and the required transmissioning multiple-pass feedback from the outer to inner decoders [I]. The power can be reduced. Operation at E/N 0 =1 dB is feasible in this
decoded output from the outer decoder is used by the inner decoder to case.
Pin states in subsequent decoding passes. As Collins has shown [2]. the
error correcting performance of a trellis code is improved when reliable References
side information is used to pin states during decoding, roughly gaining
in energy efficiency by lOlogiof, where f is the pinning fraction. [11 E. Paaske, "Cost-Efficient Methods for Improving Coding Gains in

In this paper, we study two issues related to further impmvemem Concatenated Coding Systems for Deep Space Missions', Intl Sympo-of the performance of this concatenated coding system, without increas- sium on Information Theory. p. 297, Budapest. 1991.
ing the transmission power, the bandwidth, or the decoder complexity. See also "Improved Decoding for a Concatenated Coding SystemFirst, we investigate the options of byte versus bit interleaving between Recommended by CCSDS", IEEE Trans. on Communications. Vol. 38
the outer and inner systems. This has a subtle effect--byte interleaving pp. 1138-1144, August 1990.
Is a better choice as far as Reed-Solomon decoding goes, since aer
decoder errors are not diffused throughout the interleaving array. How- [2] 0. Collins, 'Pruning the TrellisW, Int'l Symposium on Informationever, we find that for a given pinning fraction, it is more advantageous Theory, p. 50, Budapest, 1991.
to scatter the side-information uniformly in time, i.e., use bit interleav-
ing. At the bottom line, however, we find that byte interleaving is (31 P. J. Lee, "New Short Constraint Length, Rate I/N Convolutional
slightly superior. Codes Which Minimize the Required SNR for Given Desired Bit Enor

Second, we investigate the design of RS outer coding with a var- Rates", IEEE Trans. on Communications VoL 33, pp. 171-177, Feb.
able rate in various columns, keeping the overall frame redundancy con- 1985.
stant. Thus some codeword columns have less parity than nominal,
while others have much greater parity. This viabl-rate feature is no [4] D. C. Linne von Berg, "Improved Concatenaltd Coding/Decoding
real complication for decoding due to the highly flexible decoding algo. for Deep Space Probes." M.S. thesis, University of Virginia, 1992.
ritdms for RS codes. Driven by a comment of Paaske that the multi-
pass scheme succeeds with high probability if one column is successful,
we design one column with high redundancy (but not so high as to
exhaust the available parity symbols), then incrementally design the
redundancy of other columns to provide high probability of success
given that the previous columns have been correctly decoded. Optimiz-
Ing this profile has been done experimentally by simulating the entire
system. At E4/No -1.5 dB we suggest that a parity profile across the
eight columns of (26,28,32,36,100,8,4.22) is near-optimal in terms of
maximizing probability of correct decoding of a frame. At 2 dB a more
uniform profile (26.28,30,32.90,16.14,20) semis preferable. We note
the &symmatry of the profile accrues from the fact that pinning has an
asymmetric effect on cleaning out errors In the Viterbi decoding pro-
oess known-state information prunes away more errors "ahead of" the
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CHANGING THE CODING SYSTEM ON A SPACECRAFT IN FUGHT

Kar-Ming Cheung, Dariush Divsalar, Sam Dolinar, Ivan Onyszchuk, Fabrizio Pollara, and Laid Swanson

Jet Propulsion Laboratory, California Institute of Technology

For many years, the data stream sent by American deep- 1/2) encoder after leaving the spacecraft's computers.
space missions has been protected by error-correcting This means that any code must be realizable as a
codes. For Galileo, a probe and orbiter currently en route concatenated code, with a (7, 1/2) code on the inside. An
to explore Jupiter and its moons, NASA's standard (11, 1/2) code concatenated with a (7,1/2) code yields a
constraint length 7, rate 1/2 code is available, but a (14, 1/4) code, and many of these (14, 1/4) codes perform
constraint length 15, rate 1/4 convolutional code was nearly as well as the best known (14, 1/4) codes. But no
developed for the mission and a prototype Viterbi decoder such code has taps on both ends of all connection
for long constraint length codes has been built. For parts vectors, a property of "good codes" and a requirement to
of the mission, the convolutional code was to be the inner be decoded in a straightforward way by our hardware
code in a concatenated system with an outer (255,223) Viterbi decoder. Again, we are saved by data rate: we
Reed-Solomon code. can decode the resulting (14, 1/4) convolutional code in

software. In addition, we may change the outer Reed-
Data compression has been used in deep space much Solomon code from (255, 223) to a system with words of
less than channel coding for three reasons. First, source different parity in each interleaved frame; this would mean
models are neither as developed nor as simple as the that some words in each frame are almost certain to
deep-space channel model (AWGN). Second, most data decode, giving more information about the state of the
compression algorithms require substantial complexity for convolutional encoder; this information can then be used
encoding, and calculations on a spacecraft are much by a second Viterbi decoder to "redecode" with
more difficult than on the ground. But third and most substantially smaller error rate.
important, scientists are very slow to accept the distortions
that come with much compression, when they are unlikely Until now, data compression algorithms for deep-space
to be able to gather this data again in their careers. have been limited to lossless compression, and thus to
Galileo's imaging system includes the option for lossless about 3.6 bits/pixel, while slightly lossy algorithms like the
data compression. proposed Joint Photographic Experts Group (JPEG)

standard show almost no visual degradation at less than

Last year, during its trip to Jupiter, Galileds collapsible 1 bit/pixel, compared to our original 8 bits/pixel. Because
high-gain antenna was scheduled to unfurl, but efforts to the communications rate with the low-gain antenna is so
open it have not been successful yet. If the high-gain low, many of the planned images would not be sent at all,
antenna were to remain closed, all communication would and so the small distortions introduced by data
be via a low-gain antenna. Without any additional compression are now much more attractive to the
changes, this would cause the achievable data rate to scientists.
drop by four orders of magnitude. A small part of this loss
is due to the fact that the (15, 1/4) encoder is not A JPEG standard 8x8 Discrete Cosine Transform (DCT) is
accessible for data going through a low-gain antenna. not possible within our constrained memory and

computation resources, but we intend to implement a

If the high-gain antenna remains unusable, we will similar multiplication-free integer transform, the Integer
change Galileo's error-correcting codes and data Cosine Transform (ICT), which can compress a typical
compression algorithm. Of course, the spacecraft planetary image 10:1 with an RMS error of 1 (out of 256)
hardware is completely inaccessible, but at the data rates gray level, .(peak SNR 48 dB), or 20:1 with an RMS error
we are now considering (about 100 bits per second) a lot of 2, with memory requirements of 4K bytes for code and
can be done in software, even on Galileo's somewhat old 7K bytes for buffer, using 32 adds and 12 shifts for each 8-
computers. point DCT. This algorithm will be used on Galileo's

images if a low-gain mission is required.

Software convolutional encoding would be easy, except
that Galileds design requires that most communication
through the low-gain antenna must pass through the (7,
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A Modification of Generalized Concatenated Codes and its
Applications

Yan Gao, Uwe Dettmar and Ulrich K. Sorger
Institut fir Netzwerk- und Signaltheorie, Technical University of Darmstadt

Merckstra.8e 25, 6100 Darmstadt, Germany

Abstract- We propose a modification of generalized concatenated
codes, which allows the construction of some best known binary linear Inner codes Outer codes GC code
codes in a very simple way. As another application we show that by (8,4,4) (7,3,4) (4,1,4) (23;10,7bits,8) (75,11,32)
using this method we can generate a big clans of optimal linear unequal (8,1,8) (2; 8,4,4)
error protection codes (LUEP codes) very easily and that most of (8,4,4) (7,3,4) (4,3,2) (23;10, 3, 8) (75,13,30)
the constructions given by van Gils [1] are special cases of this new
method. A big advantage of our method is, that all constructed codes (8,4,4) (7,3,4) (3,1,3) (2; 10,7bits,8) (74,11,31)
can be decoded very easily by the well known Blokh-Zyablov-Zinov'ev (8,1,8) (2; 8,4,4)
algorithm with a slightly modified metric. (8,4,4) (4,3,2) (4,3,2) (23; 10,3,8) (72,13,28)

(8,1,8) (2; 8,4,4)
Summary (6,6,1) (5,5,1) (2;16,1,16) (95,52,14)

(6,5,2) (5,4,2) (24; 16, 10,7)

Up to now all constructions of generalized concatenated codes (GC (6,1,6) (_=_,2 (2; 15,11,3)

codes, [2][31) are restricted to have outer codes A, of constant length

n. and only one inner code B together with its partitions. In this Table 1: Some modified GC codes

paper we construct binary GC codes which have outer codes Ai of
different lengthes ni and hence different binary inner codes B-) in B2 : (nb, kb, d62) as inner codes is a modified GC code, where the
the different columns of the code matrix, length of the first outer code A, is larger than the length of A2 . In this

Denote by A, : (qi; n8 i, k~,, di) the outer code A. over GF(qi) case the last n' symbols of a codeword in A, are not concatenated with
and of length ne,, dimension ko• and minimum distance di and by other codes and just appended to the first n. na concatenated bits. The
Bif): (n('), k),P db")) the ith subcode of the jth binary inner code with LUEP code has the parameters n=n~n5+(nb-kb)n', k=(nb-kb) ai +

i = 1,2 mandj = 1,2,-. ",n4,,,a = max{n0,i. By concatenating kbk. 2 and s (sal(c _ -,),-. .,slto1l(p,_k),db l.,2.ilkd '-,
4

232k.214),

outer and inner codes the symbols of the outer code Ai is used to where sik, _ 42S21. Optimal LUEP codes can be obtained if some
label the subcode BY) and its cosets obtained by partitioning the ith special codes are used as outer and inner codes. The codes from Con-

subcode BY). The new GC code has the parameters: structions A,C,E,F,I,J and K in [1] can also be obtained in this way.

, Construction III: The GC code with A, : (2kb;n.,k.1, %) and
= n10) k=(kSlog2 (q), A2 : (2;n.,k.2j,6 2 ) as outer codes and B1 : (nb, k&+1, 4) and B 2 :
j •= (n&, 1,n,) as inner codes is a special case of Construction L If we add

to the outer code A2 a parity bit, which is not concatenated with the
dri. 2 m> (min dbii) inner code B2, for sk, 4 > s21 n we obtain a new (n. nb + l,k.,kb +

- i V.7i k.2,,(8l1dbl ,'' A.,* &1&,41,,(nb-1)12 +2 N2 /21)) LUEP code, where

where ," C {l,..ni} with I3;i = d.4. (82/21 denotes (824121 for all i = 1,2, .. ,k 2 . Here if we take some

Table 1 shows some best known codes constructed in this way. The special codes as outer and inner codes, the same codes can be obtained

inner code BW) and its subcodes for j = 1,2,..-, n,,. are given in the as from the Construction 3B, Band Hn [1)

first column, and the inner codes B(n--+') and B(','-+ 2) are given in A big advantage of the new construction method is that the codes
the 2d" and 3rd columns. can be decoded very easily up to half of their minimum distance. The

The same idea can be used to construct optimal LUEP codes. In decoding algorithm is quite similar to the well-known Blokh-Zyablov-

the following we give some examples. Zinov'ev algorithm but with a slightly modified metric.

Construction I: First we consider a two-level GC code (m = 2),
where we take A, : (241;n.,k.1, %) and A2 : (24;n.,k.2,p2 ) as outer References
codes and B1 : (nb, kb + kb2 ,db ) and its subcode B2 : (n6, k&2 ,d&2) as
inner codes. A, and A2 are LUEP codes with nonincreasing separa- [1) W. Gils, Design of Error-Control Coding Schemes for Three Prob-
tion vectors a, = (a,I, a, 2,," il.,) and a2 = (821022, * ",32k.0 If lems of Noisy Information Trnsrmmission, Storage end Process-

41sis., Ž 4_021, then the GC code is a binary (n.nb, kolkb1 +k.2 kb2,a) ing. PhD thesis, Eindhoven Univ. of Technology, Eindhoven,The
LUEP code, where I = (Aisiilk&,, 4•ssiAsj,, • , d'si&olt,, dezs 21l~, Netherlands, 1988.
-. ,42d•k.24,,) (sltk, denotes the kw-vector with all components

equal to a). It can be seen that the Construction 1, SA and 5 in [1] [21 E. Blokh and V. Zyablov, "Coding of generalized concatenated

are special cases of the above construction, where some special codes codes," Probi. Inform. T7onsm., vol. 10, no. 3, pp. 218-222, 1974.

arc used as outer and inner codes to obtain optimal LUEP codes. (3] V. Zinov'ev, "Generalized concatenated codes for channels with

Construction II: The GC code with A,: (2(%-');n.+n,k.1,1h) error bursts and independent errors," ProbM. Inform. l•nnm.,
and A2 : (21;n.,k.3,ft) as outer codes and B, : (n&,Yn,1) and vol. 17, no. 4, pp. 53-56, 1981.
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PERFORMANCE OF CONCATENATED CODING length and their symbol-error-correcting capability. All the theoretical
SYSTEMS results have been verified against simulations results and show good

FOR CHANNELS WITH MEMORY agreement. Figure 2 shows the simulated versus analytical performance
results for both random error and burst error channels. On this Figure the

G. Ferland detrimental effect of memory on the performance of the conatenated system
can be observed. Results also indicates that the Reed-Solomon codesDepartment of Electrical and Computer Engineering outperform the Massey Diffuse codes for the same error-correctingRoyal Military College of Canada capability. Finally we find that soft decision decoding on the inner code with

ABSTRACT a finite number of levels ( Q = 4 and 8) can provide most of the gain in
performance for the concatenated system that would be obtained using

This paper presents the analysis of concatenated coding systems infiitely fine quantization

with inner convolutional codes and outer burst-error-correcting codes. References:
Contrary to most studies, interleavers are not required to perform the
analysis. A modelling technique for the outer channel resulting from a [I] E.N. Gilbert, "Capacity of a Burst-Noise Channel", BSTJ, Sept.
convolutional decoder operating over a wide variety of inner channels is 1960.
presented. The proposed outer model is simple and is determined for innerchannels with and without memory. The resulting finite state outer channel [2] B.D. Fritchman, "A Binary Channel Characterization Using

Partitioned Markov Chains", IEEE Trans. on Inf. Theory, Vol. IT-model is entirely characterized by the transition probabilities between the 13, April 1967.
states and a technique to compute these transition probabilities is proposed. [31 J.L. Massey, "Implementation of Burst-Correcting Convolutional
For memoryless channels, hard and soft decision decoding are both Codes", IEEEmTrans. on Inform. Theory, Vol. IT-I n, July 1C 5.
considered. The well known Gilbert and Fritchman models are used to
represent channels with memory. Once the outer channel model is
determined, it is used to compute the bit error performance of the entire Acknowledgement:
concatenated coding system considering both convolutional and block outer
codes, the Massey X-diffuse and the Reed-Solomon codes respectively. P.J. McLane, Department of Electrical Engineering, is thanked for his
Several examples are presented to illustrate the applicability of the method. Ph.D. supervision of this research. The research was performed at
Results are obtained both by analytical methods and computer simulation. Queen's University.

SUMMARY

Concatenated coding schemes are used in digital communication
systems. They have the ability to correct long error sequences and provide
very high reliability. This paper presents a methodology to evaluate the
performance of concatenated coding systems based on inner convolutional
codes and outer burst-error-correcting codes. A typical configuration is a ..
short constraint length inner convolutional code followed by a Reed-
Solomon (RS) outer code. An essential aspect of our work is that we can
also consider the use of an outer convolutional code. --- -Q

-Q42 The7
In this work particular attention is paid to the modelling of the outer

channel formed by the inner encoder, the inner channel and the inner
decoder. When a maximum likelihood decoder like the Viterbi decoder is 0 I I I I I I
used, the outer channel exhibits a tendency to produce bursts and should be ' I ' .. "
modelled by a channel with memory. Often an interleaver is used to remove Figure 1 Performance of a (2,1,2) code: BPSK modulation and soft
the memory from the outer channel, its presence is not required in this study decision decoding.
but can be accounted for if needed. Since a maximum likelihood decoder
generates error events of various lengths, the decoding process is very
difficult to analyze. To circumvent this difficulty, we have modelled the - -
errors at the output of a sub-optimum decoder called the sliding window
decoder (SWD). This decoder operates on a finite window size L and
approaches the performance of the Viterbi decoder as L increases to infinity.
The decoding process of the SWD is modelled by a 2-state Markov chain, a
correct and an incorrect state, characterized by the transition probabilities
Pci and Pic. The decoding model (e.g. the outer model) has been determined 000

for both memoryless channels and channels with memory. The mcmoryless
channels are the BSC and the AWGN channel with BPSK modulated
signals and soft decision decoding. Quantization with a finite number of
intervals is considered and arbitrary metric assignments can be used. sem,,i____ :
Results for a (2,1,2) code and integer metric assignments are illustrated in of
Figure I. Gilbert's [I] and Fritchman's [2] models are used to represent
channels with memory.

Figure 2 Performance of a Concatenated Coding system: BSC compared to
Then the bit error performance of the concatenated coding system a Gilbert model.

considering both convolutional and block outer codes is determined from the
outer model mentioned above. The outer convolutional code considered are
the X-diffuse Massey [3) codes which are entirely defined by their burst-
error-correcting capability B and the required guard space G. The outer
block code considered are the well known RS codes which can correct both
multiple bursts and random errors. These codes are specified by their block
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A Performance Analysis for Adaptive Rate, Trellis
Coded Hybrid-ARQ Protocols

Lars K. Rasmussen and Stephen B. Wicker
School of Electrical Engineering
Georgia Institute of Technology

Atlanta, Georgia 30332

Abstract

Hybrid-ARQ protocols are known to improve the reliability crease in the BER is observed. This phenomenon is easily explained,
of communication systems at the expense of the total through- for the combination of packets is equivalent to improving the SNR.
put. Systems based on trellis coded modulation (TCM) can be At some point a majority of accepted packets will consist of combined
modified for use in type-I hybrid-ARQ schemes. In order to re- packets and thus the effective SNR will be improved. In Figure 2 a
gain some of the lost throughput due to retransmission requests, substantial improvement in throughput is observed. At SNR's where
various adaptive code rate algorithms can be applied. In this
paper the concept of averaged diversity combining is considered, no throughput is expected for the non-combining case it is now possi-
Multiple received copies of the same data packet are combined ble to get close to 50 % of full throughput through packet combining.
on a symbol-by-symbol basis to improve the performance. A The simulated throughput follows the lower bound very closely. This
simple example of an adaptive rate, TCM hybrid-ARQ proto- bound is thus a good approximation to the real throughput.
col is developed and performance bounds on both bit error rate
and throughput are derived for AWGN channels. To verify the Es/N0 (d0)
bounds simulation results have been obtained and are presented. -4 -2 0 2 4 6 8 10

1 Summary 3,3

In this paper we examine the performance of a trellis coded hybrid- 104 .4
ARQ protocol (TCM-HARQ) with packet combining. The Yamamoto
and Itoh algorithm [1] is used to generate retransmission requests as t 10"5
investigated by Wicker and Rasmussen [2]. The derivation of the
throughput bounds for the combining protocol follows the approach 4W 106

of Kallel and Haccoun [3]. The expected number of transmissions is m

bounded as follows: 10"7

1 + [A (R)]-. I"AP(Ri ) _5 Tr _< I1+ I' P (8)(1
E P. P...) (1)

_ . i=1 Figure 1: BER performance of a TCM-HARQ system based on a

Here, P (RL) is the probability of a retransmission after L packets have (2,1,1) convolutional encoder and QPSK modulation.
been combined. The lower index on P indicates whether a lower or
an upper bound is to be used. The averaged diversity combining of L 0.5-

packets is equivalent to a decrease of the effective noise variance by a
factor 11L. Introducing the noise improvement factor I/L, the bounds 0.4
on both throughput and bit error rate (BE R) developed by Wicker and
Rasmussen (21 can then be applied. For the BER the upper bound is 0.3
as follow s:" = " =.' =

(P1(BI) - P.(Bi+1 )]) (2)
0.0

Here, P(BL) is the probability of bit error after L packets have been -4 .2 0 2 4 6 10
combined. The lower bound is derived the same way. ES/N 0 (d0)

PB __i(Bi)"(1-( Pu(Pi) - (P(Ri ))' Pf(Rl ) (3) Figure 2: Throughput performance of a TCM-HARQ system based onI4 1 )) a (2,1,1) convolutional encoder and QPSK modulation.

For low signal-to-noise ratios (SNR) the lower bound tends to break
down. An approximation is thus more useful. References

0 ') (1] Yamamoto H. and Itoh K. Viterbi decoding algorithm for con-
PB n /j(B,) - (P.(R1 )+ .( ) P. (A volutional codes with repeat request. IEEE Duns. Info. Th., IT.

Ii ( =1 )0- P. (Bi+2)]) 26(5):540--547, Sept. 1980.

(2] Wicker, S.B. and Rasmussen, L.K. A performance analysis for
A simple 2-state, 4-PSK TCM-HARQ protocol has been investi- trellis coded hybrid-ARQ protocols. In Proc. IEEE Superromm,

gated in detail and simulation data obtained. The results are shown ICC '92, pages 323.7.1-5, June 14-18 IM. Chicago, IL.
in Figures I and 2. For the BER in Figure I the approximation is
noted to be very good. The awkward behavior of the BER should be (3] Kallel, S and Haccoun, D. Sequential decoding with ARQ and
noted here as more and more packets are combined. Under conditions code combining: A robust hybrid FEC/ARQ system. IEEE TPens.
in which all packets are combined with at least one other packet, a de- Com., COM-36(7):773-780, July 1988.
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Further Results on the Convolutionally Coded ARQ with GVA decoding

Takeshi Hashimoto

Dept. Elect. Eng., Univ. Electro-Communications
Chofugaoka 1-5-1, Chofu, Tokyo 182, JAPAN

e-mail: hasimoto@liszt.ee.uec.ac.jp

Coded ARQ, or hybrid ARQ, is an effective scheme in order blocks and considered its performance by a random coding argu-

to attain high reliability and high throughput for channels with ment. Although his coding scheme is basically block coding and no

a moderate noise intensity. In 1980, Yamamoto and Itoh pro- particular code construction scheme is suggested, both works show

posed a coded ARQ based on a convolutional code and the Viterbi an intimate relationship. Stimulated by his work, next, we show

decoding and show that a good bit error probability is attained, that the performance bound presented before can be considerably

As the channel noise increases, however, its performance rapidly strengthened.

deteriorates because of increased retransmission requests and de-

coding errors. In 1990 ISIT, the author proposed a new coded We show, using the above mentioned ARQ code and the gener-

ARQ scheme which exploits, for error detection, the error prop- alized Viterbi decoding algorithm, that a good performance is ob-

agation caused by reduced-complexity decoding of convolutional tained for a considerably large channel noise. Especially interesting

codes with an extremely large constraint length and showed, by a is that high reliability is attained near R.,',, the computational

random coding argument, the attainability of both high reliabil- cut-off rate of the channel. This is not expected for coded ARQ

ity and high throughput. This asymptotic result, however, does schemes based on sequential decoding algorithms. In the simula-

not assure that a good performance is practically attained; more tion, at least several thousands ARQ blocks of block length about

realistic discussions have been expected. 500 bits are transmitted and "high reliability" means that no in-

In this paper, we presents a simple scheme for constructing the correct acceptance of erroneously decoded ARQ block is observed.

desired code, say the ARQ code hereafter, from a convolutional For a larger channel noise, however, the throughput becomes sen-

code with a short constraint length and from a BCH block code. sitive to the rule which decides whether a particular ARQ block is

In this construction, the convolutional code takes the role of error decoded incorrectly. Our original scheme, as well as Kudryashov's

correction and the block code takes the role of propagating a de- scheme, uses the threshold decision log E9 > T for error detec-

coding error to the next ARQ block. This ARQ code possesses a tion. We also consider the use of error-detecting codes for error

particular unit-memory structure between ARQ blocks besides its decision and compare the performance through a theoretical anal-

original trellis structure. ysis and simulation. It is shown that the use of error-detecting

Recently, we found that Kudryashov also discussed a coded code increases the robustness of the scheme and allow us to attain

ARQ scheme using such a unit-memory structure between ARQ high reliability at rates above R,,,,.
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AN ADAPTIVE TRANSMISSION SCHEME FOR METEOR-BURST
COMMUNICATION'

Guy B3gin
Dept. of Mathematics and Computer Science, Universit6 du Qu6bec i Montr6al

Montr6al (Quebec) Canada H3C 3P8

Abstract - We consider the use of rate-compatible variable-rate plateau is observed on BER curves. This plateau corresponds to
punctured codes for implementing an adaptive transmission scheme a range where received power in excess of what is required for the
for MB communication. The performance of the scheme is investi- target BER is exchanged for additionnal throughput. Indeed, the
gated both theoretically and through computer simulation. The re- average bit rate is seen to increase with increasing initial SNR in
suits indicate that a rate-adaptive strategy leads to a more efficient this range (Fig. 2).
use of available received power than fixed coding rate strategies. The rate-adaptive strategy clearly outperforms fixed coding

rate strategies with or without interleaving, achieving better over-
I INTRODUCTION all throughput (Fig. 2). Some trails that do not provide sufficient

SNR for sustaining transmission with the fixed rate strategies
Meteor-burst (MB) communication is an attractive means of be- may be exploited with the adaptive scheme, which has the further
yond line of sight radio communication for several applications advantage of providing continuous improvements in throughput.
[1]. In MB communication, propagation is achieved through re-
flection of transmitted signals from trails of ionized particles cre- REFERENCES

ated by meteors entering the atmosphere. MB channels are char-
acterized by random availability and received signal levels that [(] L.B. Milstein et al., "Performance of Meteor-Burst Commu-
decay with time. For the most prevalent type of trails, the signal- nication Channels." IEEE J. Select. Areas Commun.. Vol.
to-noise ratio (SNR) is modeled as exponentially decaying, i.e., SAC-5, pp. 146-154, Feb. 1987.
SNR(t) = SNR 0e- tO. The initial signal-to-noise ratio SNRo and
the decay parameter r are random variables which differ from [2] G.R. Sugar, "Radio Propagation by reflection from Meteor

trail to trail [2]. Trails." Proc. IEEE, Vol. 52. pp. 117-136, Feb. 1964.

Error control coding provides powerful means for dealing with
uneven received power [3]. With a fixed coding rate scheme how- [3] S.Y. Mui, "Coding for Meteor Burst Communications.y IEEE
ever, power is wasted at the beginning of trails, while at the end Trans. Commun., Vol. COM-39, pp. 647-652. May 1991.
of trails noise conditions are severe. We consider a solution that [4] J. Hagenauer, "Rate Compatible Punctured Convolutional
relies on the use of variable-rate punctured convolutional codes Codes and their Applications," IEEE Trans. Commun., Vol.
for implementing an adaptive transmission scheme for MB com- COM-36, pp. 389-400, April 1988.
munication.

II ADAPTIVE TRANSMISSION SCHEME
1e-02

Error performance may be considered satisfactory as long as the
residual Bit Error Rate (BER) is kept below an acceptable level.
The efficiency of the transmission scheme is then measured by
the throughput achieved. Our scheme relies on the use of rate-
compatible variable-rate punctured codes [4] for adapting the er-
ror correcting power to the variations of received power. Punc-
tured codes with coding rates close to one are used for the first
transmitted bits of a trail which require almost no error protec-
tion and, in parallel with the decay of received signal power, more 0''
and more redundancy is added to the transmission by progres-
sively decreasing the coding rate. Figure 1: BER versus initial symbol energy-to-noise ratio. M =

3, r = 2, non-coherent FSK, hard quantization.
III PERFORMANCE OF THE SCHEME )000 .,.,.. .°-oo ,e. +. ,,. d o•' .. .

The performance of the scheme has been investigated both theo-
retically and through computer simulation. The theoretical per-
formance is obtained by modeling the time-varying MB channel
as a rapid succession of stationary channels with decreasing val-
ues of avrage SNR. Error performance is obtained using classical
union bonid arguments, assuming additive white Gaussian noise. - ----

Several combinations of modlulatiojn types and quantization have
been considered. Computer simulations were conducted using a
similar model. W o, r :i . .. . ......... .. . ........ . . . . . .

Both theoretical and simulation results indicate that the rate-
adaptive strategy leads to a more efficient use of available received ..... ..
power than fixed coding rate strategies. As Fig. I shows, a . .

'This work was supported in part by the Natural Sciences and Engineer- Figure 2: Throughput versus initial symbol energy-to-noise ratio.
ing Research Council of Canada and by the Fonds de IIjQAMA M = 3, r = 2. non-coherent FSK. hard quantization.
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REAL CONVOLUTIONAL CODES EMBEDDED IN MULTICHANNEL
DEMULTIPLEXERS FOR FAULT TOLERANCE*

Professor Robert Redinbo
Department of Electrical and Computer Engineering

University of California
Davis, CA 95616-5294

SUMMARY has a memory span determined by the constraint length of the original
Unr code

Many future communication systems employ a la: number of
channels tightly packed in separate frequency bands which need to be The parity filter is used to produce low rate parity values from
demultiplexed at a central site to achieve network connectivity, each demultiplexer channel. On the other hand, comparable parity
Mobile cellular and very small aperture satellite (VSAT) values are generated in parallel with the demultiplexer from the
communicaton systems are two important examples where numerous original high-speed input samples, by combining the demultiplexing
channels are carried in a spectral segment through a central processing prototype filter H(Z) with the parity transfer function Q(Z). The
location. The practical feasibility of such systems rests on efficiently required parity subsystem is very simil to the main demultiplexe,
sharing common processing resources for simultaneously however, in the parallel parity process, the computational rates in the
demultiplexing channels. This increased efficiency introduces a segmented filter sections and the FFF are reduced further by the factor
heightened susceptibility to both permanent and temporary failures in K, a design parameter of the real code. The error-detecting fault
the underlying demultiplexing digital hardware. This paper tolerance capability for a generic channel r is depicted in
demonstrates how real convolutional codes can be used for defining Figure 2, where the down sampling feature in parity filter Q(Z) is
embedded parity streams which detect processing failures, indicated by I.K. The comparator contains a threshold tolerance to

accommodate roundoff noise introduced by the different
Multirate digital signal processing techniques capitalize on the computational paths for related parity values. The U3e of rotating A/D

narrowband nature of individual output channels permitting lower converters, necessary for high-speed performance, leads to easily
sample rates for most internal processing operations. The wide input detectable error energy in well-defined spare channels when an A/D
spectrum requires a high sample rate whereas individual information converter fails.
channels need much lower sample rates. An efficient realization of the
multichannel demultiplexer separates channels by spectrally shifting a
prototype filtering operation. However, it may be segmented into ý--- imwl 0
many short filter sections, each operating at a lower sampling rate,
whose outputs are passed through an appropriately-sized fast Fourier ----'aZ)
transform (FFT). The FFT realization is a major reason for the
increased efficiency. Furthermore, the input A/D converters may be AM I rr-
used in a rotating fashion to achieve the very high speed sampling T,•d Fff

necessary at the input. Contiguous samples are relegated to their Delay H(r)(Z) Lno N - Chon•,
respective positions in the lower speed processing sections for the Line,
remaining necessary operations. There are a wide range of efficient L NO N

configurations of banks of subfilters for most practical applications.
Figure 1 dramatizes the sharing nature of a multirate filter bank
demultiplexr. Chanl N-1

Any failure, whether permanent or temporary, virtually anywhere
in an efficient multirate, multichannel realization impacts many Every Nib

channels simultaneously. One effective protection approach employs Sun*
an algorithm based fault tolerance methodology, wherein parallel { Multirate Filter Bank
parity generating channels simultaneously produce a few parity sgof
samples for comparison with related parity values generated from the o Figure I
system outputs. The parallel parity producing resources may be used Fiurr
as standby units for replacing failed resources. Of course, then the
protection levels are reduced accordingly. Real convolutional codes, -
derived from burst-correcting binary convolutional codes, are ideally
suited for determining the parity values employed in the algorithm MULTIRATE Dan

FILTER Charidbased fault tolerance approach. These codes are used in a detection BANKmode only, and system diagnostic and reconfiguration phases may Dow-,mpW
follow the detection of failures. By Facu N

Rate K/(K+I) systematic binary burst-correcting convolutional A_ _ _

codes produce one parity sample for every K information positions
while still detecting the onset of a burst within a constraint le~ngth.
When these codes are viewed over the real numbers and are judgedb W
a real Hamming distance metric, excluding roundoff errors, it is May
known that their real error-detecting levels are at least as good as the (Sra N) Parity
binary precursor codes. he parity positions in these real number Ch ,
convoludonal codes dictate a parity generating, finite impulse
response filter with Z transfer function Q(Z) containing only 0 and 1
weights. The panty filter operates at a rate reduced by factor K and

Evme/ Every
G(l)(Z) hsCommePO U-0 N• msm

"* Th wa spwued by NASA Lewis Reaegh Conirt d h potNAG.3. Of Q(Z)AMz) Protection of DemulAplexer Ckannels
1166, the National Science Foundati dtrough galt MIP-9002664 Eid SDIO Q'Z z) y weithr'ni Fiber P
throuh the Office of Naval Reauch pain N00014-92-J-1759. HWZ): Pomye .seIPerw Fi.be Figure 2
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Performance Evaluation of Trellis-Coded Vector Quantization

Ren6 J. van der Vleuten Jos H. Weber

Delft University of Technology
P.O. Box 5031, 2600 GA Delft, The Netherlands

Abstract ..Complex. TC.Q:MF TCVQ:FMW TCVQ:VW TCQ:VW
32 4.92 5.05 5.15 .5.16

We propose a new construction of trellis-coded vector quantiz- 64 5.13 5.22 5.34 5.39

ers (TCVQs), based upon our construction of trellis-coded quan-
tizers (TCQs). The new construction yields TCVQs with a higher Table 1: SNRs (in dB), at the same complexity, for the TCQs

performance and is simpler than the previous construction given TCVQs (TCVQ:VW), and the TCQs o f [5]5 (TC'Q:VW) for the
in [1]. Laplacian source, at R th Tf

The performances of the new TCVQs have been determined for
the memoryless Gaussian, Laplacian, and uniform sources. The structure defined in 151).
experiments that have been performed for various computational As a measure of computational complexity we use the number of
complexities and vector dimensions show that, at a constant rate evaluations of the (single-sample) distortion function necessary to
and complexity, the performances of the TCVQs decrease as the quantize one sample. Thus the complexity equals the product of
dimension increases. the number of states, the number of branches (sets) per state, and

Thus, for memoryless sources, at the same rate and computa- the number of vectors per set: 2' 2.2.VNR- -- -)P+NR Table I shows

tional complexity, our TCQs are superior to our TCVQs. a comparison, at the same complexities, of the performances of the

TCQs of [2], the TCVQs of [1], the new TCVQs, and our T(Qs [5]
Summary for quantizing the Laplacian source at 1 b/sample. Even though

our TCVQs outperform those of [1], our TCQs are still superior.

A first constructive design method for trellis-coded quantiz- In [11, only the two experiments shown in Table I were pre-

ers (TCQs) and its extension to trellis-coded vector quantiz- sented. We performed various experiments for dimensions N equal

ers (TCVQs) have been given in (1, 2]. Recently, we proposed to 2, 4, and 8, and complexities up to 4096. They show that. at a

a new construction of TCQs for the rate of I b/sample [3, 4] as constant complexity, the performances of the TCQs decrease as
well as its extension to the higher rates [5]; our TCQs outperform the dimension increases.
thos.f [2]. Here, we present the extension of our construction to Thus, for memoryless sources, at the same rate and computa-

TCV~s. tional complexity, our TCQs are superior to our TCVQs.

The new construction yields TCVQs with a higher performance
and is simpler than that of [1], since it does not make use of convo- References
lutional codes and uses trellises corresponding to a shift register.
In [1], only two experiments were presented; these showed that the [1] T. R. Fischer, M. W. Marcellin. and M. Wang, -Trellis-coded vector

TCVQs outperformed the TCQs of [2]. We, however, performed quantization," IEEE Trans. Inform. Theory, vol. IT-37, pp. 1551-

various experiments which show that our TCQs are superior to 1566, Nov. 1991.

our TCVQs, at the same computational complexity. [2] M. W. Marcellin and T. R. Fischer, "Trellis coded quantization of

The TCVQs we consider have 2' states, with two branches en- memoryless and Gauss-Markov sources," IEEE Trans. Commun..

tering and leaving each state. Each branch is assigned a set of vol. COM-38, pp. 82-93, Jan. 1990.

representation symbols, according to the structure defined in [5]. [3] R. J. van der Vleuten and J. H. Weber. "A new constructive design
Of course, in this case the representation symbols are not scalars, method for trellis waveform coders," in Thirteenth Symp. Inform.
but vectors. Specifically, for quantizing at R b/sample using N- Theory in the Benelux, (Enschede. The Netherlands). pp. 15-22.

dimensional representation vectors (N = 1,2 .... ), each set con- June 1-2. 1992.

tains 2NR-1 vectors. [4] R. J. van der Vleuten and J. H. Weber. "A new construction of
To compare the performances of the TCVQs with those of our trellis waveform coders," in Signal Processing 'l: Theories avid

TCQs, experiments have been performed for memoryless Gaus- Applications (EUSIPCO-9?). (Brussels. Belgium). pp. 1477 -14,S0.

sian, Laplacian, and uniform sources. For the experiments, as Elsevier Sci. Pub.. Aug. 24- 27. 1992.

in [1, 2, 3. 4. 5], a training set of N. 100 000 independent random [5] R. J. van der Vleuten and J. H. Weber. "A new construction of
samples was used. To optimize the codebook, 100 iterations were trellis-coded quantizers," in Joint DIMA1.4cSiIEEE Workshop on
performed using an algorithm based on that described in [6], but Coding and Quantization, (Piscataway, U.S.A.). Oct. 19 21. 1992.
extended for TCVQ and adapted to maintain the structure de- To be published.
fined in [5]. Representation symbols onto which no input symbols [6] L. C. Stewart, R. M. Gray. and Y. Linde. -The design of trellis

are mapped are updated to zero (the average -nput value). The waveform coders," IEEE Trans. Comnmun.. vol. COM-30, pp. 702
initial codebook was constructed from independent random sam- 710, Apr. 1982.
pies from the distribution to be coded (maintaining of course the
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nodes of an initial BSP tree T using A(v) as the key in descending
order, and denote by A(v) the rank of v in this sorted list. Based on
the ranking of the partitioning profits, we introduce a special kind of

An Efficient Algorithm for Optimal Tree pruned trees of T, called stable roofs. A stable roof is defined to be a
subtree R of T rooted at the root of T such that all the [IRI/2J internal

Pruning with Application to VQ nodes of R have the LIRI/2J largest partitioning profits among the in-
ternal nodes of T, namely, A(v) ! [IRI/2J if v is an internal node of R,

Xiaolin Wu Yonggang Fang t where JRI is the total number of nodes in R. By the above definition,
A vector space can be recursively partitioned into k convex regions the initial BSP tree T is itself a stable roof. In general, there may exist

with k - 1 cutting halfplanes. Such a k-partition can be embedded into many stable roofs R, _ T. The subscript i in Ri denotes the size of the
a binary tree of k leaves. This tree data structure was independently stable roof Ri, i.e., i - JR. For simplicity we assume that all A(v)
developed by researchers in VQ (6], pattern classification [1], databases are distinct so that no two stable roofs have the same size.
[3] and computer graphics [4]. It was given different names in different Now investigate our problem of constructing the optimal pruned
research communities: quantizer tree, classification tree, k-d tree, and k-node tree Tept(k) from the initial BSP tree T, k < n = ITI. If there
binary spatial partitioning (BSP) tree. In this abstract, we will use the exists a stable roof Rk, then Rk = Topt(k), because any other internal
term BSP tree. Each leaf of the BSP tree corresponds to a resulting nodes of T that are not the internal nodes of Rk have smaller profits,
convex region of the k-partition, and each internal node of the tree hence they cannot reduce the total quantization distortion further by
and its two sons correspond to a bipartition by a cutting halfplane. replacing any of the internal nodes of Rk. Even if Rk does not exist,
The BSP tree has a wide range of applications: source coding, pattern we may find two stable roofs Ri and Rj such that i < k < j. It is
recognition, artificial intelligence, computer graphics, etc. However, easy to see, in this case, that R, C Tpt(k) (in fact, R, is also a stable
for clarity and relevancy to the information theory symposium, we will roof of Test(k)), and that v V Rj implies v V Topt(k). Therefore, we
study the problem in the framework of VQ. The results apply to other only need to prun the nodes between Ri and Rj, i.e., those v such that
applications straightforwardly. v E Rj but v i R., in search for Tpt(k). The worst case is when T is

A tree-structured vector quantizer (TSVQ) has two attractive ad- the only stable roof of T. We have no bounds on the shape of Topi(k).
vantages: low design complexity and low decoding complexity com- Fortunately, this worst-case does not occur often in practice.
pared with its unstructured counterparts. However, these computa- The stable roofs R, and Rj such that i < k < j serve as the upper
tional advantages are gained at the expense of codebook optimality. and lower bounds on the shape of T,,t(€k). If the gap between Ri and
Namely, the k-partition embedded into the BSP tree is not, in general, Rj has m nodes, then the optimal pruning can be done in 0(m 2 ) time
a Voronoi diagram on the k centroids. Two avenues were opened to using the dynamic programming paradigm. In our experiments, m was
improve the performance of TSVQ: 1) adaptive partitioning strategy very small independent of k, so the cost of 0(m 2 ) can be considered
and 2) optimal tree pruning. When growing the spatial partitioning negligible. The family of stable roofs with respect to T can be found by
tree we can optimize the cutting halfplanes one at a time by principal the standard graph connected component algorithm. Starting with the
analysis (9], or optimize several cutting halfplanes together by dynamic initial graph consisting of the root of T and its two edges, we insert into
programming as proposed by Wu [10], and/or elaborate on the order the graph the internal nodes v with their edges in the descending order
of tree growth using a look-ahead scheme as suggested by Riskin and of A(v). In the insertion process, we dynamically detect the connected
Gray [7], and Wu and Zhang [9], rather than blind recursion. To fur- components containing the root of T and examine if they are stable
ther improve the performance of TSVQ, one can generate an initial roofs. Computing Ri and Rj requires 0(nlogn) time, which is spent
BSP tree of larger size and then optimally prun it back to the required on sorting A(v) and detecting stable roofs. Thus our claim on the time
size. The first work on pruned TSVQ was due to Chou et al. [2], which complexity of computing Topt(k).
was developed from an earlier work by Breiman et al. [1] on classifi- References
cation trees. The pruning of a BSP tree is an optimization problem of
minimizing some objective function (say, quantization distortion) un- [1] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Clas-
der certain constraints (e.g., the size or the expected height of the tree, sification and Regression Trees, Belmont, CA: Wadsworth.
the entropy of the leaves, etc.). The algorithm of [2] can find points on [2] P. A. Chou, T. Lookabaugh, and R. M. Gray, "Optimal pruning
the convex hull of the objective function. However, given an arbitrary with applications to tree-structured source coding and modeling,"
constraint value, this algorithm can only obtain the minimum through IEEE Trans. Inf. Theory., vol. IT-35, no. 2, pp. 299-315, 1989.
time sharing. Recently, Lin et al. [8] showed that optimally pruning an [3] J. H. Friedman, J. L. Bentley, and R. A. Finkel, "An algorithm for
n-node initial tree to a k-node tree to minimize the total quantization finding best matches in logarithmic expected time," ACM Trans.
distortion can be effected in 0(nk) time without time sharing. Math. Software, Vol. 3, No. 3, pp. 209-226, Sept. 1977.

In this research we found that the expected execution time of Lin et (4] H. Fuchs, G. Z. M. Kedem, and B. F. Naylor, "On visible surface
al.'s algorithm can be reduced from 0(n

2 ) to 0(n log n) if 0(n) = 0(k) generation by a priori tree structure," Computer Graphics, vol. 14,
(a common case in practice). We observed that the mechanic bottom- no. 3, p. 124-133, July 1980.
up testing in the search for the optimal subtree as conducted by the [5] J. Makhoul, S. Roucos, and H. Gish, "Vector quantization for
algorithm of [8] was often unnecessary and wasteful. Decisions can be speech coding," Proc. of IEEE, vol. 73, pp. 1551-1588.
made at a much earlier stage as to which subtrees can never be part [6] E. A. Riskin and R. M. Gray, "A greedy tree growing algorithm for
of the final optimal k-node tree and which top portion of the initial the design of variable rate vector quantizers," IEEE Trans. Signal
BSP tree must stay in the final optimal k-node tree. Consequently, the Proc., Nov. 1991.
search domain, and hence the algorithm execution time is drastically [7] J. Lin, J. Storer, and M. Cohn, "On the complexity of optimal
reduced. tree pruning for source coding," Proc. of Data Compression Con-

Let E(v) be the quantization distortion of the quantizer cell cor- ference, IEEE Computer Society Press, pp. 63-72, 1991.
responding to a BSP tree node v. Then for each internal node v, [8] X. Wu and K. Zhang, "A better tree-structured vector quantizer,"
we define its partitioning profit to be A(v) = E(v) - [E(v.leftson) + Proc. of IEEE Data Compression Conference, IEEE Computer
E(v.rightson)]. A(v) quantifies how much reduction the corresponding Society Press, pp. 392-401, 1991.
bipartition of v brings to the total distortion. We sort all the internal [9] X. Wu, "Vector Quantizer design by constrained global optimiza-
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ABSTRACT Theorem 1 If Ih(f)l < oo and H(Qkp(Xk)) < oc for some d >
Two results are given. First, using a result of Csiszir, the 0, then

asymptotic (i.e., high resolution/low distortion) performance for lim d 2-(Q!,.-) = I(P) 2 fh(f)° (4)
entropy constrained tessellating vector quantization, heuristically d-0

derived by Gersho, is proven for all sources with finite differen- Furthermore, if Zador's formula holds for f, I(P) = C(k, r), and

tial entropy. This implies, using Gersho's Conjecture and Zador's Gershos' conjecture holds, then
formula, that tessellating vector quantizers are asymptotically op- D (H(Qkp), k, r)
tinial for this broad class of sources, and generalizes a rigorous lim =d1, (5)
result of Gish and Pierce from the scalar to vector case. Second, d-O d

the asymptotic performance is established for Zamir and Feder's i.e., the quantizer Qd,p is asymptotically optimal.
randomized lattice quantization. With the only assumption that
the source has finite differential entropy, it is proven that the low A standard technique using the vector Shannon lower bound

distortion performance of the Zamir-Feder universal vector quan- on the kth order rate-distortion function Rk(d) then gives for mean

tizer is asymptotically the same as that of the deterministic lattice squared distortion

quantizer. .im k I
SUMMARY sup[HQd,p) - Rk(d)] _ -log 2wel(P). (6)

Let Qk denote an N-level k-dimensional vector quantizer, and d-O 2

let X.- be the k-dimensional random vector with density f and dif- The condition for (6) to hold is that EIlXkIlz < cc, Ih(f)I < cc,
ferential entropy h(f) to be quantized. Let the rth power quanti- and H(Qdkp(Xk)) < cc for some d > 0.

zation distortion be defined in the usual way, Theorem 2 Suppose the conditions of Theorem I hold. Then the
DQ(Q(.\k)) . . rate H(Qdv) of the randomized lattice quantizer with basic cell V

I -- QN(xk)I1 , and rth power distortion d satisfies

where ' denotes the Euclidian norm, and r > 0. Denote the ira d V - l 2h(f) (7)
Shannon entropy of Q. by H(Qk.), and for H > 0 let a-o d d 1(11)9(7

D,( .k, r) = iif inf Dr(QkN(Xk)), (1) i.e., the asymptotic performance of the randor'ized lattice quan-
N .I.4.•<_l tizer ms the same as the asymptotic performance of the ordinary

the distortion of an optimal k-dimensional vector quantizer wilh (non-randomized) lattice quantizer qiven by (4).
entropy H. (Gersho [2] heuristicly derived the asymptotic perfor- Corollary 1 For r = 2. h(f)j < o, and EII.V512 < c,
miance of quantizers given by the tessellation of "Rk by a convex

).olytope P.fie found that dif denotes the tesselating quan- lim sup fI(QPv) - Rk(d) < -log 27rel(V). (8)
tler with rth power distortion d, then d-O k 2

lira (d2(Qk, _ - l(P) 2kht1) (2) ACKNOWLEDGEMENTS
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in great generality. Our Theorem I establishes the asymptotic 09766 and NCR-91-57770.

entropy constrained performance of lattice qnantizers without any
smoothness or compact support condition on the density. Thus the References
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We consider the problem of transmitting im- All these a-priori calculations allow us to adapt the
ages over noisy channels. Source coding is done source and channel coding to the SNR so as to obtain
by a the fixed rate scheme (DCT and Product the lowest mse for a fixed rate or to calculate the re-
Pyramid VQ with (L-K)-thresholding) (1], that quired rate for a given maximum mse before transmis-
allows us to calculate very precisely the expected sion. Simulation results (see figure (1) - unprotected,
mean square error caused by data compression. EEP, UEP) show the performance of our scheme and
This together with the a-priori knowledge of the gains of up to 5 (8) dB (unprotected) in PSNR and
bit-sensitivity of the compressed image data en- up to 4 (8) dB in Es/No compared to JPEG (Joint
ables us to erform a highly efficient equal or Photographic Experts Group) especially for very noisy
unequal error protection for image transmission channels and low overall rates R.
over noisy channels.

Given the overall rate R = RS + RC, where Rs and 36 . . . . . . . . .
Re denotes the source rate and the channel rate respec- ^33
tively in bits per pixel, and the channel SNR E8/No, 31

one can calculate the optimal ratio of source to chan- A29

nel rate. First of all this requires the knowledge of , 27 tP-G-/
mean=E(p(X)) and variance=var(p(X)) of source vec- .(ZERle-).:

-123tors .1A for the rate Rs to calculate the mean square ' 21 / Vo (EEP)
error caused by source coding mses [1]. Furthermore, .19 (bpp(EEP)-bpp(UEP))

we need the bit-sensitivity Ai of the compressed data. 17 7

Therefore, it is sufficient to look at one of the coding 15 ..... PVQ JPEG

units (CU) the whole image is divided into. These bit- 13 . ............... (unprotected) (unprotected)

sensitivities can be derived before images transmission, 11 .................. ...... , -

again with the knowledge of mean and variance of the -4 -2 0 2 4 6 8 10 12

source vectors Xc. E/ N9 [dB] -- >

For the given channel SNR, we can compute the bit er- Figure 1: PSNR vs. channel Es/No of the PVQ and
ror probability Pb of our channel code, a 64-state RCPC- JPEG for LENA at 0.5 bits per pixel
code [2] and with the average contribution Ai of an er-
ror of bit i on any compressed CU, we obtain the mean
square error caused by channel errors References

s--I

71mSC E Pb, " Ai , Ai E (Ajdc, Apyr. Amrad), [1] P. Filip and M. J. Ruf, "A fixed-rate product pyra-
i=0 mid vector quantzation using a Bayesian model,"

in Proc. of IEEE Globecom '92, (Orlando, Fl.),
where s denotes the number of bits of the compressed i 08B. 1992.

CU. Finally, we have to optimize the overall mse =

mses + msec for the given rate. Hereby, we either use [21 J. Hagenauer, "Rate-compatible punctured convolu-
an equal error protection (EEP) channel code for the tional codes (RCPC codes) and their applications,"
whole data or even better, several levels of protection IEEE Tmns. Commui., vol. COM-36, pp. 389-400,
for the different sensitive bits (UEP). Apr. 1988.
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Summary increases as p increases and for p = 0.95, the gain is more than 2 dB.
Although the NC-FSVQ1 offers robustness against channel noise,

A finite-state vector quantizer (FSVQ) is a finite-state machine there are two problems associated with such a scheme. First, it suffers
used for data compression. An FSVQ can be viewed as a collection from a delay at the receiver side. The second problem relates to the
of memoryless vector quantizers (VQ's) where each input vector is overhead involved in explicitly transmitting the protected encoder
encoded using a VQ associated with the current encoder state; the state information; the next encoder state information is implicitly
current state and the codevector selected (or the corresponding index) contained, at least partially, in the current transmitted codeword and
determine the next encoder state [I]. it seems that protecting the codeword (or part of it) instead of the

Unlike an ordinary memoryless VQ, an FSVQ (with K states) state (as is done in NC-FSVQ1) might lead to a similar performance
can take advantage of the memory between successive source vectors (in terms of distortion) at a lower overhead rate. Let us now focus on
by incorporating a feedback structure which enables it to choose the the second issue. In a given FSVQ, the state information is embed-
appropriate VQ (from the set of K different VQ's), given the past be- ded in the codeword in an unstraightforward way. In other words,
havior [1]. While in the noiseless case this feedback structure leads to we do not know which bits in the codeword should be protected in
a performance gain over ordinary memoryless VQ, in the presence of order to effectively protect the state information. In an effort to re-
channel noise, the same feedback structure renders FSVQ very sensi- solve the above issue, we modify the FSVQ design algorithm [3] such
tive to the channel error propagation and leads to severe degradation that all the state information is forced to be contained in 1 = log2 K
in the performance of the FSVQ as compared to the memoryless VQ. most significant bits of the codeword. In addition, we modify the
Indeed, FSVQ designed as in [1] falls apart in the presence of channel next-state function such that the state at time n + 1 depends only on
noise. the codeword at time n (independent of the state at time n, see [3]).

In this paper, we propose two modified FSVQ systems (NC-FSVQ1 Under these conditions, using the development in [4], we have formu-
and NC-FSVQ2) that are robust to channel noise. In order to de- lated the joint source-channel coding problem for the modified FSVQ
sign NC-FSVQ1, we first redesign the FSVQ system taking into ac- system, developed necessary conditions of optimality and based on
count the channel noise, under the assumption that the decoder has these conditions described a deý,gn algorithm leading to the so-called
perfect knowledge of the encoder state sequence. This leads *o the NC-FSVQ2 system [3].
design of an FSVQ system in which each state VQ is a channel- We also used NC-FSVQ2 to encode the G-M source.Under noisy
optimized VQ [2]. The transmission of "protected" encoder state channel conditions, NC-FSVQ2 performs significantly better than or-
indices is needed to allow the decoder to track the encoder state dinary FSVQ and as compared to CO-VQ, it achieves a gain of 0.4-0.8
sequence. In order to keep the overhead information (consis.ing of dB at t = 0.005 and 0.7-1.0 dB at c = 0.1. Again, this gain increases
encoder state indices) low, the encoder state index is transmitted as p increases. In contrast to NC-FSVQ1, NC-FSVQ2 does not have
periodically, say once for every n input vectors, and then given the any delay at the decoder and there is no need for a separate chan-
state indices at times k and k +n and the received codewords at times nel code. We also used NC-FSVQ1 and NC-FSVQ2 to encode the
i = k, k + 1, ... , k + n- 1, the Viterbi algorithm, with the maximum speech LSP parameters [5] and achieved noticeable gains over ordi-
likelihood criterion, is used to estimate the encoder state indices at nary FSVQ and CO-VQ under noisy channel conditions [3].
times i = k + 1, k + 2, ... , k + n - 1 at the decoder. Since some of
the encoder state indices at times i =/k + 1, k + 2, .. k., k + n - I may
be incorrectly estimated by the decoder, we have developed an algo- References
rithm to do a judicious indexing of the codevectors among the states, [1] J. Foster, R.M. Gray and M.O. Dunham, "Finite-State Vector
so that if an encoder state is incorrectly decoded while the codeword Quantization for Waveform Coding," IEEE Trans. Inform. The-
is received correctly, the error introduced is not substantial (it should ory, vol. IT-31, pp. 348-359, May 1985.
be noted that this indexing provides protection against state index
error, while protection against error in the received codeword within [2] N. Farvardin and V. Valshampayan,"On the Performance andstat isimpicily rovdedby he cannl otimzedstae Vs).Complexity of Channel-Optimized Vector Quantizers," IEEE
a state is implicitly provided by the channel optimized state VQs). Trans. Inform. Theory, vol. IT-37, pp. 155-160, January 1991.
The resulting FSVQ system called NC-FSVQI performs significantly
better than the ordinary FSVQ [1] in the presence of channel noise [31 Y. Hussain, Design and Performance Evaluation of a Class of
(memoryless binary symmetric channel assumed). Finite-State Vector Quantizers, Ph.D. Dissertation, Electrical

We have used NC-FSVQ1 to encode the Gauss-Markov (G-M) Engineering Department, Univ. of Maryland, College Park, MD,
source with a correlation coefficient p = 0.9. When the channel is 1992.

noisy, NC-FSVQ1 outperforms ordinary FSVQ significantly at all lev- [4] J.G. Dunham and R. M. Gray, 'Joint Source and Noisy Channel
els of channel noise. We observed that for a block size of 4, under Trellis Encoding," IEEP Trans. Inform. Theory, vol. IT-27, pp.
noisy channel conditions, NC-FSVQl performed close to or better 516-519, Jul. 1981.
than the channel-optimized VQ (CO-VQ) [2]; at e = 0.005 - 0.05, [5] N. Sugamura and F. Itakura, "Speech Data Compression by LSP
the performances are close, while at c = 0.1, NC-FSVQI outperforms Speech Analysis-Synthesis Technique," IECE Trans., vol. J64-A,
CO-VQ by 0.440.9 dB with a decoding delay of 6 vectors (t is the No. 8, pp. 599-605, Aug. 1981 (in Japanese).
bit error rate). The performance gain of NC-FSVQI over CO-VQ
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pofation and General Electnc.
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ABSTRACT the case d = 2. However, for d > 2, this might not be the case.
Upper and lower bounds are derived for the average number of It is shown analogously that for balanced TSVQ with d > 2 the

facets per cell in the encoder partition of binary Tree-Structured upper bound on the average number of facets per cell is reduced
Vector Quantizers. The achievability of the bounds is described as to log2 n. It should be emphasized, though, that the achievability
well. It is shown in particular that the average number of facets of the bounds presented are best and worst cases, over the class of
per cell for unbalanced trees must lie asymptotically between 3 and all TSVQ's, and it is a question for future study as to how likely
4 in R2 , and each of these bounds can be achieved, whereas for they are to occur for various practical TSVQ systems.
higher dimensions it is shown that an arbitrarily large percentage Proposition 1 For unbalanced TSVQ, the average number of

of the cells can each have a linear number (in codebook size) of facets per cell satisfies

facets. Analogous results are also indicated for balanced trees.
SUMMARY 3-4/n < Fd(n)!< n/2-1/2 for d>2,n > 1

A binary Tre-Structured Vector Quantizer (TSVQ) Q can 3 - 4/n < Fd(n) < 4 - 7/n for d =2, n > 3. (1)
fornially be defined recursively by cutting (or splitting) one cell of
an existing TSVQ by a hyperplane. As in general VQ, TSVQ's also The next several results exhibit the bounds' achievability.

partition R" into a finite set of convex polytopal cells. This follows Proposition 2 For every d > 2 and n > 1 there exists an unbal-
from the fact that every encoding region is a finite intersection of anced TSVQ such that Fd(n) > n/4.
half-spaces. It will be assumed throughout that the intersection
of any cell-splitting hyperplane with a face of the split cell is of Proposition 3 For d = 2 and every n > 2 there exists an unbal-

lower dimension then that of the face itself or equivalently that a anced TSVQ such that Fd(n) = 4 - 7/n.

general position restriction holds. Proposition 4 For every d > 2 and n > I there exists an unbal-

A facet of a convex polytope in 'R" is any (d - 1)-dimensional anced TSVQ such that Fd(n) = 3 - 4/n.

face of the polytope. Two cells in a quantizer partition are naeigh-

boro if each has a distinct facet, one of which is a subset of the The following corollary shows that there exist d-dimensional

other. Equivalently, two cells are nleighbors if the intersection of TSVQ's such that an arbitrarily large fraction of the cells each
their closures has dimension d - I. For a VQ encoder partition in have a linear number (in codebook size) of facets.
geuiral position, there is a one-to-onte corrcspondence between the
facets of a cell and the cell's neighhors. However, for TSVQ, it is Corollary 1 For every d > '2, n a> 1, and E (0,t1), there exists
possible tat one cell could be adjacent to several other cells via a TSVQ with n cells such that at least sn of the cells each have

at leas 1-a) aes
the salie facet; in general, the number of facets per cell is less than
or equal to the number of neighbors of the cell. Often, however, For balanced trees similar results are obtained, though with
these two quantities are very similar or equal. For a given convex a reduction from linear to logarithmic bounds. The results are

polvtopal partition Q of *"R into it cells, define stated in terms of the number of cells n, in the TSVQ, though it

I) Fd( i) = average number of facets per cell in Q. should be remembered that balanced trees only exist when n is

2) Gjh(n) nF,j a) some integer power of 2. In the following proposition, the achiev-
3) aId(n) = maximumi number of facets of a cell in QI. ability of the lower bound for d > 2 and the upper bound for d = 2

are analogous to the unbalanced case. However, it is unknown at

Note that since every cell of any vector quantizer with n code- present whether the upper bound log , n is achievable; in fact it
vectors cannot share more than one facet with any other cell we is unknown whether, for a fixed d > 2, it is possible to exhibit

obtaiii the trivial upper bound F,"(i) < 1 - I. In two dimensions, balanced TSVQ's such that FId(n) is unbounded.
a straight forward application of Euler's theoremn for planar graphs Corollary 2 For balanced TSVQ.

shows that f (n) < 6 (i.e. not restricted io TSVQ).
In this paper we derive several bounds on Fa(n) for TSVQ :1 - 4/n S fI((n) < log 2 n for d > 2, n > 0

and point out the achievability of these. Specifically, it is shown 3 - 4i/n < Ft(n) < 4 - 8/n for d = 2, n > 0. (2)
that for 2-dimensional unbalanced TS\VQ. the average number of

facets per cell is asymptotically bo*iuded above by 4 and below ACKNOWLEDGEMENTS The research was supported in

by 3, and that the bounds are achievable. For higher dimensional part by Ilewlett-Packard (Co., and the National Science Founda-

spaces all upper bound of 11/2 and a lower bound of :1 are given. lion under Grants No. NCR-90-019766 and NCR-91-57770.

It is also shown that si/4 and .1 respectively are achievable in this
came. At present, it is an op1en1 question as to whether the um/2

boind is achievable. lit R, it is trivially always the case that References
-I 'R=, it.h tat[I] I). Nethoff and 1). Lee, "On the Performance of Tree-

i s o lStructured Vector Quantization". IEEE Int. Symp. Info.
the ISVQ cells are bounidhed. thelin f' 2 (n) :z 4. This woulld lend

stipor tot le asuiI~ t iu tiahe ii ll hatl,~ a) 2d or Theory (/817'). tludapesi. Ihlungary, June 1991.
.01V siuplport to the assumpii onl mnade in 111 thatVi n) = 2d 3or
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A METHOD FOR EXAMINING VECTOR QUANTIZER STRUCTURES
Erik Agrell

Department of Information Theory
Chalmers University of Technology

S-412 96 Goteborg, Sweden

Abstract - This paper presents how to study the geometry of Voronoi Depending on the choice of the dual objective vector b, different
regions in an arbitrary vector quantizer. Methods to find the location, the
extent, and the neighbors of any region are summarized. Application to extrema will be found and different properties of the VR will be
fast encoding is emphasized. investigated. Especially, if b is chosen first as a unit vector and next

as the same vector negated, problem 1 above is solved by two linear
1. INTRODUCTION programs. If this is repeated for all coordinates and all VRs, a

It is well known that a vector quantizer (VQ) performs better, in circumscribed hyperrectangle will be found for each VR, which is
terms of signal-to-noise ratio, than a scalar quantizer [4]. The the precomputed information required for encoding with the
improvement increases with the dimension, but the price paid is Projection Method 121.
complexity. In particular, the encoding process is slower. In the case Problem 2 is solved similarly by two linear programs, if b is set
of nearest neighbor quantization, which this paper considers, the orthogonal to the given hyperplane, pointing in both directions. If
straightforward encoding method is calculating the squared the two extrema lie on the same side of the plane, so does the whole
Euclidean distance VR; otherwise it is intersected. The answer to this kind of questions

d(w, r,) = 1w - rf2  (1) is vital for the design of the decision tree used in the Binary Hyper-
between an input vector w and every reconstruction vector r,; plane Testing Algorithm 13].
i= .... n, and selecting the codeword that gives the minimum To test the neighborship between VRs j and k (problem 3), b is
distance. The set of vectors that are encoded as a certain codeword k chosen equal to a,, which is orthogonal to the common face of V
according to this rule is called the Voronoi region (VR) and Vi, if such a face exists, whereas A and c as before denote

V, = {w: d(w, r,) < d(w, r,); i n) (2) (5). With this input, a linear programming algorithm will return the
point w in k4 whose projection on a is closest to r,. If the two VRs

Sometimes suboptimal VQs are accepted in order to decrease the have a common face, the dual optimum w will inevitably lie on it.
encoding time. Several structures have been developed for which The primal optimum shows whether this has occurred: the face was
fast search algorithms exist, e.g. lattice or multistage coders. reached if and only if the component of i corresponding to a, is
However, there are also methods to improve the encoding speed for greater than zero.
arbitrary VQs, without paying with signal-to-noise ratio. The meth- A VR is defined by n - 1 linear inequalities as in (2) or (4). Some
ods often require precomputing some geometrical properties of the of them are in general redundant. Define the set N. of neighbors to
VRs. A new method to obtain such information is presented here, as a codeword k as all codewords whose VRs have a face in common
well as an encoding algorithm based on the precomputed data. with V,. The corresponding inequalities are the only ones needed to

1[. EXAMINING THE GEOMETRY OF VORONOI REGIONS be considered in order to determine if a vector w belongs to a certain

Some relevant types of problems concerning the structure of given VR Vk:

VRs are: V, = w: a~wg _c,; i e N,} (6)

1. What values of a certain component may vectors in this VR Now, solving problem 3 for all pairs of VRs in a VQ generates the
take on? complete neighborship table N,; i = L..., n, which is a useful tool for

2. On which side of a certain hyperplane lies this VR, or is the analysis as well as in applications. Because the description (6)
VR intersected? defines exactly the same region as (2), but more economically, the

3. Have these two VRs a common face? table speeds up other geometrical studies, such as the solution of

The three questions are closely related. All of them have applica- problems I and 2. In addition, it makes a new approach to fast

tions in different algorithms for the design of fast encoders, see encoding possible, called neighbor descent.

below. Probabilistic methods have been proposed to obtain approx- Ill. THE "NEIGHBOR DESCENT" ENCODING METHOD
imate, or likely, answers to them [21, [3]. In this section, determinis- Suppose that a vector w is to be encoded and that there is reason to
tic methods, based on different applications of linear programming, believe that r, is a good reconstruction vector for w. Calculate the
are presented for solving these and related problems reliably, distortions for all the neighbors of k, that is, the distances d(w,r,);

Consider the following standard formulation of a linear pro- i EN,. Replace k with the neighbor that has the smallest distortion
gramming problem: and restart. If no codeword in N, is better than k itself, then stop.

mincrx Theorem of uniqueness: In any VQ, for any input w, no more than
whenAx = b (3) one codeword can have a smaller distortion than all its neighbors.
Mhier x > 0 A necessity for the success of the method is that a path throughMuch research and much literature have been devoted to methods neighboring VRs, along which the distortion d(w, r,) is monotonic

for solving it. Two of the main approaches are the simplex method neighboing dos alon whichte istortion d i ni cand armrka's lgoithm boh hvin nuerou vaiatons[1] decreasing, does not terminate in a suboptimal local minimum. The
and Karmarkar's algorithm, both having numerous variations l 1]. above theorem states that this can never be the case. Its proof
From optimization theory it is known that there exists a dual prob- follows as a consequence of (6) and the observation that a vector
lea to (3), cannot belong to the interior of more than one VR.

rnaxbrw (4) The performance of the neighbor descent method was evaluatedin experiments on VQs without an induced structure. The results
the solution of which is strongly connected to the solution of (3). show that most of the n distance calculations can be avoided with
Actually, both mentioned methods generate the solution of (4) as a the neighbor descent method. The reduction is greatest for VQs with
by-product when solving (3). high bit rates, or, if the rate is kept constant, in many dimensions.

The inequality constraints in (4) form a convex polytope. They
describe the VR Vf (2) of a certain codeword k if REFERENCES

A =[a, ... a,, at,, a, IIl M. S. Bazaraa, ). J. Jarvis, and H. D. Sherali, Linear Programming and
"(5a) N.u.rk Flows. New York: Wiley, 1990.

c [C1 ... ck_1 C,, ... c, 12) D.-Y. Cheng, A. Gersho, B. Ramamurthi, and Y. Shoham, "Fast Search
Algorithms for Vector Quantization and Pattern Matching," in Proc.where for every i Int. Conf. Acoust.. Speech. Signal Processing, San Diego, CA, 19M4, pp.a, =r, -r, 9.11,1-4.

C r'= I (5b) 131 D.-Y. Cheng and A. Gersho, "A Fast Codebook Search Algorithm for
C,= Pit --- KINearest-Neighbor Pattern Matchin" in Proc. Int. Conf. Acoust., Speech,

2 Signal Processing, Tokyo, Japan, I '9  pp. 265-268.
Thus, the dual problem can be used for finding extrema of a VR. [41 A. Gersho andR. M. Gray, Vector Quantization and Signal Compression.

Boston, MA: Kluwer, 1992.
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AN OPTIMAL DATA COMPRESSION CODE
FOR MEMORYLESS GAUSSIAN SOURCE

Hiroki Koga and Suguru Arimoto

Faculty of Engineering, The University of Tokyo
7 - 3 - 1, Hongo, Bunkyo-ku, Tokyo 113, Japan

Abstract: An asymptotically optimal code with a fidelity crite- where Soi : R" -* A and V: R" -- Y are two mappings defined
rion for any memoryless gaussian source is proposed. It is shown as follows:
that the proposed code achieves the rate-distortion bound with
probability 1- c for any given distortion level under the squared- voi(x) = a1 if at : IIzI :5 a,+,,
error criterion. Asymptotical behaviors of the code performance ýP2(X) = Y,. if j[1i - yjl = rn j - ylU.
are also analyzed in detail. YEY

The rate R and the average distortion of this code are given
Introduction by

To develop data compression schemes with a fidelity criterion is R = 1 log2LM, (4)essential especially for continuous sources. It is therefore impor- n
tant to devise a general method to encode an output sequence A = J, p(.)d(x' (x))dx' S(5)
of practical analogue sources.

In this manuscript, any memoryless gaussian source is consid- res
ered, but it is sufficient to treat one with zero mean and unit rpectively. The following theorem evaluates the average dis-
variance. Let x= X- ... xn be an n-tuple of source symbols
that satisfies x, ,-, N(0, 12) for all i = 1,.., n. The probability Theorem Let A E (0, 1] be arbitrarily given. Let M =
density function can be written as M(n, A) = krrIs"- 11/("s- 21MA-')], and select an arbitrary set

A satisfying Cl) - C4). If M points on S"-' are chosen in-
A[X) = (27r) 1 exp (2 + 2+ + X2)], dependently as elements of Y, then for any 6 > 0 and e > 0

2 = 2- e there exists an integer no = no(6, e) that satisfies following two

and each x can be treated as an element of Rn. An original word relations:
X = X1... x, is encoded into a reproduction word :b = il ... in R < R(A) + 6
by a fixed-to-fixed length code. The distortion between x and b E[AJ] < A + e (6)
is defined by

d _f _ k)2. for all n > no, where E[&] denotes the expectation of A with=(x k -n_ 2 respect to the choice of Y. Moreover, for any -' > 0 there exists
k=1 an integer nj = n1(c') that satisfies

The rate-distortion function of the memoryless gaussian source
with zero mean and unit variance under squared-error criterion V(a[ < E' (7)
is of the form for all n > na, where V[A] denotes the variance of A with respect

1to the c1oice of ,.R(A) = log 2 X' A E (0, 1] (2) tohecieofY
For any given A e (0, 1], the asymptotical behavior of this

(See [1].) In the following section, it is shown that an asymp- cOde is characterized in the following way:
totically optimal code which achieves (2) can be generated with (1
probability 1 - E for any given distortion level A E (0, 1]. R = R(A) + 0 log2 L), (8)

Main Results A = A+0O(•!). (9)Main

Since the probability density function (1) is sphere-symmetric for It is easy to construct A that satisfies CI) ,- C4). For instance,
any word x of length n, it is natural to have an idea of encoding by setting L = n + 1 and at = (I- l)/V/'n (1 1 ,... , L), it is easy
x by two separated steps, i.e., 1) to quantize the magnitude 11xil to check that this example satisfies C1) - C4) with C = _/Vii.
and 2) quantize the shape i d4= n/flzD, where 1ii'1 denotes the Hence, R converges to R(A) of order O(log2 n/n) and A con-
Euclidean norm. First, select an arbitrary set A = {a,..., GL} verges to A of order 0(1/n 2). The paper 121 indicates a conjec-
satisfying the following four conditions: ture that the convergence of 0(log 2 n/n) in R and 0(1/n) in A

would be the tightest possible. Our result in (8) and (9), how-
C1) All elements must satisfy 0 = a, < a 2 < ... < aL < 00, ever, not only reveals that there exists a code that has a better
C2) aL must satisfy aL 2! V0, asymptotical behavior, but also represents a more general trade-
C3) (d max(at+, - at) must satisfy lim (2/n) = 0, off relationship between the rate and the average distortion.

C4) L must satisfy lim [(log02 L)/n] = 0. References

Let Yy= {fy,. ., ym be a set satisfying IIy,It = 1 for all [1] T. Berger, Rate Distortion Theory: A Mathematical Basis
m = 1,..., M, that is, all the elements of Y belong to the n- for Data Compression, Prentice-Hall, 1971.
dimensional unit hypersphere S"-. Encoding is defined as a [2] D. J. Sakrison, "A Geometric Treatment of the Source En-
mapping ; : R" -- A x Y specified by V and 2 such as coding of a Gaussian Random Variable," IEEE T

Inform. Theory, vol. IT-14, No. 3, pp. 481 - 486, 1968.
WW = VI(M) - 2(), (3)
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A GENERAL THEORY OF INFORMATION TRANSFER
Rudolf Ahlswede
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Universit~t Bielefeld

Postfach 8640
D-4800 Bielefeld 1

GERMANY

Summary

We present a unified theory of information, which
naturally incorporates Shannon's theory of infor-
mation transmission and the theory of identifica-
tion in the presence of noise as extremal cases. It
provides several novel coding theorems.
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ON THE PROBABILITY OF UNDETECTED ERROR FOR ITERATED CODES*

Toshihisa NISHIJIMA 1  Osamu NAGATAI Shigeichi HIRASAWA6

Abstract Lemmal : The upper bound of the probability of undetected error,
PJ~)(•) for iterated codes ci-) is given by

In practical applications of coding theory, e.g., ARQ system, Sig-

nature analysis, etc., the probability of undetected error, P,(e), for . "i

linear block codes plays an improtant part. The exact value of P.(e) P.1s)(r) < [l{Z A.,p(1 (- p)n.-,}],k._, k,,

can be caluc,ilatpd by using the weight distribution. However for al-
most al codes, the weight distribution is not exactly known. Hence, where Ai. is the number of codedwords of Hamming weight j for the

some methods calculating the upper bound of P.(e) have been pro- code c,.

posed. It has been known by deriving the average probability of
undetected error for the ensemble of all (n, k, d)' linear codes, that Lemma 2 : The sufficient condition to construct iterated codes

there exists (n,k,d) linear code having P.(e) upper bounded by Co whose code rate Ro,O < Ro < 1 for No - co, that is, s - oo,

2-(1-0)", where r = k/n[l]. Some codes, e.g., Hamming codes, sat- is r, < r,+,, where r, = ki/n,, and i ,2. 00.

isfying P.(e) < 2-0-'" have been found out for finite code length
n[3]. In these codes, r - 1, and P.(-) does not converge to zero for Lemma 3 : The asymptotic distance ratio AO of iterated codes

n -- oo. The codes with P.(-) converging exponentially to zero with Co satisffying lemma 2 is

order n for n - 0o is not also explicitly constructed. Of course, if
0 < r < 1, and the asymptotic distance ratio 6,6 > 0, for n - 0o, it AO = lim (Do/No) = 0. (2)

is trivially shown that P.(e) converges to zero. For example, Juste-
sen codes[4/ satisfy the above conditions. However, if 6 = 0, it is From lemmas 1, 2, and 3, we have the following theorem.
hardly to shown that P.(e) -- 0 as n -oo.

In this paper, it is shown from the theoretical viewpoint that under Theorem 1 : The probability of undetected error, P,.(e) for iter-

the code rate Ro, 0 < Ro < 1, iterated codes with P.(c) converging ated codes Co is given by

to zero can be explicitly constructed, although the asymptotic dis-
tance ratio Ao, AO = 0, for the code length No, No -- oo. It is also P.(E) = •m P•')(,) = 0, (3)
shown that there exist P.(c) of these explicitly constructed codes
converging exponentially to zero with order No, for No -- 0o. where 0 < Ro < 1, and AO = 0 as N0 -. oo.

Throughout this paper, we assume that codes are the binary lin-
ear block codes, and channel, the binary symmetric channel with
cross-over probability p,0 < p < 1/2. 3. SOME EXAMPLES

1. CODING AND DECODING METHODS Example 1 : Iterated codes C(') constructed by applying the i-th
stage code c, with (2 m+"-,, 2 -+'-' - (m + i),4)extended Hamming

A. Coding Method code, where m=2,3,.... Note that these iterated codes are error-free
Let ® be direct product. Then (No, Ko, Do) iterated codes C.) are codes proposed by P. Elias[5/.

constructed by c1 ® c2 ®" .® c,, where ci is the i-th stage (n,, ki, d,) Example 2: Iterated codes C(o) constructed by applying the i-th
code, i=1,2,....s. stage code c, with (21+1-1, 2'+-1 - 1,2) even parity check code,

where M=1,2,...
B. Decoding Method Example 3: Iterated codes C'(o) constructed by applying the i-th

Let G,(X),Y,(X), and S,(X), be the generator polynomial of the stage code c, with (2'+'-l - 1,2+'*-' - (m + i + 1), 3)Hamming
i-th stage code c,, the polynomial of the subsequence with length code, where m=2,3,.... Note that P.(c) of these iterated codes
n, of the recieved sequence at the step i, and the polynomial of the satisfy P.(c) < 2(-O)NO.
syndrome of the subsequence with length n, at the step i, respec-
tively. Then, decoding method of step i is as follows.
Step i : After partitioning the subsequence with length References
nn-I ... • nk,- ••... k1 of the recieved sequence with length No into

nint.I ... n,+ 1 k,-1... ki sequences with length n,, Y.(X) of parti- [1] S. Lin and D. J. Costello, Jr., Error Control Coding : Funda-

tioned each sequence is sucssesivelly divided by G,(X). If S,(X) 0 0, mentals and Applications. Englewood Cliffs, NJ : JPrentice-Hall,

a error is detected. If all of n,n,_. ... n,+1 ki-l ... k 1S,(X) are zeros, 1983.

go to the step i+l. [2] J. K. Wolf, A. M. Michelson, and A. H. Levesque,"On the prob-

abiity of undetected error for linear block codes," IEEE Trans.

2. THE PROBABILITY OF UNDETECTED ERROR Commun., vol. COM-30, pp. 317-324, 1982.

"The research leading to this paper was partially supported by the Min- [3] J.Justesen,"A class of constructive asymptotically good algebraic
isutry of Education under Grant-in-Aids 04750364 for scientific Research, and codes," IEEE Trans. Inform. Theory, vol. IT-18, pp. 652-656,
by Waseda University Grant for Special Research Project No. 92A-188 Sept. 1972.

tKanagawa Institute of Technology, JAPAN
tSony Corporation, JAPAN [4] P. Elias, "Error-free coding," IRE Trans. PGITE-4, pp. 29-37,
t Waseda University, JAPAN
'The (n,sk,d) code denotes the code of length n, the number of information 1954.

symbols k, and minimum distance d.
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ON THE KEY EQUATION FOR We are now ready to state the key equation.

n-DIMENSIONAL CYCLIC Theorem 1 In F((X-1)), we have ari = Xw, gcd(a,w) 1.

CODES Remark : We can consider Theorem 1 as generalization of the

Herv6 CHABANNE ' and Graham H. NORTON ' key equation for BCll codes to n-dimensional cyclic codes. As

for the cyclic case, the spectral behaviour of w and a allow us to

recover e a equals 0 only on _= I
Abstract w equals 0 only on E, \ supp(e).

Let R = K[X,,..., XnJ/(XN- - I,......X..- 1) be a 2 The linear recurring sequence con-
semisimple algebra. Ideals in Ri are known as n-dimensional cyclic
codes or abelian codes. text.
Let F be the smallest extension of K containing an Nh primitive
root of unity a, for v =1. n. As in [2], wý let S'_0 (F) denote the commutative F-algebra of

Let e E F[X,..., X,] be a lion-zero polylloilial. (-N)"-indexed sequences s : (-N)" F.

We consider the series in F[[Xf- ....... V')] The generating function of s is F.(X- 1 ) =i .-o sixi.

F (X- ..... X••) =,)X .. The characteristic ideal of s E S_0 (F) is
W i u . Ann(s) = fEt,,, fX' : Vj E (-N)', &E.,,pf) fis3 -i = 01.

We first introduce univariate polynomials a,, E FIX.], v = If Ann(s) # {00 then s is called a linear recurring sequence.
1,....n and a multivariate polynomial w E F[X ,.. X,,] such In section 1 we studied the sequence i given by ii = e(c-i)•

t at...acF• = A, .... Vnto Clearly i is linear recurring sequence and X/" - I belongs to
( . = 1 Ann(j) nF(X.FX, v E f1,nl. In fact, we can say more:

Thus, we show that the spectral behaviour of a = a, ... a, and w
allows us to recover e. Theorem 2 For v E [1,nj, a,, is the monic polynomial of mini-

In the second part, we reinterpret the polynomials a and Wi, re- real (positive) degree in Ann(o)nF[X]J.

garding rj as the generating function of the n-dimensional linear
recurring sequence i = (e(aT".. -•n)). We conclude this section by recalling how a., may be computed.

Then we show how to obtain a.. Theorenm 3 [2] Let f,, E Ann(i)flF[X,[, bjf, > 1, for v E

Hence, we deduce a new method for decoding abelian codes. n

Notation [1,71]. PILt d, = 6( fi f.). For i E (-N)"-' define the i-
u=l.u:•v

X . ~ sctin o •) S~o(F) by (•-~ = ,k where f(k) = i and:= X¥ .... \V- section of ý, •

F [X ] .= F [X ,, . ... X nj . r -(k ) = j.

F((X-1)) := Laurent series in X-1 over F.:= (it . , ) Then a,, = lcsu{g•{' : (.g1 ))= ann(•(1 ),O " i -- dv - 11.

W(i) M. i.- . .... in) 3 Decoding algorithm.
i_--< k € i<k,,, v E [1,n].
supp(Z- piXi) := {i : pj -1 0 E F}. If C is an ideal of R, we know that

()The degree of p E (Ff..)fX c E C 4* c(or', ..... an") = 0, V(i,,.... , i,) E Zc
e(c 1 ) .= e(,' .... " )
6(p) := (6()... ,(,)) where Zc is a set which only depends on C [I].

From mi = c+e, c E C, we can get the parts of Fr corresponding
to ZC..

1 The key equation. This yields the following algorithm
(1) From the known terms of find

Let e E F[X] be a non-zero polynomial. Our goal is to show * g5(-) such that (g51 )) = Ann(i1 )) (used in point 2),
how the series F,(X-1 ) = Zi.<oc(n-')X' E F[[X-[]] may be * the missing terms of •iý() (used in point 3).
written as a quotient of two relatively prime. polynomials. I

Let E, be the smallest cartesian product containing suipp(e). (2) For v E [1, n], put a,, = lcm(g,,(1) (Theo. 3), and a fi a,

Definition For v E [1, n], definc the error-locator aor
X.-polynomial by a,,(X,) = -, . - o,') E F[X4. (3) Put w = V ... X,- (Theo. 1)

We call a = a(X) = /li= a,(.\,) the error-locator (4) From a and w deduce e (Remark on p. 1)
product polynomial of e. Finally, we call

= w(X) = ZiESIPP(e) eil-, ( 1,E% .(,, ,,E r . ,#,.(X, - at) References

the error-evaluator polynomial of e. [1] R. Blahut " Theory and Practice of Error Control Codes ",

'I INRIA. Domaine de Voluceau, 1orc(Ii ncourit, 1P 105, 78153, Le Chesnay Reading, MA : Addison-Wesley, 1983
Cedex, FRANCE2

Centre for Comtnnication IResaearchh, .'acully of Engiiinering, Univ. of [21 G. 1H. Norton " On n-dimensional sequences, 11. Character-
Bristol, UNITED KINGI)OM (Research Aulpported by Science and Engineer- istic Ideals . submitted to J. Symbolic Computation
ing Research Council grant GIt/|1115141)

398



ON THE EQUIVALENCE OF SOME GENERALIZED
CONCATENATED CODES AND EXTENDED CYCLIC CODES
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Institut ffir Netzwerk- und Signaltheorie, Technical University Darxmstadt

MerckstraBe 25, D-6100 Darmstadt, Germany

ABSTRACT Theorem 1 Suppose a = 1 and A(zI, X2,z-. . Sm) is the polynomual associ-ated with an arrayl (ai,,i .,....,i_) over GF(q) =GF(q') = GF(Q). Let B(s)
It is known that cyclic codes of composite length are equivalent to gener- be a polynomial oaer GF(Q. ) with deoree less than Qq such that for 4le

alized concatenated codes with inner cyclic codes and outer cyclic or con- Xe, Z2,aplo z.l E GF(Q)
stacyclic codes. Here it is shown that there is a large class of extended cyclic
codes of length Q-, that can be constructed by generalized concatenation 1+ 2 + + 1 = 1 A(z ,.
of shorter extended cyclic codes. This class includes the generalized Reed- - (Q - 0) ,
Muller codes and the Euclidean geometry codes. In many cases a simple Then:
multistage decoder corrects all errors of weight less than half of the true
minimum distance of the code. V(jh,j 2 , ,) E £(h) Aj,...j = 0 4* VjE £(h) Bj = 0

SUMMARY Corollary 2 The codes C(q, sm, 1, £(h)) and C(q, s, m, £(h)) are equiva-
We start with some notations. Let (ai. .....,i_) denote an Q xQx -x . x Q- lent.

array over GF(q), where Q = q, for some integer s > 0. We associate a
polynomial in m variables Clearly, if two codes are equivalent, their dual codes are also equivalent.

Q-1 Q-i Q-i Since the C(q, s, m, 7) codes, m > 1, are GC codes, a multistage decoder
A .... zm) = "E j , " "z4 can be used and it corrects all errors of weight less than half of dGc. dGc

j,=o =O J,=O denotes the well known lower bound (see for example [3], p.591) for the

with each array (aj,,j,...,i.). Suppose ao,ac,.,Q-j are the elementes minimum distance of GC codes.

of GF(Q). Then the associated polynomial is uniquely determined by the In table I some extended cyclic codes of length 64 are tabulated, which are
following equation:' the dual codes of some codes C(q, sm, 1, C£(h)). They can be constructed

I by generalized concatenation of codes of length 4 and 8. The number k
aj,, ?- - 1)-m A(oI, ai, ..... nIa) 0 _< il, i2 ..... , i < Q of information symbols, the minimum distance d, the distance bound doc,

the length q' of the codes, which are used in the generalized concatenation,
Definition1 Let be a subset of(j•,j,...,j-)lOj ,• ..... j< Q, and te exponents of the roots of the generator polynomial are given. Es-

An array (ai,, , ,-) over GF(q) is a codeword in the code C(q, s, m, 7), pecially interesting is the extended cyclic (64,28,16) code, since a modified
iff its associated polynomial has coefficients A- equal to zero for multistage decoder can correct all errors of weight less than half of the true
each (h•2,i. j-) E J7. The set ,7 will be called the zero set of code minimum distance.
C(q,a, m, J).

Considering the conjugacy constraints we get the complete zero set j: I ]• d d1 Td u I q7Texponents of the roots I remark

,= {(rc(q•'J),rQ(q"j2),.,rQ(q"jln) I(J2,J.. jm)E E 7,O < p < s}, 48 6 6 4 15,27,31 EG-Code
"45 8 8 8 15,23,31 BCH-Code

where rQ(l) is given by 37 10 10 8 7,15,21,23,31 EG-Code
34 12 12 8 7,15,21,23,27,31

the number in {0,1,...,Q - 2), which is congruent to 28 16 14 8 7,13,15,21,23,27,31
I modulo Q - 1, if! 1 0 mod Q - 1, 24 16 18 4 7,11,13,15,23,27,31 BCH-Coderg() 0, ifl = 0, 13 24 24 4 3,7,9,11,13,15,21,23,27,31 EG-Code

Q-1, ifl -- 0 mod Q - 1 and 1# 0. 10 28 28 8 3,5,7,11,13,15,21,23,27,31 BCH-Code

If (aj,,,. ,,,) is a codeword in the code C(q,s,m,,7), all coefficients Table 1: Some binary extended cyclic codes of length 64 which are equivalent
Al, ... 'j., (il,j2,...-,j) E .7, of its associated polynomial are equal to to GC codes
zero. The number of information symbols K can be calculated by the for-
mula: K=Q"m- [31.

REFE~RENCES
It can be shown that, if the zero set .7 satisfies some condition, the dual

code of a C(q, s, m, 7) code also belongs to the class of codes defined above. [1] T. Kasami, S. Lin, W.W.Peterson, "Polynomial codes," IEEE 7Tans.
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where xi, z2 z,-, 6E GF(Q). We denote the index sets Z(h) and £(h): lated odes," IEEE 7rens. Inform. Theory, vol. IT-34, pp. 1152-1187,

£C(h)-(Jl,/2j.....jm)IO<jl,j2,....j m <Q, jl+j2 +...+jm>h}, Sep.1988.
(h)- {jl + J2Q +-.+ j.n-1 I (h,j ..... j. m ) E £(h)). [6] J.M.Jensen, "Cyclic concatenated codes with constacyclic outer codes,"

IEEE 7•Ns. Inform. Theory, vol. JT-38, pp. 950-959, May 1992.
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ABSTRACT containing (i o, i, ). The appropriate Discrete Fourier

It is known that when the blocklengths of two cyclic Transform (DFT) is given by
codes are relatively prime their product code is cyclic A - aI ,ol1 ,,
when serialized using Chinese Remainder Theorem. AOiW, 1-01,- 40 a,. a<,,.,,,

When the blocklengths are equal we characterize product where a., and a., are elements oforders no and n, in the
codes that are cyclic when serialized either rowwise or
columnwise. extension field. An Abelian code can be defined as the

set of n-tuples whose DFT coefficients are zero in
SUMMARY specified conjugacy classes [31.

For the case when no - nt, the expressions for inverse
Given two codes C 1 and C2. their product code C is DFT respectively for Abelian and cyclic case are

the code whose codewords are the two dimensional arrays a •L o- |- |I 1o~o*1Lj tA and
for which columns are codewords in C, and rows are a<00.1,> 2o.O, .oO -0

codewords in C, -The component codes C | and C 2 may ,° IA,- -, 0u
be cyclic but the product code is not necessarily cyclic. If a, = 2 a A,,.,,.. (using MRS).
it is cyclic, with appropriate serialization, then it is called Jo0. 0'-

cyclic product code. It is known that when the Wecantakea0. a'0,by working in the same extension
blocklengths n, and n 2 of C I and C, are relatively prime a

then C is cyclicwhen serialized using Chinese Remainder field for both cases. Now, starting with the transform
Theorem1]. We identify cyclic product codeswhenblock vector of idempotent generator o a cyclic code in both
lengths of component cyclic codes are equal. the cases and then replacing the transform vector
Consider a two dimensional noXn , array with entries corresponding to the shift < k,, k, > in the Abelian case
from GF(q). and k cyclic shifts in the cyclic case we can find conditions

on joandjl for which left hand side of both theao.o oa., ... ao.,.| expressionsaresameforallio.i|.ko and k|.Thisleads

a1 O all "'" G|'aI.I to

Theorem 1: A product code of two cyclic codes of equal
ao.o ao .. ao.•.I ,_ length n is cyclic when serialized columnwise (rowwise)

By associating this array to an element iff the Abelian code obtained by serializing rowwise
h-e a-I g , of tl KG, (columnwise) has idempotent generator whose DFT

,-o L:,oO a<,o.,g0, group algebra vector is same as that of an idempotent generator of a
where K= GF(q) and G is an Abelian group of order cyclic code of length n2 .
n - non 1, (n,q) = 1, which is a direct product of two cyclic Extending the above approach to r (r>2) dimensional
subgroups of ordern o andn| with generatorsgn andg,. product codes the following theorem can be proved.

Theorem 2: When codewords are written as monomials
one can interpret Abelian codes which are ideals of KG of the form
as product codes. With this interpretation the problem ,a ,, ,
reduces to identifying the Abelian codes which are closed a,o.,,. o X I ... X,_1
under cyclic shifts. This class of Abelian codes are same L° ....
as separable Abelian codes [2J. then the idempotent generators of cyclic product codes
Abelian codes are characterized in the transform domain (under MRS) are the direct sums of the generators given
as follows: Define a mapping I from f -= 0.1 . n - 1 by

t I ... I , x• ,','...x ',x;O•,o k • ,- I . for som e , , o .to no e n. where ,,, ,,,a ,,.a 'e, 0

fo 0-{0,1...no-l) and fl 1 {0,l,...n1 -1}, or equivalently [41,
by 10)-( 0 o. 1i) where (zIxo'(zxi ( X 'j( £ Xl for some Io0.
i-io+ilno 0 ie fltoE flo.L cf11. (to-iI) is ...0/U,,L i ,, LO,, .

called the mixed-radix representation of i and the RFERNCES
mapping I is called the mixed-radix serialization (MRS).
(MRS corresponds to serializing the product codecolumnwise.) For a given ('o. Ij) the subset [11. Burton H.O and Ei.Weldon Jr., 'Cyclic product

codes", IEEE Trans. Inform. Theory, Vol.IT-11,
C(,,.,,)" {(to.,). 2(ioc,).2 2 (0o 1 ) .. 2 (10 1|)) pp.433-439, 1965.

where for any integer a. a ( io, i) is defined to be [2]. P.Camion, On Abelian Codes, MRC Technical
Report, No.1059, The University of Wisconsin, 1971.

(aa(rood no),ai|(mod n[) and 13]. B.Sundar Rajan and M.U.Siddiqi, *Spectral
2"(io,i,)=(io,ij). is called the conjugacy class Characterization of Abelian codes, to appear in

IEEE Trans. Inform. Theory, Vol38, No.6, 1992.
[4]. H.S.Madhusudhana, "Abelian codes which are

dosed under cyclic shifts', M.Tech thesis,
l.I.T.Kanpur, India, 1987.

40W



ALGEBRAIC STRUCTURE AND DECODING
OF TWO-DIMENSIONAL CASCADE CODES
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Chris Heegard
School of Electrical Engineering, Cornell University, Ithaca NY 14853

This paper discusses the algebraic structure of 2DR relations known to be valid on processed part
cascaded Reed-Solomon (CRS) codes, and presents of the error transform array. Upon termination, G
an algorithm for decoding them. A CRS code is a is a Grobner basis for the error locator ideal. For
cascade (or "generalized concatenated") code con- each entry of E that is a syndrome, the algorithm
structed using Reed-Solomon codes as component performs a validation step, and for unknown entries
codes. In particular, we consider hyperbolic CRS of E the algorithm performs a calculation-validation
(HCRS) codes: these are CRS codes designed to step. The validation step is the same as the main step
have the minimum distance given by the cascade in Sakata's algorithm [1]: each 2DR of G is checked
code bound. Compared to Reed-Solomon codes over for validity at this entry, and replaced if it proves
the same alphabet, HCRS cod,- have longer block- to be invalid. In the calculation-validation step, the
lengths. Compared to other two-dimensional cyclic algorithm first calculates the entry of E, then per-
codes (products of Reed-Solomon codes, duals of forms a validation step. Each relation in G predicts
such products, and codes proposed by Sakata [1]) a value for the unknown entry. We show that only
with the same minimum distance, HCRS codes have one of these predicted values is consistent with an er-
higher rates. ror pattern e(z, y) of weight t or less. Moreover, an

Consider the finite field Fq with q elements, and incorrect prediction is detected immediately in the
let n = q - 1, so that there is an element cr of F, subsequent validation step, so the entry is effectively
which is a primitive nth root of unity. We define calculated by trying each of the predictions in turn

qFnXfn[,, y] = Fq[T, y]/(zj - 1, ye - 1). Then for each until there is no inconsistency.
value of d we define the set of parity-check points:
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systematic time-domain encoder which makes use of [3] J. Wu and D. J. Costello Jr., "New multi-level
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e(z, y) by determining its Fourier transform, E. Ini- codes," in Proc. 25thL Ann. Conf. Inform. Sci.
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sponding to syndromes, and calculates the remaining
entries by finding two-dimensional linear recursion re-
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The Polynomial of correctable 2 Concatenated codes

patterns of concatenated codes Let B(n, k, d) be a linear (inner) code over F, and let C(N, K, D)
be a linear (outer) code over Fk,. Let t = (d - 1)/2.

Nicolas Sendrier The concatenated code of B and C denoted BOC is the set of all
the codewords of C whose components are replaced by codewords

Abstract of B. It is a linear code over F, code of length nN, of dimension
kK and minimum distance > dD 13]. A codeword can be seen as

The polynomial of correctable patterns is defined in [1] as the weight a succession of N inner codewords.
enumerator of the set of error patterns correctable by a given decoding Let -1 be a error correcting algorithm for B and let Po(X, Z),
algorithm. The polynomials of uncorrectable and miscorrected patterns P1 (X, Z) and P2(X, Z) be its polynomials of correctable, uncor-
can be defined as well ([5] and [61). rectable and miscorrected patterns. Let 0b be an error and erasure

These polynomials allow a compact representation of a decoding al- correcting algorithm for C and let Qo(X, Y, Z), Q1(X, Y, Z) and
gorithm which is sufficient to compute the correction probability and Q2(X, Y, Z) be its polynomials of correctable, uncorrectable and
the miscorrection probability through a memoryless symetric channel.
These results are generalised in [5] and [6] for erasure channels.

Our purpose here is to compute the polynomials of correctable pat- The standard decoding algorithm r consists in decoding all
terns of concatenated codes for different decoding algorithms. N inner codewords, then the outer codeword. Roughly we can

denote it r = (D o 7fN.
" We give the weight distribution of the error patterns correctable Its polynomial of correctable patterns is equal to

by the standard decoding algorithm.
Q0o( P,(X, Y), P1( X, Y), Po( X, Y) ).

"* We give bounds for the weight distribution of the error patterns

correctable by Block-Zyablov algorithm. The Block-Zyablov algorithm %k will use t + I inner decoder,
for 0 < i < t, 3,i will only decode error patterns of weight < i

This new method for evaluating concatenated codes will thus provide (2]. Roughly we can define 41(y) = best-of o<.<i,(i(y)), where
an efficient way to evaluate the standard algorithm. It will also give a pi = 4) o 7N.
way to evaluate with precision the performances of the Block-Zyablov Its polynomial of correctable patterns verifies
decoding algorithm which needed, up to now, a (much more expensive)
simulation. t

As an example, we will compute the decoding performances of the Ro(X, Y) • [ Y"]Q(X, Yo ..... Y0), (1)
concatenation of the Nordstrom-Robinson (14, p. 73]) inner code, and mm (,) , < =D

rain (sj) < D
a Reed-Solomon (255,223,33) outer code over F2s6. o<3<i

with Q(X, Yo, ... , Y)

1 Polynomials of correctable patterns (t ,,_

PoAX,Y) r'Iy , + P,(X,Y)r Y ,i + FP 2.i(X Y) y A Y )
We denote by F the finite field F,. Let C(n, k,d) be a linear code P(= Y)=o j=o P=o j=0 j=i
over F of length n, dimension k and minimum distance d. where Po,,(X, Y) is the monomial of degree i of Po(X, Y) and

We consider a transmission channel where error and erasure P2,i(X, Y) is the weight enumerator of the miscorrected error pat-
may occur simultaneously, we represent an erasure by the symbol terns y E F., such that dH(y,Y(y)) = i.
oo and we denote by F the set F U {oo}. Let - be a decoding Notations for (1):
algorithm for C for such a channel. The erasure weight pM(y) of [l-•=0 Yj']Q(... ) is the coefficient of Yo" ... Y,' in Q(X,.
an element y of F' is the number of its component equal to ,o,

and its error weight vH(y) is equal the number of its components P(X,Y) -_ Q(X, Y) * V i,j, [XiY']P(X, Y) <_ [X1'"jQ(XY)
different from 0 and oc. We call extended weight enumerator of
E C F" the polynomial 1 X References
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Constructive codes for arbitrary DMC and the AGNC

Michael Steiner
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Summary strate a good coding system for rates less than capacity for

Shannon showed that arbitrarily low error (ALE) can a class of channels called regular DMC, which include the

be achieved on a channel when the information rate is less class of symmetric DMC. In this paper we further general-

than the channel capacity. Two problems emerge in this re- ize the Delsarte and Piret construction and prove that it is

spect. The first is concerned with the development of codes good for arbitrary DMC for rates less than capacity. Other

which can achieve ALE, which we refer to as an error-free channels for which the construction is good are discussed.
code[I]. The second is concerned with the design of prac- The AGNC without feedback is examined. It is shown how

tical bandlimited efficient systems which perform with low to construct a good code which will signal with any rate
les thn lg~i+ ' ), where the average input power S is

probability of error while retaining a decoder which is of rea- less than V log(+ e

sonable complexity. It was shown by Feinstein for discrete constrained S < C and a2 is the average noise power.

memoryless channels (DMC) that the average probability of

error, T., can be bounded exponentially in the length of the References
code, n, for rates r less than capacity. For such channels we

define a good code as one which has an average probability [1] P. Elias. "Error free coding," IEEE Truns. Inform.

of error less than a quantity e`('), where E(r) is a func- Theory, IT-4, pp. 29-37, 1954.

tion of r and greater than 0. Note that an error-free code

is not necessarily good, although a good code is error-free. [2] J.P.M. Schalkwijk. "A coding scheme for additive noise

In 1953 Fano showed that orthogonal signaling could channels with feedback-Part II: Band-Limited signals,"

be used to assure a good coding system on the infinite IEEE Trans. Inform. Theory, IT-12, pp 183-189, April

bandwidth Gaussian channel for rates less than capacity. 1966.

In 1954 Elias[l] presented an error-free coding system for [3] J. Justesen. "A class of constructive asymptotically

the binary symmetric channel (BSC). In 1966 Schalkwijk good algebraic codes," IEEE Truns. Inform. Theory,

and Kailath[2] presented a constructive coding scheme for IT-19, pp. 711-713, Sept. 1973.

the additive Gaussian noise channel (AGNC) when feed-

back is allowed for rates less than capacity. Justesen[3] in [4] P. Delsarte & P. Piret. "Algebraic constructions of

1972 found constructive concatenated codes for the BSC in Shannon codes for regular channels," IEEE Trunsac-

which lim inf(d/n) > 0, d being the minimum distance of tions on Inform. Theory, IT-28, No. 4, pp 593-599,

the code. It can be shown that this also implies the codes July 1982.

are good codes in the sense defined above. In 1982 Delsarte

and Piret[4] generalized Justesen's construction to demon-
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Abstract: This paper proposes and investigates a method of designing For instance, z and y are called EOE-Gold sequences when u and v are
pseudo-noise (PN) sequences having equivalently good properties of both even Gold sequences, or EOE-Bent sequences when u and v are Bent sequences.
and odd correlations, i.e. EOE sequences, which are important for acquisition Evaluation of Performance
and demodulation in spread-spectrum (SS) communications. Odd correlation
property of PN sequences should be designed as well as their even or periodic We evaluate correlation and BER properties of EOE sequences. Table I
correlation property so that interference of data-modulated PN sequences can shows the distribution of the maximum sidelobe, 0.(.), of EOE-Gold and
be reduced as small as possible. We describe a method of designing polyphase Gold sequences' autocorrelation functions. Table 2 does the distribution of
EOE sequences from biphase PN sequences with a good aperiodic correlation the maximum values of crosscorrelation functions, ,. (-, -) in every pair of the
property under a certain condition. Absolute values of both even and odd cor- set of EOE-Gold and Gold sequences.
relation functions of these sequences at each shift can be equal. We evaluate It is confirmed that BER of systems using EOE sequences is improved over
properties of the derived sequences by peaks of croascorrelations and out-of- that of systems using original biphase sequences except for the circumstance
phase autocorrelations and BER. It is shown that the polyphase sequences when the Eb/No is low.
have lower peaks of crosscorrelations and out of phase autocorrelations and EOE sequences are generally useful for biphase SS systems but not always
lower DER than the biphase ones by numerical evaluation. Furthermore, the useful for polyphase SS systems. Moreover, we consider modifying EOE Se-
generalized odd correlation function which is important in polyphase SS sys- quences to improve the performance for polyphase SS systema. Hence we define
terns is defined, and a method to improve the generalized odd correlation the generalized odd correlation function for M-phase SS system and descibe
properties are derived, a method of improving the generalized odd correlation function.

Introduc tion References
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the even correlation function represents the output in the case where the data [3)D. n. Vow .aOM. B. 1597160, 19P9.
symbol remains constant over two consecutive symbols. Since the even and [3J D. V. Sarwate ad M. B. Paley, "Crosscorrelation Properties of Pseudorsa-
odd correlation functions appear with equal probability, both functions are of dom and Related Sequences, Prac. of IEEE. Vol. 68, pp. 593-419, 1980.
equal importance. [4] F. D. Garber and M. B. Parsley, "Performsace of Offset Quadriphase Spread

This paper proposes and investigates a method of designing pseudo-noise Spectrum Multiple Access Communications," IEEE Trans. Commun., Vol.
(PN) sequences having equivalently good properties of both even and odd COM-29, No. 3, pp. 305-314, 1981.
correlations. Odd correlation property of PN sequences should be designed [5] E. A. Gersaiotis and M. B. Parsley, "Error Probability for Direct Sequence
as well as t h even or periodic correlation property so that interference of Spread Spectrum Multiple Access Communications - Part I1: Approximations."
data-modulated PN sequences can be reduced as small as possible. IEEE Trans. Commun., Vol. COM-30, No. 5, pp. 985-995. 1982.

Definition of EOE Sequences [6] R. Kohno, T. Tanaka sad H. 1ma., 'On Odd-Correlation Functions for the
Class of Sequences Produced by Inversion of Alternate Values in Pseudonoise

We define EOE sequecne as follows. Sequences," JEICE Trans., Vol. J65-A, No. 10, pp. 1029-1030. in Japanese,
Let EOE sequecnes be the sequences. x and y, having even and odd (auto 1982.

and cross) correlation functions whose absolute values at each shift are equal, [7] S. M. Krone and D. V. Sarwate, "Quadriphase Sequences for Spread Spectrum
That is. Multiple Access Communication," IEEE Trans. Inform. Theorys. Vol. IT-30,

l= I(.r)(1)l, No. 3, pp. 520-529, 1984.

10(x, 0 = I(, )(MIAI,E&Go.c, i Gola

for every I E {0.1,. .. N - 1), where 0(r, s)(1). O(z, y)(1) and C(z,y)(i) are Val" of Gl D,•.14
the even. odd and aperidic crosscorrelation functions of sequences, z and y,
of period N" respectively. They are defined by 2

O(z. y)(I) = C(,r y)(1) + C(.r, y)(l - N), (1) 1 2 4

O(zy)(1) = C(.r,y)(1) - C(., p)(1 - N), (2)
N-- 3

-n=0 T" I C0m1<Nm of amoovitieo
OXz, 0,)1) = 1v+1-1 (3) EOECi ,,it Geld

S I N < I <0, vials* s od G
-- •eu~~ Mio- ý I od4 -w =

O. 111> N. %/- 14
9 $21 20 31

A Method to Generate EOE Sequences 4 is
Polyphae PN sequences with such good correlation properties can be de- V a

rived from biphase PN sequences with a good aperiodic correlation property 11 ISI
under a certain condition. We propose a method of designing Equivalent Odd 41- 91
and Even correlation (EOE) sequences. -,I 24

Method 1 Let is and r be arhbirary real valsed sequences of period N. Then, On3 2?
the compler ra#ued sequences. x and y. green by 13 204 t

w1n AU is
.r.nU expj(-k--+ J). (n=0.1_._ N-I) (4) 7

2N ~is 7
xrkn 17 33

Yt,, =,expj(--+3). (n=0.1. N-l) (5) 15 10

are EOE 4eqscenes when k is an arbitrnry odd integer and 0. an arbitrary real
constant satisfying (0 < 13 < 27r).



New Enumeration Results for Costas Arrays

Curtis P. Brown, Michal Cenkl, Oscar Moreno
Richard A. Games, & Joseph J. Rushanani Pei Pei2

The MITRE Corporation Department of Mathematics
202 Burlington Rd. University of Puerto Rico
Bedford, MA 01730 Rio Piedras, PR 00931

Summary

An n x n Costas array is an n x n array of blanks and dots with possibly to suggest an approach for prr ving the nonexistence of a
exactly one dot in each row and column and with an optimum two- 32 x 32 Costas array. As one example, we measured the size of the
dimensional aperiodic autocorrelation function. In other words, if largest prefix that adjacent arrays had when the Costas arrays are
the Costas array is shifted vertically and/or horizontally (without ordered lexicographically. By n = 20, the largest common prefix
wraparound) and then compared to a fixed copy of itself, at most size is only 6. Some of the other properties investigated include
a single pair of dots overlap. We denote the Costas array by the the distribution of the dots of the arrays (there is a tendency for
associated permutation (ro,... , r.-) of n elements where there the dots to form an annulus) and the number of dots by quad-
is a dot in position (i, r,). Costas arrays are used in a variety of rants (there is a strong tendency of the dots to be distributed
ranging and synchronization applications [11, [2]. equally in the four quadrants when n is even). We also investi-

Costas arrays exist for arbitrarily large n since there are con- gated the cycle structure and ascent properties of Costas arrays
structions for n = p - I and n = q - 2, where p is prime and q in comparison with random permutations.
is a power of a prime [3]. They are conjectured to exist for all
values of n. The smallest value of n for which there are no known array diagonal antl-rutective consaetaive
Costas arrays is 32. This case is too large to search exhaustively size

with today's algorithms and computer technology. We present 1 1
2 1the enumeration of Costas arrays through n = 32 that satisfy, 3 1

respectively, three different kinds uf symmetries. Our aim was to 4 1 2
discover a 32 x 32 Costas array or gather new evidence for its 5 2 4 4
possible nonexistence. 7 10

8 9 4 10
The three types of symmetries considered are: 9 10

10 14 24 6
1. Diagonal: if there is a dot in position (i,ri), then there is 1 1 IS

a dot in position (ri,i). For example, (0,4,6,3,1,7,2,5). 12 17 44 4
13 25Costas arrays obtained from the Lempel or Golomb construc- 14 23 31 5

tion [3] have diagonal symmetry. 1s 3116 20 77 $

"2. Anti-reflective: for n even. r, + ri+n/2 = n - 1. For example, 17 19
(3, 0, 5, 6, 4. 7, 2, 1 ). Costas arrays obtained from the Welch 18 10 29 10

19
construction [3] have anti-reflective symmetry. 20 4 3 3

21 8
3. Consecutive: for n even, r, and rn-l-i are consecutive. For 22 5 55 0

example, (6, 3.5, 0, 1,4,2,7). 23 10
24 C 0 0

Efficient search algorithms that take advantage of the as- 2S 2
26 2 0 0sumed symmetry were developed and implemented using parallel 27 7

computer processing. The enumeration through n = 32 was com- 28 0 84 0
pleted for each type of symmetry. Figure 1 lists the number of 2 4

30 4 60 0equivalence classes of Costas arrays found for each case. There 31 0
are no diagonal symmetric Costas arrays for n = 24, 28, 31, and 32 0 0 0
32. This enumeration extends the enumeration described in [4]
from size 22. There are no anti-reflective symmetric arrays for Figure 1. Number of Symmetric Costas Arrays
n = 24, 26, and 32. There are no consecutive symmetric arrays Equivalence Classes
for even n with 22 < n < 32.

All Costas arrays have been enumerated previously through References
size n = 20. They have been decreasing in number since n = 17.
This fact and the above symmetric results contributo to a growing 1 J. P. Costas, "A Study of a Class of Detection Waveforms
sense that there may not he a Costas array of size 32. We have Having Nearly Ideal Rangle-Doppler Ambiguity Properties,"
extended this enumeration to n = 21: there are 3536 costas arrays Proc. IEEE, 72, August 1984, 996-1009.
of size 21.

2. S. W. Golomb and H. Taylor, "Two-dimensional Synchroniza-
We have constructed a database of allyCostas arrays u ion Patterns for Minimum Ambiguity," IEEE Trans. Inform.size n = 21 and have used this database to analyze the underlying Thy., IT-28, July 1982. 263-272.

structure of the arrays. Such an analysis could be used to expe-

dite the enumeration for higher n, to find new constructions, and 3. S. W. Golomb and H. Taylor, "Constructions and Proper-
ties of Costas Arrays," Proc. IEEE, 72, September 1984,

'The work of Brown, Cenkl, Games, and Rushanan was supported by the 1143-i 163.

MITRE Sponsored Retearch Program.
2
The work of Moreno and Pei was supported in part by the Army Research 4. T. Etzion, "Combinatorial Designs Derived from Costas Ar-

Office Cornell Mathematical Sciences Institute, by the Office of Naval Research ravv,"
under grant number NfOf014-9n-J-1301. and by the NSF-EPSCoR of Puerto Rico Sequences, R. . Capocelli, editor, New York, NY:
Project. Springer Verlag, 1989, pp. 208-227.
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A Partition of the Set of Permutations
by

the Monotone Subsequence Structure

KINGO KOBAYASHI AND HIROYOSHI MORITA

Department of Computer Science and Information Mathematics,
The TUaiversity of Electro-Communications, Chofu, Tokyo 182, JAPAN

Abstract To reveal the riddle of the numbers in such tables, we must prepare
some interesting recursion formula for auxiliary tables induced from

We will study the distribution of longest upward and downward Pascal triangle. As byproducts we have some formulas such as
monotonic subsequences contained in sequences, or permutations of
1,2_ .. ,n. Thereby, a famous Ramsey-type existance theorem of se- nn-2\ln-1 +(n-1) n-22
quence having a specific property is refined by the precise counting c(d(d,-2 d 1 d - d- 1
technique. 2

Summary d-

A subsequence of the permutation lr,72 ... ir, of {1,... n} is a se-
quence considered in the same order as the numbers appear in the n (2(n - 1)
permutation. For example, 142 is a subsequence of permutation _ c(")(d,n - d + 1) =
7134652, but 753 is not. Given any permutation, a subsequence d=1 - 1
7'i , W2 ... irlh (il < i2 < ... < ik) is upward monotonic if it is always
increasing, that is, 7ri, < 1i2 < ... < iri. Similarly, a subsequence is and
downward monc Imnic if it is always decreasing. Then, we are interested
in the longest length pair (d, u) of downward and upward monotonic (d, 2)
subsequences contained in given permutation of order n. Our main
concern is the determination of the number c(n)(d, u) of permutations 0 for d < Fn/21 or d = n
of order n having the pair (d, u) for any I < d, u :_ n.i 5c(n-1)(d - 1,2) + C(n-)(d, 2) for Fn2] _n d <-n-

This problem contains the famous theorem of Ramsey type as a spe- /,2 for Fn

cial case. That theorem due to Erdds and Szekeres 111,121 states that + ( - 2,2 n ) 1

any sequence of distinct n 2 + 1 numbers containes a monotone (down-
word or upward) subsequence of length n + 1. This theorem can be References
expressed in our notation as [1] Erdds and P. Szekeres, G., "On some extremum problems in ele-

fvr,] = mrin max{d,u} mentary geometry," Ann. Univ. Sci. Budapest, 3-4, 53-62, 1960-61.C(")(d,u)>o

[2] Seidenberg, "A simple proof of a theorem of Erdos-Szekeres," J.
We can give the number c(W)(d, u) by making full use of the prop- London Math. Soc. 34, 352, 1959.

erties of Pascal triangle of binary coefficients and their combinatorial
meanings. For example, we obtain the table of the number c('O)(d, u)
for n = 10 as depicted in the following:

d\ u 1 2 3 4 5 6 7 8 9 10
1 0 0 0 0 0 0 0 0 0 1
2 0 0 0 0 1764 8100 5625 1225 81 0
3 0 0 0 107604 285444 149850 25600 1296 0 0
4 0 0 107604 769824 597114 122500 7056 0 0 0
5 0 1764 2P5444 597114 200704 15876 0 0 0 0
6 0 8100 149850 122500 15876 0 0 0 0 0
7 0 5625 25600 7056 0 0 0 a 0 0
8 0 1225 1296 0 0 0 0 0 0 0
9 0 81 0 0 0 0 0 0 0 0
1if 1 0 0 0 0 0 0 0 0 0

4Q6



Optimal and Suboptimal Biphase Sequences of
Period 2(Z'-1) and Linear Complexity rqr+3)/2

P.Udays and M.U. Siddiqi
Department of Rectnical gneig

Indian Institute of Technao
Kanpur, 208016 (INDIA)

Introduction *aetto quarternary to binary trazdormation given in
Ili paeris concerned with construction of new 3.Th correlation properties of binary families are w[hzrued

faiisofbpaesequences which are obtained throu~gh a those Of Z4 families by uagamethod givni[S The
polynomial nap"in from the ring Z4 to GF(2). Such seque~css bounde on the ON of binary faiisgiven (3) are improved by
wre of interest mn code division spread spectrum multi-imer making tue of specific correlation properties Of .?. aiis
communication syatemni The correlation distributions and sequence umbalance are

Optimal and suiboptinual familie of quadriphase cmue ymkn use on h rpriso so
sequences derived from maximal length sequences GR4,h corlton prprie Of hlaefamilies deri

~ u-squncs)and interleaved maximal I h sequences are tbledin Table 1. The LC of reutt binary sequences
ce)Over are given in (1,21.Vh period of is computed through the LC analysis of coreso n~dingbir

unsequnce is 2-1l and that of un-sequences is 202-11. The ideal sequences over Z4.AgnaiedvroofBats
amieof2,,+1biphase sequences of period %r-1 derived from theorem, whinch relate LO Of a sequence Over Z4 to the number

families of unsqune ovr we optimal like Gold families of non-sero positions in its Fourier truudwor, is wead to
and ~ ~ ~ ~ ~ l ar2eot dn(] Lna oplewdty (LC) of these compute the LC of ideal sequences. Since this ideal is

seqtuences is lower bounded by r(.r-1)2 isomorphic to the binary field, LC of binary Jidsequece

in this pper we derive bephase faii s o ie thu.I coptdraBahtstermi indeed LC of the=bnr
a positive integer, from ''amie oaJnsqune ver Z4. Most seuecs.Te LC of all sequences derived from ,X~fanilies is
of the families satisfy Sidelmikov bound on=~eultMo Rr+3)/2 with an exception of the single un-eeqiunce.
where L is equal to the period of the sequncs), wbihi 6115 Tae1NwBihs apiseDi
to the maximrum magnitude of the periodic crosscorrelation
and out of phaseiocrelto values. One of the families Family Sise: 2'-+1; LC: r(r+3)/2; Period. 2(Y-1)
satisfies Welch bound on Ow (f, < 4-1), while rest of the __________________

families are suboptimal (few~ is bounded by 2 ).The linear Family r Cu Comment
complexity of all sqeces is equal to r(ýrf+3)/2 with the _________________

exception of the single un-sequence. Sequence imbalance and 21 1+i/2)ýcorrelation distributions are also computed. XJ). od (12r

Main Results ((+2rI-3)pimm

We consider a non-linea polynomial (AXPAZ.-e ve 2mapp"' Optidmal
from Z4 toiAS Ideal 2> gven by ,x) = xL-x)The iVt(O
< 2> is isomorphic to the biayfedand the quadriphese (-i,,-3)

mapn gvnby O(x) = tip where w = r-T, on the sequences AML.W4 odd 2(1+2("1/2ý) Sub optimal
ovrheidea results in e C.Thus biphame(idlikw
families are constructed from .,IOrz. euien ce by MOsang@Wov
the A02 exj XZve above. We families of Z4  tr(;)=l
sequences cc~ fo bIpu sequence construction in this rw~ @+n 2 (l r+1/2)) Sub optiW

~a ethe families of Jun-sequencess over Z4(Or SimpulY J&dlnkv
of perod 2(2-~1). EAch family cosssof (2H~+1) tr(;)=0 Sienim

sequences (IJ~h ' finiion of XE families de- An an the
strctred leGalois extensio Of Z4, GOP4 r

pOsiieitgr Any= of untse0I(1,r) of a aon ring REFERENCES:
GI4r xsa direct pro ýo two goups Ga and G,, where G,
isAbelian m cw~ order 2', and G, is the cyclic component [] UanP Pluaead

grou of t 1.Assciated wih eryelement y of G. E. obtained from miite Phigs. bs.Deatnto
Gtkr,7 # ,a ThrEilee ~ym classes of XE Bectrical Engieerng I.I. Kawnp, 190.

ar&8 e identified depending on the nature of y. They are (21 Udaya P aid MU.O. Siddiqi, "Optimal Quadriphaes
(a) Ze~ families with tr*; = I1S Derived from MZma LanthSequences over

(b)XE 7famlis wth rac(.) -0, ~.Z7~, Submitted to Journal of Aplcbe Algebra in
(b) e fmiles wth rac(;) 0,y #I M nestng, Communication and Computin&

(c) ~ ~ (3) g .M modD.V. Sarwate"Seecs
where T= I+ 2(;),7,mod 2, Y G0. A papr by Boste, for SjireMad- et u ltF4=*

Hlammnons ad Kumar (41 contains some of the Z4 families Vol. fl'-4, Nfo.3,u~ia 10 50M
given above. The families given in [4) corrspond, ws per the (41 .R.P V .Iua,-er

above classification, to Wd families with tr(,y)m 1 . The Ad7  No S May 1MM2 pp 1101-1113.
families with tr(;f) =0 and the fA3 mily are additional 5 .I iss n .Scah isrCmlxtcoding Thewry Scdin Ther and Appbades
sub-families among A7. faimilies of period 2(Y-1J). These Lecture Notes in &rMp ScVo. M1,1

faiisthrough .*.V and quadriphase iap ied [61 S. Dostas and P. V. Kumer, "Binary Sequsens with
hiphese families. The biphase families thus c=astctjareon Gold like Correlation Properties but. Large Line
named bypein h word AJO to their corresodn Z4  Spn,1991 IEEE international Onmpeu a nImfa.

faile X"~ mapping considered in this Ppape is Theory, Budapest, Hungary, June 3-%pp MI1.
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Perfect Maps

Kenneth G. Paterson

Dept. of Mathematics

Royal Holloway

University of London

Egham, Surrey TW20 OEX

Abstract

Given positive integers r,s,u and v, an (r,s;u,v)

Perfect Map (PM) is defined to be a periodic r x s

binary array in which every u x v binary array

appears exactly once as a subarray. Perfect Maps

are the natural extention of the de Bruijn sequences

to two dimensions.

In this paper we settle the existence question for

Perfect Maps by proving the following result.

Let r,s,u,v be positive integers. Then there exists

an (r,s;uv) PM if and only if the following three

conditions hold:

i) rs - 2uv,

ii) r > u or r = u -1,

iii) a > v or s - u -1.

We make extensive use of previously known con-

structions by finding new conditions guaranteeing

their repeated application. These conditions are

expressed as bounds on the linear complexities of

the periodic sequences formed from the rows and

columna of Perfect Maps.

I -M



NEW BOUNDS FOR THE SIZE OF RADAR ARRAYS

Zhen Zhang and Chungming Tu*
Communication Sciences Institute, Department of Electrical Erngneering-Systems

University of Southern California, Los Angeles, CA 90089-2565

Abstract 2. Substitute any zero in the rows with an L x L all zero
matrix.

A "radar array" is a matrix of zeros and ones which has 3. Substitute the first I in each row with A.
small one-dimensional autocorrection sidelobes. New general 4. Substitute the second 1 in each row with B.
constructions and new upper bounds for the size of radar ar- 5. Substitute the third (if any) I in each row with C.
rays are presented. For a proof of this construction, see [5]. The best achiev-

Summary able GR,(N)/N ratios by using this method is 306/113 when
k = 1 and 4 when k = 2. Combined with the result of The-

Aradararray RisanNxMmatrixofonesandzeroswitha orem 1, we have 2.708 ! _N-_.ooGRl(N)/N < 2.809 and

single one per column, such that the horizontal autocorrelation 4 _< l-mN .GR 2 (N)/N < 4.276.

function only has values 0,1,...,k, and M, where k is themaiamlowbesdloer. M upper N max M upper
maximal allowable sidelobe (generalized from [2] and [3]). We N found bound found bound
say a radar array is optimal if it has the maximum M for 2 4 4 14 $7
given values of N and k. Denote that maximum number as 3 7 16 40 41

4 10 10 16 42 44GR,(N). Previously the best known asymptotic upper and 4 10 13 1r 45 47
lower bounds for GR1 (N)/N have a gap of about 0.463 ([4]). 6 15 16 is 48 497 16 19 19 51 52

This gap is shrunk to about 0.101 in this paper. 7 21 31 20 53 55

We applied the Erd6w-Turan ([I]) argument to obtain the 9 23 24 21 56 so
upper bounds. Suppose a window of width K (N < K < M) 10 26 27 22 59 61
is superimposed on the radar array. Let's slide the window 11 29 30 23 61 6412 32 33 24 63 66
from the left end of the array to the right end and count the 13 34 3a 25 65 69
number of spacings (the distance between any two l's in the
same row) within the windows. By estimating the minimum Table 1: Some Upper and Lower Bounds for the k a I Case

number of spacings in each window and considering how many
windows contain a particular spacing, we have the following A = (1,2,3,4, 5]W
theorem. (For details, see (5].) L = (1,5, 5, 2, 4]?

C 12,1,5,4,317

Theorem 1: GR,(N) < min{gx(l + (pcj), mm in 9 2(P)), = [3,1,4,2, 61]
- A [I, 2,3, 4,5, 6, 7]1

where L 7 B 11,3,5,7,2,4, 61T
C [3,1,e, 4, 2, 7,51]/ 6k . 2

k + N x+' N;42

pc = 1 +6k - !-; g(p) = 2 g2(p) = LX +V1 A = [1, 2,3,4,5,6,7,6,9, 10,11, 12,131
2 1 B = [1,3,2,7, 11, 10,4,13,5, 12,9,6,617
/\C = [5, 3.,8,2,T, 12, 1,11,4,6, 10, 9, 131

X=2•P)N+kpN-k; 
Y=2(p-l)

"2 Table 2: Some Permutation Matrices with Pairwise Properly Centered

Z= 2P2N 2 
- 4k )N 2 

- 2k2pN+ k2 Sets of Differences

New heuristic methods are used to search for radar arrays efernce
with smaller sizes. Table I summarizes new upper and lower
bounds for the k = I case. Next we introduce a new con- [1] H. Halberstam and K.F. Roth, Sequences, vol. I. Oxford:
struction for the radar arrays which gives asymptotic lower Clarendon, 1966.
bounds.

Define two L x L (L odd) permutation matrices A, B to be (2] S.W. Golomb and H. Taylor, m Two-dimensional synchro-
"properly centered" if their row-by-row differences range ex- nization patterns for minimum a4biguity," I I604uly
actly from -A0i to Yj.I. Table 2 shows some examples of Inform. Theory, vol. IT-28, no. 4, pp. 600-604, July
such permutation matrices. (The existence of such permuta- 1982.

tion matrices of other odd sizes is still unknown. It would also [3] J.P. Robinson, 'Golomb Rectangles," [IFEE aa.
be useful if one can find more than 4 such matrices.) Inform. Theory, vol. IT-31, no. 6, pp. 781-787, Nov.

Given any k = 1, size N x M radar array with at most 1985.
three l's in each row (such radar arrays exist for all small N), (4] A. Blokbuis and H.J. Tiersma, 'Bounds for the site of
a new k = 1 radar array of size NL x ML can be constructed radar arrays," IEEE Thus. Inform. Theory, vol. 34, no.
according to the following rules. 1, pp. 164-167,an. 1988.

1. Choose a set of A, B, C from Table 2. (5] Z. Zhang and C. Ti, 'New bounds for the size of radar

"This research is supported in partby NSF under Grant NCR- arrays," submitted to IEEE Tram. Inform. Theory.

8905052
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FAMILIES OF FOUR-PHASE Theorem 1 (a) The cross-correlation between two four-phase

QUASI-ORTHOGONAL CODE ARRAYS quasi-orthogonal arrays satisfies

Serdar Bozta§ I 0.b(rl, r 2 ) 1• Om,(Li'tOo.ý(L 2), (3)
Department of Electrical and Computer Systems Engineering

Monash University, Clayton, Victoria 3168, Australia where O,,o•(L) is the maximum off-peak auto- and cross-correlation
magnitude of the four-phase sequences in family A of length L.
(b) The auto-correlation of a four-phase quasi-orthogonal array sat-

Abstract isfies

A method of construction is presented for rectangular quasi- 9( ) 1! max{LIOý..(L2), L 2 0,,(L 1 )}. (4)
orthogonal code arrays over the ring Z4 .

The proposed arrays are easy to generate: The four-phase lin- Proof The proof is straightforward. Denote the two sequences in
ear recurring sequences constructed by Boztaf et. al. are utilized family A used to generate b~t, t2) by s' and s2, i.e.,
to generate the arrays by modulo 4 subtraction. The periodic auto- I
and cross-correlation properties of these arrays are then derived in b(tlt 2 ) = s'(tI)ES(t 2 ) and a(ts, 2 ) = 3 1 (t 1 )e s2 (t2 )-

a straightforward manner. The mazimum off-peak correlation mag- Substituting this in

nitude for these arrays is lower by a factor of V2 when compared L,-1 L2-I

to the binary Gold code arrays constructed by Kuo and Rigas. O)b(Ti-, T2 ) = E Z wit+f•.t 2 +' 2 )O(tt2 ) (5)
The arrays can be used for 'add-on' data transmission, pattern 11=0 t2 -0o

synchronization, and code division image multiplexing.

INTRODUCTION
L,-I L2-1

Kuo and Rigas introduced binary quasi rn-arrays and quasi Gold Oab(y1, 1') = F ,(t,+'de.2(a+n)e(s;Q'es[tlil (6)
arrays in [1]. These arrays were proposed to overcome some disad- t1=o t2 --o

vantages associated with the m-arrays studied by Nomura et. al. or
[2] and MacWilliams and Sloane [3]. Their construction for quasi
r-arrays yields L1 x L2 binary arrays where Li = 2"' - 1, with ni )e (7)
positive integers for i = 1,2. OJ--0 =+ )) "

Given two binary sequences, say s 1 (t), t = 0,1..., LI - I and
s 2 (t), t = 0, 1..., L2 - 1 (these sequences can either be two m- Note that the right hand side is just a product of two cross-
sequences or two Gold sequences) Kuo and Rigas use the construc- correlations between pairs of sequences from family A. Case (a)
tion a(tI, t2 ) = s9(t)0 s 2 (t2 ) where E denotes modulo 2 addition, follows directly from this.

The maximum off-peak auto-correlation for the quasi m-arrays In case (b), s, = s' and S2 as as sequences and therefore when
is given by maz(L 1 , L2} while the maximum cross-correlation mag- either r1, = 0 or r 2 = 0, the corresponding sum yields LI or L2
nitude depends on the choice of the m-sequences. This is one rea- respectively which proves the claim for auto-correlation. 0
son for the introduction of Gold code arrays in [1]. The maximum The theorem yields the immediate corollary below.
off-peak auto- and cross-correlation magnitude for the Gold code
arrays is given by Omý = max {L 1 . (V%/M + 1), L2. (,'27L7 + 1)1. Corollary 2 eaz = max

THE NEW CONSTRUCTION {L 1 -(L 2--+"I + 1), L2 -(v•T'-T- + 1)}. for the quasi-orthogonal
four-phase sequences constructed here, and is lower than that of

In this paper four-phase quasi orthogonal arrays are introduced, the Gold code arrays in [1] by a factor of= vr.
The method used for the construction of these arrays from four-
phase sequences is similar to the method used in [1]. Proof 0,az(L) = 1 + VZ-+ for family A (see [4]) while it is

Bozta§, Hammons and Kumar [4] constructed families of four- I + vr2TK for Gold sequences. 0
phase linear recurring sequences with near optimum correlation
properties. These sequences are used here to construct new families REFERENCES
of four-phase quasi-orthogonal code arrays. The reader is referred
to [4] for a tabulation of generating polynomials (hence recursion [1] C. J. Kuo and H. B. Rigas, '2-D Quasi m-arrays and Gold code
coefficients) for these sequences. The sequences that are used in the arrays', IEEE Transactions on Information Theory, vol. IT-37,
construction here are referred to as the family A in that paper and no. 2, March 1991.
are defined as all the nonzero sequences satisfying a given linear [2] T. Nomura, H. Miyakawa, 11. Imai, and A. Fukuda, 'A theory
recursion over Z4 . of two-dimensional linear recurring arrays', IEEE Transactions on

Given two four-phase sequences (say st(t), t = 0,1... L - 1
and s82 (t), t = 0,1 . , L2 - 1, where Li = 2"n - 1, with n, a positive Information Theory, vol. IT-18, no. 6, November 1972.

integer for i = 1,2) belonging to family A the four-phase quasi [3] F. J. MacWilliams and N. J. A. Sloane, 'Pseudo-random

orthogonal array a(ti, t2 ) of size LI x L2 can be constructed by sequences and arrays,' Proceedings of the IEEE, vol. 64,
December 1976.

a(ti, t2) = si(th) Es2(t2) (1) [4] S. Boztaq, R. Hammons, and P. Vijay Kumar, 'Four-phase

sequences with near optimum correlation properties', IEEE
where () denotes modulo 4 subtraction. Transactions on Information Theory, vol. IT-38, no. 3, May 1992.

Definition 1 The cross-correlation between two four-phase arrays
a(tl, t2) and b(ti, t2 ) of the same dimensions L1 x L2 is given by

LI-i L2-I

11-0 2=-0

where 0 !5 ri : Li, and the sums ti + r, are interpreted modulo Li,
for i = 1,2, and w is defined as e

2
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Crosscorrelation of GMW sequences

Markus Antweiler

Institut fuir Elektrische Nachrichtentechnik, RWTH Aachen, D-5100 Aachen, Germany

We consider p-nary GMW-sequences of length pM - 1 Another way is the reduction of the PCF of GMW-
which are defined as sequences to the PCF of m-sequences with the same

length: =d,.,.(k) - (d,,e,1(k), whereby restrictions has

s(n) = exp (2w a(n) with a(n) = tri(trm( dn)r) to be fullfilled by the parameters d,r,e and s. For two
Sp ' (a (1) cases we found a description of the PCF of GMW se-

(1) quences in this form:
and some restrictions on the parameters J, d and r (se Theorem 2 The crosscorrelation function for r = s and
[1, 2]). tr(-) denotes the trace function from the finite d =_ epk mod pj - 1 is
field GF(pM) onto GF(pj), and a is a primitive ele-
ment of GF(pM). The periodic crosscorrelation function @, 7,r,,(k) - @ji,e,i(k)-
(PCF) of s and g with g(n) = exp (• tri (trM (ckn)a)) This theorem allows the calculation of PCF of GMW
is defined by sequences having the same linear span, because the linear

span depends only on r and s. (The linear span is the
P)W-2 minimal degree of a linear recursion satisfied by a(n) in
E,~) s* (n)g(n +i k), eq.(1)).

n=O Theorem 3 The crosscorrelation function for d

where n+ k is taken modulo pM - 1. The crosscorrelation p pj - 1 and rs pl mod 9 - 1 i

function depends on the parameters d, r, e and s. There- 0d,,,,(k) = Pd,I,e,1(k).
fore we write O.S(k) = Pd,r,e,,(k). The periodic cross- The meaning of the condition rs = pi or r = p1s 1 is that
correlation function of two p-nary m-sequences becomes the nonlinear mappings which are performed by raising
in this notation @d,1,e,1, because s and g are equal to to the rth and sth power are inverse to one another.
m-sequences for r = s = 1. With known results on the PCF of m-sequences these
The paper aims at the calculation of the correlation func- three theorems allow the calculation of the PCF of GMW
tion of GMW-sequences by reducing it to the PCF of sequences for many cases.
ordinary m-sequences, because results on the crosscorre-
lation functions of m-sequences are well known (see [3] for
a compressed description for p = 2 and [4, 5] for p > 2). References
One possible way is the description by the crosscorrela- [1] R.A. Scholtz and L.R. Welch, "GMW sequences," IEEE
tion function of shorter m-sequences with length pi - 1. Trans. Inform. Theory, vol. IT-30, pp. 548 - 553, 1984.
This was done in the papers [6, 7] for d = e and r = 1, so [21 M. Antweiler and L. B~mer, "Complex sequences over
that the crosscorrelation of an m-sequence (r = 1) and a GF(pM) with a two-level autocorrelation function and a
GMW-sequence with 'same primitive polynomial4d = e) large linear span," IEEE Trans. Inform. Theory, vol. IT-
is known up to now. We generalize this result to the case 38, pp. 120 - 130, 1992.
r 0 1, so that for the first time the crosscorrelation of [3] D.V. Sarwate and M.B. PuraleyI "Crosscorrelation proper-

ties of pseudorandom and relat-d sequences," Proc. IEEE,two 0MW sequences was investigated: vol. 68, pp. 593-619, 1980.

Theorem 1 The crosscorrelation for d = e = 1 is [4] H.M. Trachtenberg, On the Cross-Correlation Function of
, -Maximal Linear Recurring Sequences. PhD thesis, Univer-

sity of Southern California, Los Angeles, January 1970.{ pM-j(;3r,.(k/T) + 1) - 1, for k 0 mod T [5] T. Helleseth, "Some results about the cross-correlation
Selse, function between two maximal linear sequences," DiscreteMath., vol. 16, pp. 209 - 232, 1976.

where 0,,, denotes the crosscorrelation functon of the n- [6] R.A. Games, "Crosscorrelation of m-sequences and
GMW-sequences with same primitive polynomial," Dis.

sequences exp(j2gttrh(.n)/p) and exp(j2-rtr• (y"n)/,) crete Applied Malthematics, vol. 12, pp. 139 - 146, 1985.
of length p - I ('---aT, T= (p' - l)/(pJ _ !)). [71 A.ll. Chan, M. Goresky, and A. Klapper, "Correlation

functions of geometric sequences," in Advances in Crypta-l
"Mr. Antweiler in now with CADIS, Kaiserstr. 100, D-5120 ogy - Eurocrypt '90, pp. 214-221, Springer-Verlag, 1990.

Herzogenrath, Germany
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NON-BINARY SEQUENCES WITH THE PERFECT PERIODIC AUTO-CORRELATION
AND WITH OPTIMAL PERIODIC CROSS-CORRELATION

Ernst M. Gasidslin
Moscow Institute of Physics and Technology, Institutskii per., 9,

141700 Dolgoprudnyi, Moscow region, USSR, e-mail: gabOippi.msk.su

ABSTRACT Proof. If an integer t has a representation t = ap* + 6, then an

We propose two families of complex sequences with components on integers + t has a representation s+ t = (u + a + e)pk + (v + b - ePh),

the unit circle (PSK sequences). Each sequence of a family has wherec-0,ifv+b<p
t -1,ande= , ifv+b p. Thus

the perfect auto-correlation, i.e., all "out-of-phase" correlation co- R,(i,j) = • .p-I Ep"•P A.-- Z-(0i4b(J ,-)J(.+ a+ ex.+b)
efficients are equal to zero. Magnitudes of all cross-correlation coef- =0 =0

ficients of any couple of sequences in a family are equal to the square = ' , (rb," -J(a+5) •+b)(YP& -! ,-)--b) 1 7 j

root of a sequence length n. Thus both families are asymptotically The ilmer sum in (7) is equal to 0, if (s - j)v - 3b • 0, and is equal

optimal with respect to the Sidelnikov-Welch's lower bound. to pk = V/ni, if (,- j)v - ib = 0. This equation has a unique solution

1. SUMMARY VI = (i - j)-1 jb, since i - j i 0 modulo p. Thus

Let M = {X(m) = (0(m),(m) ..... _(m)), m = 1,2,...,M} R,(i,j) = /.,(i):,+bi)Y-('÷+x'i÷). (8)
denote a family of complex sequences of length n. Let Corollary: If n = p2 then there exists a family M 1 of size M =

n-I t\ - I with near-optimum cross-correlation ,fn. It is comparableE if~t0,1 ... n-
R,(i,i) = Rt(i) - ZZ(i)z:+i), '= 1,2. M, (1) with parameters of the Kasami family, but the auto-correlation is

1, 2.perfect.

Now we describe sequences of length n = p2k÷e with the perfect
= 0,1,.n - I auto-correlation. Every integer s,0 < a < n - 1, can be represented

andR,(ij) = ~x.(i)�+,(j), i,. = 1,2. M, i#j, uniquely in a form s =up++vpk+c whereO< u<p,0<V<p,
8=0 0< c < pk Let for any c a sequence (x,,_. 0 < v < p) be a sequence

denote the periodic auto- and cross-correlation coefficients, respec- of length p with the perfect auto-correlation. Let ( be a primitive
tively. z" denote the complex conjugate of x, subscripts are calcu- root of unity of degree n, X be a primitive root of unity of degree
lated modulo n. p '+, p be a primitive root of unity of degree pk. Theorem 2: A

Let r denote the maximum nontrivial coefficient. If all sequences sequence of length n whose sth component is equal to
have the same energy, say n, i.e., Ro(i) n, then the Sidelnikov- X. = r.,.,\ 0 < s < n, (9)
Welch's lower bound [1],[21 is as follows has the perfect auto-correlation.

M - 1 Proof. Straightforward calculation of the DFT of the sequence
r = n I - 1 (3) (9) shows that all Fourier coefficients have the same magnitude.

Consider a family M = {X(m)), each element of which equals
There are a lot of papers devoted to designing of families with near-
optimum correlation properties. Among other well known are Gold (xo(m), xi()n). xp-. (m)), where x,(m) = A"2, ,p is a primitive

and Kasami families. We propose two new one's, root of unity of degree p. It is known that X(m), m = 1,2_. ,p - I,

The sequence is said to be a perfect one if all "out-of-phase" auto- are perfect sequences.

correlation coefficients are equal to zero. Lemma 3 [6]: All cross-correlation coefficients of sequences from

Lemma 1 131: A sequence X = (xo,x...,Xn-) is a per- &ike family M have the same magnitude _15.
fect sequence if and only if all components of a sequence y = Consider a set M 2 of p - I sequences of a form (9) where instead

of x,, one uses x.(m) from the family M.
(•0, Il,..-, Yn-I) have the same magnitude VRo(X) = ,/"', where Theorem 3: All cross-correlation coefficients of the family M 2
y is the Discrete Fourier Transform (DFT) of X , i.e., have the same magnitude ',/.

uS-I
Y E , = REFERENCESI•j= ti,, , j 0• .. -I, (4)

S,0 [1] V.M. Sidelnikov, "On mutual correlation of sequences," Soviet

where C is a primitive root of unity of degree n. Math Doklady, vol. 12, pp. 197-201, 1971.

The sequence is known as the phase shift keyed (PSK) sequence if [21 L.R. Welch, "Lower bounds on the maximum cross correlation of
all components of this sequence are on the unite circle, signals," IEEE Trans. Inform. Theory, vol. IT-20, pp. 397-399,

The first family M I consists of sequences X(m) of length n = p2k, May 1974.
where p is an odd prime. Any integer s, 0 < s < p2k- I, can be
represented uniquely in a form 131 E.M. Gabidulin, "On Classification of Sequences with the Per-

3 = upk + V, (5) fect Periodic Auto-Correlation Function," Proceedings of the
where + <, 5 <third International Colloquium on Coding Theory, Sept. 25 -

where 0 < u <p - 1,0<_ V <p -1. Oct. 2, 1990, Dilijan, pp. 24-30, Yerevan, 1991.
Let C be a primitive root of unity of degree p2 k and let X be

a primitive root of unity of degree pk = N/'. Consider sequences [4) E.M. Gabidulin, "A Family of PSK-Sequences with the Per-

X(m) = (xo(m),:i(m) .... xn-j (i)), whose sth components re fect Periodic Auto-Correlation Function", Proceedings of the
Fifth Soviet-Swedish Workshop on Information Theory "Con-

= Z,(m)m s = 0, 1 .....-- 1, (6) volutional Codes; Multi-User Communication", January 13-19,
where (m,p) = 1, us and v are integers from Eqn. (5), and z.(m), pp. 69-72, Moscow, USSR.
0 < V < pk - 1, are arbitrary complex numbers with absolute values
1. 151 R.L. Frank, "Polyphase Codes with Good Nonperiodic Corre-

Lemma 2 [4): Sequences (6) are perfect sequences. lation Properties," IEEE Trans. Inform. Theory, vol. IT-9, pp.

(Note, that if s,(m) = I for all v then these sequences are well 43-45, January 1963.

known Frank's sequences [51.) (6] D.V. Sarvate, "Bounds on Crosscorrelation and Autocorrelation
Theorem 1: Let M 1 is a set of sequences (6), where m = of Sequences," IEEE Trans. Inform. Theory, vol. IT-25, pp. 720

1,2,..., p - 1. Then all cros-correlation coefficients have the same - 724, November 1979.
magnitude pk = Vn.
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Geometrically Uniform Multidimensional PSK Constellations

S.Benedetto, R.Garello, M.Mondin, G.Montorsi
Dipartimento di Elettronica, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy

Abstract based on binary as well as more general group convolutional codes. The
The theory of geometrically uniform (GU) codes is applied to the case of obtained codes, as well as their performance, are presented in [2] and [3]. As
multidimensional (MD) PSK constellations. The symmetry group of an L x an example, in Table 2 the results of the search for binary 3x8PSK GU codes
MPSK is completely characterized. Conditions for rotational invariance of transmitting 2.33 bit/T for increasing complexity are presented. Some of
GU partitions of a signal constellation are illustrated. Through suitable al- them improve over known non-GU codes. As for more general group codes, in
gorthms, "good" GU partitions of L x MPSK (M=4,8,16 and L=1,1,3,4) Table 3 GU TCM codes for 3x8PSK based on the group Z4 and transmitting
constellations are found. They are used as starting points in the search for 2 bits/T are presented. They present good characteristics both in terms of
good GU trellis codes. Euclidean distance and rotational invariance. Error event probability curves

1 GU TCM SCHEMES for these codes are shown in Figure 1.

A signal set S is GU [1] if it has a transitive symmetry group r(s), i.e. if for References

any two points s and a' in S, there exists a symmetry of S that sends a to [1] G.D. Forney, Jr., "Geometrically Uniform Codes", IEEE Trans. Inform.

s'. A generating group G(S) of S is a subgroup of r(S) which is minimally Theory, vol. IT-37, pp. 1241-1260, September 1991.

sufficient to generate S starting from an arbitrary initial point of it. The [2] S. Benedetto, R. Garello, M. Mondin and G. Montorsi, "Geometrically

MPSIU Constellation is GU, its symmetry group is isomorphic to the dihedral Uniform Partitions of Multidimensional PSK Constellations and Related Bi-

group DM and, in the case of M even, the only two possible generating nary Codes", submitted for publication, October 1992.

groups are isomorphic to ZM and DM/2. GU signal sets have the important [3] S. Benedetto, R. Garello, M. Mondin and G. Montorsi, "Geometrically
property that the Voronoi regions are congruent, so that the error probability Uniform TCM Codes over Groups Based on Multidimensional PSK Constel-

is independent of which signal was transmitted. In [1] this property was shown lations", submitted for publication, October 1992.

to hold for signal sequences too, through a suitable extension of the concept Siga set 3x8PSK Generating Group G(S) = (Zo)'
of geometrical uniformity. A normal subgroup G' of the generating group level gene- 6 Rot. Isomorphism Isomorphism
G(S) induces a partition SIS' of the signal set S, in which each subset of p rator inv. of G, of G(S)IG,
the partition is GU and has G' as a common generating group. A one-to-one 9 000 - 360 I (Z,)°
mapping is induced between the quotient group GIG' and the subsets of the 8 444 12.000 180 Z2  Znx(Zs)'
partition SIS'. If we combine a linear code over the label group A = GIG', 7 222 6.000 90 Z4  (Z2)x(Zs)'

i.e. a subgroup of A' (with I possibly infinite) with the mapping GIG' - 6 151 4.586 ý0 Z8 (Z.),

SIS' we obtain a GU code over S. As an example, a linear rate k/n binary 5 004 4.000 90 Z2xZs ZnxZ,

convolutional code may be used if GIG' = (Z2)'. The basis for a GU TCM 4 002 2.000 90 ZxZs Z2xZs

code with good properties in terms of minimum Euclidean distance is a GU 3 040 1.757 45 Z.xZIxZs Z(xZ2
partition with a minimum squared Euclidean distance within signal sets at a 2 001.57 45 (Z.), Z)

priin1 001 0.586 45 Zn (Z.)
2  

Z
given partition level as large as possible. 0 010 0.586 45 (Z.)

3  
I

2 GU PARTITIONS OF MD PSK CONSTELLATIONS

We denote a multidimensional PSK constellation obtained through the L-fold Table 1:

Cartesian product of a 2D MPSK signal set with itself by 3x8PSK TCM codes R. tI = 2.33 bit/T
LxMPSK. It contains ML waveforms formed by L consecutive MPSK signals. N i Inv.. IZIL N,... d2, N. (dB)
We prove that the symmetry group of Lx4PSK constellations is isomorphic 2 1 90 2.000 6 2.929 32 0.56

to S2L 0 (Z 2)2L and that of LxMPSK, M even larger than 4, is isomorphic 4 2 180 2.929 16 3.172 12 2.22

to SL * (DM)L. Starting from the symmetry group we develop an algorithm 8 2 180 3.757 24 4.000 15 3.30

able to construct all the possible generating groups of the constellation. In 16 2 180 4.000 15 4.343 24 3.57

this way we find generating groups which are not simple Cartesian prod- 32 3 180 4.000 7 4.343 20 3.57

ucts of the generating groups of the constituent MPSK constellation. We 64 4 180 4.000 3 4.343 14 3.57 1

call G = Go/GC/... ./G.-/G,. a binary partition chain of a group G with Table 2:

IGI = 2" if Gn ... , G, are normal subgroups of G and IG, = 2 . CG,+l Vp.
In order to select "good" (in some sense) GU partition chains of the con- 3xSPSK TCM codes R.jii 2 bit/T
stellation S, we need to associate to a given partition chain some important N 1 Inv. lA f.. I N1,, d'_., N.. y(dB)
parameters like: the minimum Euclidean intraset squared distance 62 at the 2 1 90 3.172 12 4.000 7 2.00
p-th partitionJ level, the isomorphism of both the normal subgroup generat- 4 2 45 4.000 3 4.343 8 3.01
ing the partition and the quotient group, and the rotational invariance of the 8 3 45 4.586 2 4.929 2 3.60

partition chain at its various levels. Given S =MPSK we denote by rh the 16 4 90 5.757 8 6.000 2 4.59

rotation by k* degrees with respect to the origin and by rL the simmetry 32 4 45 6.000 2 6.343 14 4.77
of SL =L x MPSK obtained through L Cartesian productsr 4 5 45 6.101 2 6.343 2 4.4

troducing the subgroup of r(SL) called the Rotabionally Invariant subGroup. Table 3:
RIG(SL) = {1, rf, (ri)2,... (rh)-'} =< ri >-w Zm, we say that a parti-
tion is congruent with respect to rf E RIG(SL) if rf induces a permutation
among the partition subsets, and (rotationally) invariant with respect to ri
if this permutation reduces to the identity. Necessary and sufficient condi- - . - -

tions for the congruence and the invariance of a partition are stated. When
RIG(SL) g G(S ) the partitions are automatically congruent with respect to
all rL E RIG(SL) and invariant with respect to rL iff E G,. An algorithm --
is illustrated which scans all the possible binary partition chains starting from - -. .

a given generating group G. It constructs the tree of all possible binary parti- --

tion chains induced by normal subgroups of G, identifies each partition level ___ __

through the parameters aforementioned (minimum Euclidean distance, iso-
morphisms and rotationally invariance), and chooses the best partition chains ___ __

as paths through the subgroup tree according to optimality criteria related to _ _ __

the previous parameters. Every partition chain is identified like in Table 1. ,s4 -

3 SEARCH FOR GOOD GU TCM CODES 4

The partitions tables obtained are used to find "good" GU TCM schemes Figure I:

Tki work wa s #%pperied 1 Italian National fReesre/ Coseil (CNR) snder "Proseito
Frislizzsto Tin•porti" (Promeithe)
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HIGH-RATE PUNCTURED CONVOLUTIONAL CODES FOR TRELLIS-CODED MODULATION*

Frangois Chan and David Haccoun

DIpanement de g6nie ilectrique et de - infowrnauque

Ecole Polytechnique de Montral
C.P. 6079, succ. A, Monmdal, H3C 3A7

Abstract codes with coding rates R=1/2, 2/3 or 3/4 can be easily obtaimed
The encoding and decoding advantages of high-rate punc- from the same original code.

tumed binary convolutional codes over memoryless channel are With punctured binary convolutional codes, simplified decod-
well known. The puncturing technique is applied to Treilis-Coded ing is obtained because at each state, whether it is an "intermedi-
Modulation, resulting in simplified Viterbi decoding at the cost of ate" state or a "true" state1 , a decision about the survivor can be
a small reduction in coding gain compared to usual Viterbi de- made. Although it is not as straightforward as for binary codes, the
coding. Using computer search, short-memory rate 213 punctured same process can be applied to TCM with a non-Ungerboeck set
codes with the same minimum free Euclidean distance as Unger- partitioning method by using approximate metrics at intermediate
boeck's optimum codes have been found; these codes provide the states. This results in the same complexity savings as for binary
same -rror performance when decoded in the usual manner. In convolutional codes but the coding gain is slightly lower than with
addition to the decoding advantages, puncturing provides greater usual decoding: about 0.15 dB degradation for 64 states, 8-PSK
flexibility, allowing an easy implementation of variable bandwidth modulation. This degradation of the coding gain is caused by the
efficiency systems. metrics approximation at intermediate states and tends to decrease

as the free Euclidean distance increases.

Sumnmary
Trellis-Coded Modulation (TCM) by using an expanded signal Reducing the decoding complexity of a high-rate code for TCM

set can yield significant coding gains of 3 to 6 dB over uncoded is particularly important when the number of states is large. The
modulation without requiring more bandwidth [11-[31. A binary puncturing technique provides an attractive alternative to the usual
convolutional code of rate R = m/(m + 1) is used and the encoded approach, allowing a reduction in the number of binary compar-
symbols Pre mapped into channel signals by following a set of rules isons by a factor of ( (2m - 1)/rn ) for a rate R = m/(m + 1)
designed to maximize the Euclidean distance [1]. When decoding code. When the number of states becomes too large to be practical
TCM signals with the Viterbi algorithm 13], at each trellis level, for the Viterbi algorithm, the use of the puncturing technique and
among the different paths merging into a given state, only the most suboptimum algorithms, such as sequential decoding or the Adap-
likely path, or survivor, is kept. For a rate R = m/(m + 1) code, tive Viterbi Algorithm [61 can be ombined to reduce furher the
selecting the survivor among the 21 paths merging at each state complexity at a small cost to the error performance.
requires (2' - 1) binary comparisons per state. If the number
of states is large and if the coding rate is high (i.e., m > 3),
then clearly, Viterbi decoding in this usual manner may become References
impractical.

It is well known that for convolutional codes puncturing al- [11 G. Ungerboeck, "Channel coding with multilevel/phase sig-
lows considerable simplifications of the encoding and decoding nals," IEEE Trans. Inform. Theory, vol. IT-28, pp. 55-67, Jan.
processes [4), (51: decoding a rate R = m/(m + 1) punctured code 1982.
requires only m binary comparisons instead of the (2"n - 1) comn- [21 G. Ungerboeck, "Trellis-coded modulation with redundant
parisons that are required by the usual decoder. As m increases, the signal sets - part II: State of the art," IEEE Commanicatons
savings are substantial while resulting in only a slight performance Mag., pp. 12-21, Feb. 1987.
loss 141, [51 as compared to the best known R = m/(m + 1) codes. [31 E. Biglieri, D. Divsalar, P. j. Mclane, and M. K. Simon,

In this paper we present an application of the same technique introdcdon to Trellis-Coded Modklation wish Applicaions.
to T1rellis-Coded Modulation. If the underlying convolutional code Macmillan Publishing Company, New York, 1991.
of the TCM scheme is a rate R = m/(m + 1) code and if there [4] J. B. Cain, G. C. Clark, and J. M. Geist, "Punctured convo-
are no transmitted uncoded bits (i.e., no parallel transitions), a lutional codes of rate (n-lyn and simplified maximum likeli-
code of the same rate can be obtained by puncturing an original hood decoding," IEEE Trans. lrorm. Theory, vol. IT-25, pp.
low-rate R = l1rn code. Naturally, the original low-rate code 97-100, Jan. 1979.
and the puncturing pattern that will produce the TCM code with (5] D. Haccon and G. Bdgin, "High-rate punctured convolutional
the maximum free Euclidean distance have to be determined. A codes for Viterbi and sequential decoding," IEEE Trans.
computer search has provided codes with up to 64 states which, Commun., voL 37, pp.1113-1125, Nov. 1989.
when punctured, result in rate 2/3 codes for 8-PSK modulation with [61 F. Chan and D. Haccoun, "Adaptive decoding of convolutional
the same free distance as Ungerboeck's codes. The advantage in codes over memoryless channels," submitted to IEEE Tran.
using this technique is that by changing the puncturing pattern only, Commaun., Feb. 1992.
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ON THE DESIGN CRITERIA FOR TRELLIS CODES WITH

SEQUENTIAL DECODING-

Fu-Quan Wang and Daniel J. Costello, Jr.

Department of Electrical Engineering
University of Notre Dame

Notre Dame, Indiana 46556

ABSTRACT codes do not provide a good trade-off between free distance
and distance profile.

Design criteria for trellis codes with sequential decod- We then conducted exhaustive searches for OFD trellis
ing are examined. A comparision of trellis codes with Opti- codes in which the distance profile was used as a secondary
mum Distance Profile (ODP) and Optimum Free Distance criterion. Our results indicate that the OFD trellis codes
(OFD) reveals that neither ODP nor OFD trellis codes re- do not provide the best trade-off between distance pro-
sult in the best trade-off between error performance and file and free distance, either. For example, the ODP and
computational performance when sequential decoding is OFD trellis coded 8-PSK with v = 7 have distance profiles
used. A new approach is proposed to construct robustly (=,4,...,d4) - (2.0,2.59,2.59,3.17,3.17,3.76,3.76,4.0)
good trellis codes for use with sequential decoding. The and (2.0,2.0,2.59,2.59,2.59,2.59,3.17,3.17), respectively.
new codes obtained using this approach achieve nearly the Note that the OFD code has a much worse distance pro-
same free distances as the OFD codes and nearly the same file than the ODP code.
distance profiles as the ODP codes. Thus, we have constructed trellis codes which are nei-

ther optimum free distance nor optimum distance profile.
We call the new codes robustly good trellis codes. Given

SUMMARY that a robustly good trellis code of constraint length v has
been found, the approach used to find a constraint length

Most of the trellis codes constructed thus far have been v + 1 robustly good trellis code is to find the code that
for use with the Viterbi decoding algorithm[1,2]. However, improves the free distance or the distance profile of the
the computational effort of the Viterbi algorithm grows ex- constraint length v code, with priority given to improv-
ponentially with the code constraint length v. This limits ing the free distance. In other words, we try to find a
its application to codes with small values of v, and rela- longer code which has a free distance or a distance pro-
tively modest coding gains. On the other hand, sequential file superior to or identical to the shorter one. Systematic
decoding can perform almost as well as the Viterbi algo- feedback 8-PSK and 16-QAM robustly good trellis codes
rithm and its computational complexity is essentially in- with v up to 15 and asymptotic coding gains up to 6.66 dB
dependent of v. Thus, more coding gain is possible when are obtained using this approach. Compared to ODP and
larger constraint length codes are used with sequential de- OFD trellis codes, the robustly good trellis codes provide
coding. In [3,41, it has been shown that sequential de- a much better trade-off between free distance and distance
coding is a good alternative to the Viterbi algorithm for profile. Indeed, the new codes achieve nearly the same free
decoding trellis codes. However, no papers have addressed distances as the OFD codes and nearly the same distance
the problem of constructing trellis codes for use with se- profiles as the ODP codes.
quential decoding. In this paper, trellis codes with Opti-
mum Distance Profile (ODP) and Optimum Free Distance
(OFD) are examined and design criteria for trellis codes References
with sequential decoding are discussed. We show that nei-
ther the ODP nor the OFD trellis codes provide the best d1] G. Ungerboeck, "Trellis Coded Modulation with Re-
trade-off between distance profile and free distance. Thus, d und Sign , Part 25, Stt of tebart 19E7
a new algorithm is proposed to construct robustly good Commun. Mag., Vol. 25, pp. 12-22, February 1987.
trellis codes for use with sequential decoding. [2] J. Porath and T. Aulin, "Algorithmic Construction of

First, trellis codes with optimum distance profiles were Trellis Codes," submitted to the IEEE Trans. Comn-
constructed. In the construction algorithm, the free dis- man., November 1990.
tance was used as a secondary criterion, i.e., the code hav-
ing the larger free distance is retained whenever two codes [3] G. J. Pottie and D. P. Taylor, "A Comparison of
have the same distance profile. Compared with the Unger- Reduced Complexity Decoding Algorithms for Trel-
boeck codes, we found that the ODP trellis codes have lis Codes," IEEE J. Sel. Areas Commmn., SAC-7,
much smaller free distances for some constraint lengths. pp. 1369-1380, December 1989.
For example, the free distance of ODP trellis coded 8-PSK
with v = 7 is only 4.0 compared with 6.59 for the Unger- [4] F. Q. Wang and D. J. Costello, Jr., "Erasurefree Se-
boeck code. This results in a reduction of more than 2.0 quential Decoding of Trellis Codes", submitted to the

dB in asymptotic coding gain. Thus, it appears that ODP IEEE Trans. Inform. Theory, November 1992.

"This work was supported by NSF grant NCR 89-03429 and NASA grant NAG 5-557.
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metrics used in the second trellis step are computed
similarly, with the same receive symbol and different subset

Practical Trellis Coded Modulation with Punctured unions. In figure 1 two types of punctured branches are

Rate-2/3 Convolutional Codes distinguished to enhance the Euclidean distance at this trellis

Stephen K. How step. The branches labeled by puncture "x" (lower-case) are
"continuations" of the 3-bit branches 00- and 11-. Also

General Instrument, San Diego, CA puncture "XW implies the branch is the LSB of subset indexes01- and 10-. Accordingly, BMox = mai {d2 (An,.s), sc AuG},

Abstract - A trellis coded modulation scheme is described BM01 ran {d2ngs), BMH, - m rd2(An,s),

which uses a punctured rate-2/3 convolutional code to IX = mi {d2 (As), se BuH), BMox - mi {d2(AS).

simplify decoder implementation. Simulations of a code se CUE), and BMlx - min {d2(An,s), se FuD}. This

based on a punctured 64-state rate-1/2 trellis show distinction between punctured branches provides a larger

comparable performance to a 32-state Ungerboeck code Euclidean distance mapped to subset LSB, as shown by the

(rate-2/3 trellis), shaded and unshaded sets in figure 2.

Two-dimensional trellis coded modulation (TCM) achieves 6 0
up to 6dB coding gain by partitioning the symbol H E A D A = 000
constellation 8 ways, which increases uncoded symbol B =001
spacing by 2 -F2. An Ungerboeck code maps two coded bits C = 010
to the 8 subsets using a rate-2/3 convolutional code [1]. In C G F B D = 011
high-speed decoders, the Viterbi algorithm (VA) is 0 0 E = 100
implemented in a parallel manner, and the complexity of the A D H E F= 101
2/3 trellis can limit the number of states to 16. In satellite G = 110
applications 64-state rate-1/2 Viterbi decoders are commonly C 3 H = 111
built as ASICs. F B C G

A rate-1/2 trellis with every other branch punctured
specifies a rate-2/3 code. A trellis code with the same Figure 2. 16OAM partition
spectral efficiency as an Ungerboeck code needs to transmit
2 coded bits / symbol. Two bits are encoded in two steps The described mapping approximates an assignment of
through the rate-1/2 trellis, generating an unpunctured and 2v-2 Ao to 3-bit branch 111 (from 000), 42 to 110 and 001,
punctured branch. and AO to 010, 101, 100, and 011. From this assumption, an

00 Ox optimal punctured 64-state rate-1/2 code was found to be
1I". i.. (101, 109, 101) (octal), yielding de2/A0

2 . 7, or 5.45 dB
S11 lx 7 x asymptotic coding gain. Figure 3 shows simulated

-',oX - •Ž C performance of the punctured TCM app iach vs.

10 •.ix -Ungerboeckcodes for 16QAM.

01/ • ox -• Iol [1] G. Ungerboeck, "Trellis-coded Modulation with
" c Redundant Signal Sets Part I1", IEEE Communications

1o ix Magazine, vol. 25, no. 2, Feb. 1987.

Figure 1. Punctured 4-state trellis 0.001

In the punctured TCM scheme, these 2 branches are
mapped to a subset of an 8-way partitioned QAM
constellation. A mapping and decoding method are needed 0.0001
to assign large Euclidean distances to the error events of the
punctured trellis. In the example of the 4-state trellis in
figure 1, the unpunctured branch output defines the 2 MSBs 0 1,-o5
and the punctured branch defines the LSB of the symbol
index in figure 2. In this manner, 2 coded bits define a
subset. Uncoded bits define the subset member. 10-06 "ungerboecklf"

In decoding, the branch metrics for the unpunctured trellis *puncturedW
step are first computed and applied to the VA. Using the *ungerboeck32" c
same receive symbol, the punctured metrics are then 10-07 "ungerboeck"

computed to decode the second coded bit. The symbol
mapping and decoding are an attempt to orthogonalize these
two steps. The first set of branch metrics are computed
approximately as the minimum distance2 between the 12.2 13 3.. 14

receive symbol and the subset points grouped by index ES/NO (dB)

MSBs. Le., BM 00 - min {d2(A,,s), se AuB), BM41 - min Figure 3. Comparison of punctured with Ungerboeck codes

{d2 (An,s), se CuD), etc. where An is the receive symbol, and

d2(.,-) is squared Euclidean distance. Actual metrics are
based on the log of conditional probabilities. The punctured
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Design of Optimal Filters for Use as Bandwidth-Efficient
Coded Modulation

Amir Said* and John B. Anderson

Department of Electrical, Computer, and Systems Engineering
Rensselaer Polytechnic Institute, Troy, NY 12180

Recent work has shown that in channels with intersymbol inter- MODULATOR CHANNEL
ference (ISI), whether finite or infinite response, it is possible to - - "

achieve almost maximum-likelihood detection performance with I AWGN I

reduced-search algorithms. The number of operations required d a 7(7) •
by those algorithms may be orders of magnitude smaller than
that required by the Viterbi algorithm. Hence, controlled ISI,
such as that introduced by a band-limitation filter, can be used disc time FIR D/A + cost time channl Site

to improve performance without an exponential increase in the - III filter outpu filter- -- -------

detection complexity. This is actually a form of coding where, Figue 1: Modulator/ch.anel model.
for a fixed noise immunity performance, the gains are measured
in bandwidth reduction.

In a typical application of bandwidth-efficient coded modu- The objective is to find the filter taps, f(n), that maximize

lation, ISI may be introduced by the non-ideal response of the the minimum Euclidean distance subject to the bandwidth con-

channel and by intentional filtering at the modulator output to straint, but the problem is solved by finding the optimal corre-
constraint the bandwidth. This is modeled in Fig. 1. The filter lation g1(n); the optimal f(n) can be obtained from g1(n) via

f(n) may comprise an explicit coded modulation, for which we spectral decomposition.

seek the optimal design. We propose a method that simulta- It can be shown that the squared Euclidean distance between

neously constrains the bandwidth and maximizes the minimum a transmitted and an erroneous sequence is

Euclidean distance between signals. We show that it can be
formulated as a linear program; and it allows uncoded or trel- D= gf(n)u:(n),

lis coded data, filters with infinite impulse response, and many

types of spectrum shaping constraints (e.g., zeros at f = 0 or where e(n) is the difference of the two data sequences and
Chebyshev filters). The proposed filter can also be considered a
convolutional coder that matches the code, output and channel p,(n) -- Eg.(n - k)ZF e(m + k)e*(m).

filters for better performance. k ,

In Fig. 1, the discrete-time FIR filter is used for spectral The average energy per symbol is set by the linear constraint

shaping in the Nyquist frequency interval and to maximize the
minimum Euclidean distance. The modulator output filter is Eg,(m)gW(m) = 1,
used to steeply ,,ttenuate the frequencies outside the desired M

bandwidth; and h,(t) is the response of the linear channel. For and the fraction of the power inside the bandwidth is
now, we use a simple definition of the bandwidth W, where a
fixed and small fraction of the modulator output power is outside w
the frequency interval [-W, W]. = IH(f)12 df = (n)r (n),

n

Mathematical Formulation where

Here we assume an ideal channel, i.e., h,(t) = b(t), but the r(n) "- iHo(f)I 2 "2-SfT df.

generalization is straightforward. The impulse response Finally, g_(n) is a correlation sequence only if

L-i

h(t) = 1 f(n)ho(t - nT), -g,(n)e-j2w f _> 0, for all f E [0,1).
n=O n

is used to define the modulator output In a practical solution method, we use sets with a small num-
ber of carefully chosen error sequences (C) and frequency points

s(t, u) " u(n)h(t - nT), (7). The resulting linear program is:
n

where u(n) is the complex data sequence. DM2,,t' = max,,; Z

We define the correlations s.t. Egf(n)p,(n) > z, for all e E C,
E. gf(n) g.*(n) = 1,

gf(n) " f(k+n)f*(k), E.gi(n) '(n) = E.,
Skw + E. gj(n)e-2

"S
1 > 0, for all f E P.

W ( (We present results on a variety of code-filters designed by

"This reearch wa partially supported by CNPq - Couselho Nacioual this procedure. The decoding complexity was measured by M-

de Desenvolvimento Cientifico e Tecnol6gleo, BrasU. algorithm tests.
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On a Class of Constant Envelope Continuous - --- _ tinuous phase scheme

Phase Modulation Schemes, Obtained by h 2=1/2

Imposing Continuous Phase Transitions on K sch. 6e

Trellis Coded Asymmetric PSK 0
Figure 1. A continuous phase function obtained by interconnecting

Johan Ud~n, G6ran Lindell consecutive phase values of a coded PSK scheme.
Telecommunication Theory

Lunds University, Box 118, S-221 00 Lund, Sweden :K 'o0 0 1 '-
1 2 QR

Abstract
The problem of how to construct information carrying continuous

phase functions, which yield power and bandwidth efficient schemes,
is addressed. The additive white Gaussian noise channel and coherent
maximum likelihood sequence detection are assumed. Our approach

is to use trellis coded asymmetric PSK schemes of low complexity and h 0 O il

with good distance properties. Consecutive phase values of the phase

sequences generated by these schemes are interconnected by a con-

tinuous function. Thus, a continuous phase function is obtained. In a: , 15

conventional full response CPM, the Euclidean distance is bounded
by an error event two symbols long. The continuous phase schemes

obtained here, have a shift-register state trellis structure. This guar- 010--V

antees long error events, thus the schemes have a potential for large b)

Euclidean distances related to the number of states in the trellis. Figure 2. a) Trellis and a encoder of a coded asymmetric PSK scheme,
There are schemes within this class with power and bandwidth effi- see ref [1]. b) Trellis and encoder when continuous phase is imposed
ciencies (d2,j, versus 99% bandwidth) which are very good, consider- on the scheme in a). The label on a state transition is the modulation
ing the low complexity of the schemes. They are, in fact, competetive index used for that transition. The start phase is given as part of the
with and sometimes better than, some of the best coded continuous state.
phase modulated schemes, of comparable complexity, previously pub- t0Iogo(d•.F,/2) [dBI

lished. 5 '.
System Description M=2

Our approach is to start with good coded asymmetric PSK schemes, 43-

[1], having a shift register state trellis. By asymmetric is meant that .-
the phase values used are nonunifornly spaced, i.e. for asymmetric .M=2

4-PSK the set {0,0,T,r+0} is used. Consecutive phase values of the 33-
phase sequences generated by these schemes are interconnected by a
continuous function. Thus, a continuous phase function is obtained,

see fig. 1. The shape of the phase transitions is the same in every 2.

symbol interval, but the amount of change in the phase during a S=16 M=2
symbol interval depends on the current data and the state of the 2 M

encoder. The continuous phase function can be written as )P(t,LU) = 0

4r ih(U.,,a.)q(t - nT.). U, E {0, . M - 1) is the data 1

that arrives at the modulator at t = nT,; a, is the state of the I
encoder at t = nT.; q(t) is the phase response and equals 0 when .--
t < 0 and 1/2 when t > Ts. The amount of change in the phase 0 .
during a symbol interval is 2rh(U,,, a.). h(Un, an) is the modulation %VK
index associated with the transition in the trellis caused by the data 0.5 " 2 23 3 3 I -% -

U, when the encoder is in the state a.. The choice h(U,, an) Figure 3. Asymptotic power gain over MSK plotted against the 99%
Uh renders a scheme in the traditional CPM class, but in general in band power bandwidth. Schemes using the same set of modulation
h(U,, a,) is a nonlinear function. The transmitted signal is s(t, [L) = indices, but different frequency pulses, are connected with straight

V/Mcos(21rfot + (t,)); is the carrier frequency assumed to be lines ('+' IREC , 'o' 1HCS and 'x' 1RC). The IREC schemes on
much larger than lIT., the dashed lines have the same efficiency as schemes of the same

When continuous phase is imposed on a coded PSK scheme, con- complexity given in [2,3].
secutive values ofh(U,, a.,)are chosen so that t(t,LL) coincides mod- [1] D. Divsalar, M. K. Simon, and J. H. Yuen Trellis Coding with
ulo 2w with the values of the original phase sequence at the end of Asymmetric Modulations IEEE Transactions on communica-
each symbol interval. There are several, in fact infinitely many, pos- tions, vol. COM-35, No. 2, February 1987
sible choices of the modulation index for a specific phase transition.
An extra M-ary delay element is needed in the shift-register, and the [2] B. Rimoldi Design of Coded CPFSK Modulation Systems for
number of states in the new trellis, S, is M times larger than in the Bandwidth and Energy Efficiency IEEE Transactions on Coin-
original one. The extra delay element is necessary because continu- munication, Vol. COM-37, No. 9, Sept.1989
ous phase demands knowledge of the phase both at the beginning of
the current symbol interval and at the beginning of the next symbol [3] J. Huber, W. Liu,Convolutional Codes for CPM Using the Mem-

interval, see fig. 1 and 2. ory of the Modulation Process, IEEE Global Telecommunications
Within the obtained class of continuous phase modulated schemes, Conference 1987 (GLOBECOM'87), Conference Record Vol. 3,

schemes of low complexity having power and bandwidth efficiency pp. 43.1.1-43.1.5.

comparable to, and sometimes better than, the schemes given in 14] J. P. Fonseka Nonlinear Continuous Phase Freqsency Shift Key-
(2,3,4] can be found. Examples of results for the symmetric case ing IEEE Transactions on communications, vol. COM-39, No.
(0 = r/2) are given in figure 3. 10, October 1991
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A TRELLIS CODED MODULATION SCHEME CONSTRUCTED FROM BLOCK
CODED MODULATION WITH INTERBLOCK MEMORY

Shang-Chih Ma Mao-Chao Lin
Department of Electrical Engineering

National Taiwan University

Taipei, Taiwan, Republic of China

Abstract Let V3 be a subset of V1, for which the partial labeling (bl,'".,

In this paper, we introduce a new Trellis Coded Modu- b4,a;,." , a*) of each 16-dimensional signal point is a codeword

lation scheme with a two-fold dependency between signal of C. Thus, V3 is a (8,17,3.2) block modulation code. We may

points. In our coding scheme, in addition to the depen- partition V, into the disjoint union of 8 cosets of V3.
dency among coded multi-dimensional signal points de- Let V2 be a subset of V1. It can be constructed such that V2 is a
scribed by the trellis, each coded multi-dimensional signal (8,19,1.6) block modulation code. The partition chain V 1/V 2 /V 3

point has another kind of dependency on one previously has increasing intraset MSED of 0.8, 1.6 and 3.2 respectively.
coded multi-dimensional signal point. With the partition chain of V//V 2/V3, we can design an efficient

TCM constructed from BCM with additional interblock memory.

1 Preliminaries During the encoding, each tirne we encode an 11-bit message WR =
(i, M2, ,, ... ,m1) into an 8-dimensional signal point represented

Let C. and Q.. be (n, k., d.) and (n, k. + r, d.) binary codes by (alp ,Ci,". ",a4 , b4, C), where (a,,-. .,a4) was determined in an

with generator matrices G. and [G.TGLJT respectively. Also, let earlier encod~ing time. In the meantime, the (a..*,- ,a*) part of
0C and CQ be (n,4, ,4) and (n,k+r,db) binary codes with gen- another 8-dimensi.nal signal point is also determined for later
erator matrices G and G ] respectively. We can construct usage. The message bits ,ns and ,n7 are used as the input of a

a (2n, k. + kir + r) binary code C with generator matrix of the (3,2,3) convolutional code encoder and generate the output bits

I G 1, G uo,u l ,u3, which are then used to select one of the eight cooets

following form 0 G. whe e 0 represents an of C. The message bits ml, m -,.,ms are used to choose a

o 0 o , codeword (b 1,---,b ,ab,..-,a,) from the selected coeet of C. The

all zero matrix. message bits mg,---, m are used to determine the codeword

Consider a BCM scheme with interblock memory[3]. Each (ci,... ,C4) of C,. In the trellis, the branches emanating from

two-dimensional signal symbol in the two-dimensional signal s- the same state or merging into the same state all belong to the

pace Wo is labeled by three bits (a, b, c) as shown in Figure 1. same coset of V2. Thus, the MSED between any two code paths

Let V = (al, bi,c 1 ,..1- I an, b.,c,.) and Us = (a;,b',,. . .,a., bn,c.,) is 3.2. The coding rate of this coded modulation scheme is 11/4

represent two consecutively encoded 2n-dimensional signal points bits per two-dimensional signal symbol. Compared to uncoded

in Vo. The combination of two adjacent 2n-dimensional signal QPSK, the asymptotic coding gain is 3.42 dB.

points, represented by (UpU), may be called a superblock. In our
scheme, (c, .-. . , cp,) and (c4, . -- , e) are codewords of an (n, k, d,) References
binary linear code C.. Moreover, (bh,.. , b.,a,...,a.) is a code-
wordinC. LetV' = ( ,;, ,a',,b',,,c' )and U" = (a;',b*,,', [11 G. Ungerboeck, "Channel Coding with Multilevel/Phase Sig-

a.., bn, <,) bc combined to represent another superblock. Sup- nals," IEEE Tran.. an Information Theorj, IT-28, No.1,
posethat (a,,-.- ,an) = (at,... ,a',). Ithe condition of min(0.8. pp.55-67, Jan. 1982.
d. + 1.6. d , 0.8. d., 1.6. d4) > 3.2. d, is satisfied, the MSED be- [2] J.M. Wu and S.L. Su, "A Combination of Block Coded Mod-
tween coded signal superblocks represented by (u, w) and (V,U') ulation and Trellis Coded Modulation," presented at 1990 In-
is 3.2. d.. ternational Symposium on Information Theory and Its Appli-
Example 1 : Let n = 4. Let C., C ., 06, Ca6 and C, be (4,1,4), cations, Hawaii, USA, November 27-30, 1990.
(4,3,2), (4,2,2), (4,4,1) and (4,4,1) binary linear block codes
respectively. As a result, D2 = D= = /P. = 3.2. The [3] M.C. Lin and S.C. Ma, 'A Coded Modulation Scheme with
average coding rate is 9/4 information bits per two-dimensional Interblock Memory," to appear on IEEE Trans. on Commu-
signal symbol. Compared to uncoded QPSK, the asymptotic cod- nications.
ing gain is 2.55 dB.

2 The Proposed Coded Modulation _6

Scheme aO 010
We now illustrate the procedure of introducing interblock mem-

ory to the TCM constructed from BCM by modifying example 1. 101 11
Let V1 represent a 16-dimensional signal space, in which each

16-dimensional signal point is labeled by (a,, bh, ci.. *, a,, b4 , c4,a, 01 001
b;,c,.-., a,*b4,), where alpa 2,a3 and a4 are fixed. Here the t-
wo blocks (ai,ba,ci,..., a4,b 4,es) and (a.,b*,c•,..., a,, b*,c) are 110 100
separated by 18 blocks. Hence, these two blocks are not ad-
jacent. Since the 2-dimensional signal space Wo is the 8-AMPM
signal space, we see that V, is a (8,20,0.8) block modulation code 419 Figue I -.- AMPM Sipal Set



UNIVERSAL SCHEMES FOR SEQUENT[AL DECISION

FROM INDIVIDUAL DATA SEQUENCES

Neri Merhay and Meir Feder

Depsar'jnai of Elcria Eniwrn Departmnent of Electrical Engineering - Systems
Techftio - Israel Institute of Technokogy Tel Aviv 69978, ItkAELHaifa 32000, ISRAEL TlAi 97,IkE

Abstract results has been Iloe extended (see. e4g.. (51) sad sequential decision procedures
have been developed whose performance is newly as good at that of the beat k th

Sequential decision algorithms wn investigated for intdtivda dosa order Markovlan (rather than fixed) strategy, i~e.. the besn straegy dhat depends
sequences, with various application weas, Simple universal schemes am known on dhe k preceding outcomes. While tie Markovian strately is plausibl when it e
to agproach optimality as fan s R-1 log nt, where nt is the samople size. For the sequence as a "Markov structure" [5], it has not yet been justified rigorously for
finite-alphabet case, schemes that are impleunentable by finite-stale machines a general sequenoe.
(FSM's), we studied. It is shown that Markoviati machines Atli sufficienltly k3lon u firs result 3ave as a step towwrds such a justification. For simplicity,,
memory we neaely as good as any randomized FSM. For the continuous-valued we assume (x,) so be diirectly accessible (without noise) as in the above exam-
cawe, a useful class of p~wnmemc schemes is discussed with application to te pies, and we consider atratiegies due am implemeriffble by a deterministi M-sstwe
recursive leanst quares (RLS) algorithm, machine. We extend Theoremn 2 of (6] and show due for a sufficiently large k

Sumniary(independently of the dfa) sai any M -stmt machtine, the beatk di order Maukov
Summarchin perfrm wtithin e a goodi as die M -sal machine. Thiis mewns tha in

Vwricjis problems in information theory and signal processing we associ- dite limit ask --),a Markovian machine isas good as the best deterministic FSM.
ased with selecting a good strategy b, for minimizing an additive loss function As a result. one con gradually increase the Mwrkov order at a Togarithnic rate
V. I (bi, xj). While the data I]. X2,... normally flow sequentially, die best independenty of the particuber sequence, and guarantee convergence to the limit
strategy (within some clam) for this sequence depends on the entire sequence, andl as M-+s. of die minimum loss stainable by M-satue machines for an infinite
hence cannot be anticipated. Nevertheless, it has been observed in some Mica- sequence. Thi result further extends and it tomsp am gj15 r deaminimstc: MarkD-
tions, duet applying the best strategy for die data observed so far is asymptotically yuan machines compete gsucessfuly with every rrnomized FSM in the sense of
as good as the best fixed strategy that could have been chosen in rerospeL minimizing the expected value of n-'L..I(b, Ax) where the expectation is with
Moreover, the perfonmance of this dynamic policy is within 0(n-1 log nt) close respc to the raridonnization. For mnor general performnance criteria. however. it
to optimality, tundifrmly for every Possi-ble nt -seqtuence. is deostae doe this principle does not necessarily hold.

One example is sequential universal data compresin Let x 1 X, -. .. . . . . . . isj propery of Markovian strategies is then utilized in order to relne the
be a binary stuing. Let N (0) and n, (1) denote counts of '0 and 'I'.. rsetively, least asymptotic loss achievable by FSM's over indiviuanl sequences to dimt of die
a'ong the: IAm symbotls Define p, (z) = (n,r (x) + 112)/t]x = 031, as the probabliti case where any linuatibmm on the aillowed nonansucipating strategies
respective empirical probabilities of '0' and'I'. Then, isis well known dint am relaxed. Specifically. following Algoet [6), where die Shannon-McMill a-

I Ia- X)gI o _) Brienma theorem has been extended to ageneral sequential decLsin problem
- n llg,.(,~-~-ogp,, (ti) + f n 0()n 1 under a stationary ergodic regime, we show that these two quantities agree with

it ,., i 2 f itprobability oam over an infinite sequenice.
lthe left hand side is the normalized length of a codeword associated with a Makva schiemres we useful also in continuous alphabet application,
sequential Shannon encoder based on current empirical letter probabilities from One familiar example is frdcinunder die mean squared error (MSE) c Piter .n
data observed so for. The fistterm on the right is the empirical entropy associated Le., 1 (b,, x) -(x, -b,) ,weethe the predictor b, is given by a function
with x*, which corresponds to the mninimnumi normalized codeword length associ- f (x,4 . X, -1) of the k moat recent outcomes, e.g.. a linear predictor, where
aled with a fixed codebook due one could have achieved if he knew alimor f( . . . . .. n;..Te sequential version of this line.'predic-

(pMX) Wo.Te0n I1 log it) term is the lose in Pettciiicer dug to sequel- irr leads to the recursive least squares (RLS) algorithm. which is here shown to be
tiality. Eq. (1) can be formalized as a sequential minimization problem, where , nv rsa the above swise Another example is vector quantization where
I (bz) is -log bfor x -0and -log (1-b)for x-1. and where b e(0, 11. x e R and l(b, x) - d(x, Q&(x)). d(-,-) being a distortion measue and

Another application of (1) is sequential gambling where at eac ron I i Qb() a quantizationi function with quantization cells and centroids parametrized
plaerdoblt hefraction of tecretcptlSwardonheexouom, by b. Again, by allowing b to depend onthe k preceding samples (or their quan-

ilaer. double th the cifen x,, 0an S+,- al Six1 waee on Ithiseanexto wtele tized versions), we can implement a family of vector quanttzers with memory,

that the exponential growth rate n-1 logS. of the capital is the average of eg.fedakuntrspeicveunamitt-tw iiis t.
1-1 (b, x,), wherelI(-,-) is a before

Portfolio, selection for optimal investment is an extension of the above Reference
described gambling problem. where S, is distributed over mr investment oppor-
mitides according to some portfolio b a W, a vector of weights qumming to (11 T. M. Cover, "Universal Portfolios," Math. Fi~nuwe, Vol. 1, No. 1, pp.1I-

unity. The stock mariket at day:t is given by a vector x, e JR with componentsjamy191
x,. representing the reain per monetary unit allocated to stock iat day t. T9hanaye91
yield tier unit invested is the weighted average of rasum ratios, i~e..Yx, wher 121 M. Fader. N. Merhay, and M. Gutman. "Universal Prediction of Individual

# t..joe tanpostin. ho, he xpnenia gowt rten*' log S, of th cap- Sequences," IEEE Trans. Wron&t Theory. Vol. 171-39 .No. 4. pp. 1258

ital is the time-average of L(b~xj)-Iog(b~x1 ). In [I] a sequential portfolio120Juy92.ul 97
selection scheme is proposed for bounded market vector sequences, which is [f3) H. Robbins. "Asymptotically Subminimax Solutions of Compound Statisti-
again as good as die optimal fixed investment policy up to a term of cal Decision Problems," Proc. 2ad Berkeley Sjmt. Marh. Statist. Prob.. pp.
0 (n-1log ns). The proof in [11. however, relies heavily on spca propertie of 131-149,1951.
the function log (OX). 141 N. Merhav and M. Feder. "Universal Schemes for Sequential Decision

In [21 a reslt in the -on spirit is established for prediction of binary fromh Inidividusal Data Sequeces," submitted for puiblication.
sequences, when' predictors we sought that uniformly mininmize the fraction of [5) T. M. Cover and A. Sh'enhw. "Compound Bayes Predictors for Sequentces
errors Thestrinegyb, isan estimatex,. 1 ofx.*, andlx,1 ,z,1 ) '1 is the indica- with Apparent Markov Smicaus," IEEE Trans. Sysr. Man. Cybern., Vol.
tor function of an erro. Again. the techniques in [2] we specific to chi? particular SMC-7. pp. 421-424. May-June 1977.
loss finction. 161 P. H. Algoei, "The Strn Law of Liege Number, for Sequential Decision.

These examples we all special cans of the seqiaental compo~und drcisin under Uncerauinty." preprint.
problen (SCDP). which was Amrs presented by Robbinus 131 and hasa been
thoroughly investigated since then by many researchers. The setup of the SCDP
isimore general because is assumres that the observer sees noisy version of (x,)1.
Upper boumds have been developed in the literature (see. e.g.. references in 14D
on die decay rate of the difference between the average loss associated with die
best sequential strategy and tha of the best fixed strategy. The scope of these
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Some Results on Sequential Detection of Weak Signals
V.N.S.Samaasooriya and PK.Varshney

Department of Electrical and Computer Engineering
Room 121. Link Hall
Syracuse University

Syracuse, New York 13244-1240.

Abs : small, and keeping only the first and second order team in., we can
In this pqw we preent a tuncated nqwaW ui t for the dwCioe f woik sg- obtain a more manageable form of the Likelihood tio to implement
tnlk in additive noise. P orf tm ance evalu atio ns for both b u ca o ad unit n ceed t e h p t e i e t n r b e .i e~ ~ seaee& e alo tevehpeahypothesis testing problem. I.€.:tests are €ouded and numaokal resultsa yreeninaed. We also deveW• a

sequeý n t for weak snpa deecton with M-kle qudutzalom of obereved
dma. NumuialWreailtwepresented for the cin wben thesigid isadeteminhs- -R 9 j ,). =Y~ +( 1jj ('e 1tic. ad when td e signal is sloclastic with kw"ogn m etit density. A pst-')..+ Y • ( +5+) (())
mnum companison of e sequena ame using qumatized mand u u reu u u. sed dat = is
also provitie with Yi o~NX) (L,=J4S4 (4)

Detection of a signal in additive noise is formulated as the hypothe-($j) v = a 2

sis testing problem stated as follows:

H,: X4 - + N i = 1.2 ......... ,N (1) Sequential detection of weak signals using the Taylor series approx-Ho: 4 - N i-]L .............where '1 =( ., ........ sn)T is the signal sample sequence, and imion of the likelihoodrato given above has been considered toa
wher ~ ( isthe ignl smpl certain extent in [3]. Numerical results are not presented, and a per-

= (nln 2 . ON) represents the additive noise. K= ( x1 x2 ...... xN) forance in wit the corre FS test was no con-
represents the observed data vector Hypothesis testing is imple- fmance compaison with the coresponding FSS test was not on-

mented either as a fixed-sample-size (FSS) test or as a sequential sidered.Also, in the sequential test considered in (3], the number of
test. The FSS test, involves the comparison of a likelihood ratio samples required to terminate the test (the actual detection time) can
against a single threshold, while deciding in favor of either 40 or H, become large. We develop a muncated sequential test for weak sig-
and uses N observed data samples in the faorem. Hence, a decision nal detection, based on the series approximation of the likelihood
is reached only after N observations have been rceived. A FSS test ratioin order to avoid prolonged test durations. At stage NT the

can be implemented using several methods including the Neyman- cumulative likelihood ratio is compared against a single dheshol T,
Pearson, and the Bayesian techniques. The detet threshold is and a decision is reached. NT and the threshold T become design
designed according to the required detector performance, namely parameters of the truncated sequential test. Perforance evalue-
the probabilities of detection and false alarm. In comparison with the tions of both unmancated and truncated sequential tests, in Omn f
FSS test, the sequential test requires on the average, a smaller num- the Average Sample NusbarASN) function, and the operating
ber of samples to reach a decision.A sequential test can be designed characteristic function, ae presented. The probability that an
to minimize the average detection time. The Sequential Probability untruncated test would terminate before the corresponding truncated

Ratio Test (SPRT) derived by Wald [1] is known to be the optimum test is also presented.
sequential test. We also consider a sequential test for weak signal demetion with M-

The Sequential Probability Ratio Test can be stated as follows: level quanazaton of observed dam, based on the series app-oxinu-

tion of the likelihood ratio. Quantization for sequential signal detec-
fa H, ) - A H, acept H2  tion for non-weak signal situation has been considered in[6]. The

LS4J[) = s B w mpcepe H0  (2) optimal set of quantization thresholds is obtained by ainimizin a
fr~n a / H0 ) Lweighted sum of the ASN under each hypothesis. Numerical rmults

othedwise contue an are presented for the case when the signal is deterministic. A perfor-

where LR),(2 the likelihood ratio at the n-th stage of the sequen- i.ance coparson between the sequential test for weak signals
tial test, with n being a random variable. fjXHl( IH) N f 0 based on unquantized observed data, and the sequential tesot using

(A are the multivariate density functions, of 2. conditioned on quantized data, is also presented.
HI and H0 respectively. A and B am the thresholds of the sequential Referenes:
test. For prespecified probability of false alarm ct, and probability of f 1] A. Wald, . Ldufrab , New York: Wiley, 1947.
miss P, approximate expressions for A and B are obtained in [ 11 as [2] P. Rudnick, 'Likelihood Detection of Small Signals in Stationary
A -(1P)/a, and B=OV(l-ct). Noise', 1. AN ysks vol 32, pp. 140-143, 1961.

Consider the detection problem of a random signal sequence with [31 R.F.Dwyer, 'Robust Detection of Weak Signals in Undefined

known multivariate density fs(). The likelihood ratio for this cas Noise using Acoustical Arrays', 1. Acous. Soc. ofa wien vol 67,

can be expressed as follows [2): March 1980.
[4] S.A.Kasar, Siam al Detcdon in NoAm-Gauzzi Noise New

) fN ( )(3) York:Springer-Verlag, 1988.LRn ) = • fs ($) d( [51 S.Tanataratana and i.B.etonas, 'Tuncated Sequential Pmbabil-

wher fN(.) is the density function of the additive noise. ity Ratio Test', L, vol 13, pp. 283-300. 1977.

Under weak signal conditions f~1Hl(xIHi) is approximately equal to (6] S.Tinataratana Dedt.B.Thons 'Quantization for SeqT7ueial
f~po(xlH0). The likelihood ratio in (3), is therefore approximately Signal Detection',
equal to one. This introduces difficulties in the implementation of a 1977
likelihood ratio test. Alternatively, fN( - 3) in (3) can be expanded
in a Taylor series around 1 -0. Assuming that the signal is always *This work was supported by Rome Laboraory under omtrct No.

F30602-89-C-0082
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REDUCED-COMPLEXITY ITERATIVE MAXIMUM-LIKELIHOOD
SEQUENCE ESTIMATION ON CHANNELS WITH MEMORY

J.W. Modestino
Electrical, Computer and Systems Engineering Department

Rensselaer Polytechnic Institute
Troy, New York 12180

Abstract conventional full-search MLSE approaches since we exploit, at

Existing maximum-likelihood sequence estimation (MLSE) each stage, the rather simple structure of the ML solution based
schemes for channels with memory, rebulting in intersymbol upon the associated complete data. While there are many ways
interference (ISI), have typically been implemented using the to relate the observations to a corresponding complete data
Viterbi algorithm (VA). For memoryless modulation schemes quantity, the particular formulation we consider is suggested by
the resulting search complexity is O(ML), where M is the al- related work on the ML parameter estimation problem for su-
phabet size and L is the length of the ISI span in channel perimposed signals [81 which is directly applicable to the MLSE
signaling intervals. This complexity renders the VA imprac- problem treated here.
tical for large M and/or L. In this paper we describe the In this work we provide the formal development of the pro-
structure and properties of a novel reduced-complexity iterative posed reduced-complexity MLSE approach and describe some
MLSE scheme based upon the expectation-maximization (EM) of its performance characteristics. The relative complexity ad-
algorithm. This reduced-complexity iterative MLSE scheme is vantages of this scheme depends, of course, on how many itera-
shown to have complexity O(LM) at each iteration. The ap- tions are required for acceptable convergence. This is related
proach provides an attractive alternative to the VA for large to the resulting error probability and is best determined by
signaling alphabets and/or ISI span. simulation. We provide simulation results demonstrating the

Summary rapid convergence properties of this reduced-complexity itera-

Existing maximum-likelihood sequence estimation (MLSE) tive MLSE scheme.

schemes for linear channels with memory, resulting in intersym- References
bol interference (ISI), have typically been implemented using
the Viterbi algorithm (VA). The VA provides a structured dy- [1] A.D. Dempster, N.M. Laird and D.B. Rubin, "Maximum
namic programming search of the underlying trellis defined by Likelihood From Incomplete Data via the EM Algorithm,"
the modulator/channel cascade. For memoryless modulation J. Roy. Stat. Soc., vol. 39, pp. 1-38, 1977.
schemes the resulting search complexity is of the order ML (2] M.J: Miller and D.L. Snyder, -The Role of Likelihood and
where M is the alphabet size and L is the length of the ISI Entropy in Incomplete-Data Pioblems: Applications to Es-
span, or the delay dispersion, measured in channel signaling in- timating Point-Process Intensities and Toeplitz Con-
tervals. For modulation schemes with memory, or for coded strained Covariances," IEEE Proc., vol. 75, pp. 892-907,
systems operating on ISI channels, the associated complexity July 1987.
can be considerably greater than this. Thus, it's of some inter-
est to develop reduced-complexity MLSE techniques and a host [3] A.K. Katsaggelos and K.T. Lay, "Maximum-Likelihood
of research efforts have been directed at this problem, all with Identification and Restoration of Images Using the Expec-
varying degrees of success. tation-Maximization Algorithm," Chap. in Digital Image

In the meantime, a fair amount of work has been done, Restoration, Ed. A.K. Katsaggelos, Springer-Verlag, 1991.

mostly in the statistics literature, in developing iterative so- [4] J. Zhang, J.W. Modestino and D.A. Langan, "Maximum-
lutions to a variety of ML estimation problems which can be Likelihood Parameter Estimation for Unsupervised Model-
cast in terms of an incomplete data problem. Here, the ob- Based Image Segmentation," to appear in IEEE Trans. Sig.
servations, called the incomplete data, are related to another Proc.
quantity, called the complete data, for which the ML estimation
problem is simpler. The estimation-maximization (EM) algo- [5] D.A. Langan, K.J. Moilnar, J.W. Modestino and 3. Zhang,
rithm [1] has been used in such situations to obtain an iterative "Use of the Mean-Field Approximation in an EM-Basedsoluionto he rignalML stiatin poblm, ase onthein- Approach to Unsupervised Stochastic Model-Based Image
solution to the original ML estimation problem, based on the in- Segmentation," Proc. of IEEE ICASSP'92, San Francisco,
complete data, which at each iteration is no more complex than CA, pp. 57-60, March 1992.
obtaining a ML solution of the much simpler problem based
on the complete data. The EM algorithm has found extensive [6] C.N. Georghiades and J.C. Han, "Sequence Estimation in
applications in a variety of problem areas including: spectral es- the Presence of Phase-Errors via the EM Algorithm," sub-
timation [2], image reconstruction [31, and image segmentation mitted to IEEE Trans. on Commun.
[41,[5]. Recently, the EM algorithm has been applied to sev- [7] J.W. Modestino, "Use of the EM Algorithm for Incorporat-
eral communications problems including: problems of carrier ing Channel State Information into Decoding Procedures,"
recovery [61 and channel state estimation[7]. Experience has ECSE Dept. Report, Rensselaer Polytechnic Institute, Feb.
generally demonstrated rapid convergence of the EM algorithm 1992.
and, since each iteration is reasonably simple to implement, this
generally leads to substantial computational savings relative to [8] M. Feder and E. Weinstein, "Parameter Estimation of Su-
straightforward ML procedures. perimposed Signals Using the EM Algorithm," IEEE Trans.

Acoust., Speech, Sig. Proc., vol. ASSP-36, pp. 477-489,
In the present paper we apply the EM algorithm to the April 1988.

problem of MLSE on linear ISI channels. This results in an
iterative algorithm with substantial computational savings over

422



On Sequential Delay Estimation
in Wideband Digital Communication Systems *

Yossef Steinberg and H. Vincent Poor
Department of Electrical Engineering, Princeton University, Princeton, NJ 08544 USA

ABSTRACT In this work we construct and analyze sequential detection-estim-
ation algorithms that alleviate these problems. We suggest a recursive

The problem of estimating the symbol timing in wideband data corn- scheme for estimating T-, which is based on maximization of a sm-
munication signals is considered. Conventional approaches to this oothed version of the periodic autocorrelation function instead of the
problem suffer from several drawbacks, including possible lack of con- aperiodic correlation itself, and has a good initial lock property at the
sistency due to multiple extrema in the error surface, and very slow expense of higher asymptotic mean square error. The construction
convergence due to exceedingly sharp waveform correlation functions. of this procedure is based on the following observation. Fix some
In this work, sequential estimation algorithms that alleviate these 0 < A < T/2 and define the symmetric smoothing kernel 0&(t) and
problems are constructed and analyzed. These algorithms are based the smoothed waveform sA(t) as

on two techniques: the use of regularization (i.e., prefiltering) to pro- . [-A, A]
duce a consistent initial estimate at the expense of higher mean-square (A+t)/ 2  t E [-A, 0]
error; and the coupling of recursive maximum-likelihood with this (A - t)/A 2 t E [0,A] ,
consistent estimator to produce the desired goal - a recursive consis-
tent and efficient estimator. where f * g stands for the convolution of f(-) and g(.). For every
1 Introduction and Summary integer I > 0, let y1(r, A) stand for the output of a filter matched to

sa (t - IT - r) and driven by the observation process. Define
In this work we consider the problem of delay estimation in wideband A L
binary digital communication systems. Let the received signal be PA(l,r) .= J ,(t - IT - r)s(t)dt, cA = c * 4

A.
modeled as 00

It is easy to verify that cA(r) - X~ff.1pA(i,r) for A > 0 and r Edr(t) = a E bis(t - iT - r*)dt + d(t) () [-T/2, T/2]. Since the data bits are independent and equiprobable,i>o the following identity holds
where a is the received amplitude; b, - i'th data bit ({bj}_>0 is a
sequence of iid equiprobable random variables in {-1, 1)); T - dura- E r. [i2(1, A) + 2yi(r, A)yl+l(r, A) + 2y•(T, A)Y1+ 2(r, A)]
tion of symbol interval; s(t) - code waveform; r* - unknown delay,
7* E [0,T); w(t) - standard Brownian motion; a' - channel noise in- = c2(r - f*) + a

2pA(O,0) + 2a 2
pA(1, 0). (2)

tensity. We assume that s(t) = 0 for t V [0,T], and that it can be
written as s(t) = EN'-1-ywj(t - iT.), where wi(t) are basic "chip" The right hand side of ( 2) depends on T only via the periodic corre-
waveforms, Nc is the number of chips in symbol interval and {•€j is lation function of the signal (or its smoothed version). This suggests

a maximal length sequence [1]. The problem addressed here is that that an algorithm with good initial lock properties can be constructed
of estimating the delay rT given the observation signal {r(t), t > 01, by choosing an appropriate A and performing recursive stochastic
where the receiver has a knowledge of a, a, and the waveform s(t). De- maximization (with respect to r) on the left hand side of ( 2). More-
note by c(r) the periodic autocorrelation function of 9(t). We assume over, this scheme would not utilize any decisions on the data bits.
throughout that c(r) has no local maxima in the interval [-T/2, T/2]. In most applications, recursive maximization of the log-likelihood
Consider for a moment the idealized system where the iid data bits function results in an algorithm which, under the assumption that it
are known to the receiver (or estimator). In this case the maximum converges to the consistent root, can be made asymptotically efficient.
likelihood (ML) estimate of r* based on observations of the first n Based on this, we construct a second algorithm by coupling a recur-
time units is the value of f that maximizes the output of a filter sive ML scheme to the smoothed correlation scheme, which serves asmatched to the waveform E'-' is-i-flIncesohghina

mcido bia(t - iT - ÷). In caes of high signal a "guide" to the correct root of the likelihood function. Using known
to noise ratio (or n large) this maximization can be viewed as that of a results, it can be shown that the resulting algorithm is consistent and
"close" estimate of the aperiodic autocorrelation function of the wave- asymptotically efficient; that is, the delay estimate converges w.p.1 to
form s(t). Classical approaches for obtaining f include serial search r" (as n - oo), and the asymptotic mean square error is the optimal
techniques (see [2] and the references therein) and gradient search one. This technique has been demonstrated in the related problem of
methods. In general, the aperiodic autocorrelation function of s(t) multiuser amplitude estimation in [4].
is not guaranteed to have a unique maximal point even when {jji) is
a maximal length sequence, and thus gradient search algorithms can References
result in a nonconsistent estimate for t*. Moreover, typical autocor-
relations of code sequences are sharply peaked and have low sidelobes.
Therefore, if the initial guess 1 is far from the exact delay, the out- [1] R. J. McEliece, Finite Fields for Computer Scientists and Engi-
put of the matched filter provides only little information (if any) on neers. (Kluwer: Norwell, MA, 1986.)
the direction and distance of r", and gradient search algorithms can [2] V. M. Jovanovic, "Analysis of Strategies for Serial Search Spread-
wander in the flat zone of the autocorrelation function for a long time Spectrum Code Acquisition - Direct Approach," IEEE Trans.
before an initial lock is achieved. Comm., Vol. 36, pp. 1208-1220, November 1988.

More realistic is the situation where the sequence {bi}i>o is not
known to the receiver, and the estimation of r" is performed due [3] D. D. Falconer and J. Salz, "Optimal Reception of Digital Data
to the fact that knowledge of the delay is a prerequisite for reliable Over the Gaussian Channel with Unknown Delay and Phae Jit-
detection of the bits. Decision-directed procedures for estimating the ter," IEEE Trans. Inform. Theory, Vol. 23, pp. 117-126, January
delay in this setup are described in [3] and in the references there. 1977.
These algorithms also suffer from the drawbacks described above. [4] Y. Steinberg and H. V. Poor, "Sequential Amplitude Estima-

"*This work was supported in part by a Wolfson Postdoctoral Fellowship, and tion in Multiuser Communications," submitted to IEEE Trans.
in part by the National Science Foundation under Grant NCR-W02767. Inform. Theory, 1992.
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Performance Study of Maximum-Ukelillood ftceivers and
Transversal Filters for the Detection of Direct-Sequence

Spread-Spectrum SVWigaIn Narrowband Interference

hilt Ansari and R Viawanathan
Department of Electrical Engineering

Southern Mlinoft University
Carbondale. IL 62901

hhstrsst - Lnear least square estimation techniques Can all bk over the current bit CLe..b -I HW

be used to enhance suppression of narrowband biner1ference in f+1: - (2

direct-sequence spread-spectrum systems. Nonlinear techniques Lo.t~v== +be the vwhikte nos h.the nterferece with

for this Purpose have alio been Inetiae recently. Her e.- aR R (m)w' SONJ + P- (m. Let A be the LXcL
d~fft niomu-lielioodreelvm fr drecomrarance matrtaof tviý The mab nnlinmlkellhood detector for
deriv ma um-Ilislhoodreceiers or unce igI~l in the detection X~e r()I ie y

Gaussian Interference with known second order characteristics. T q~ -& t2 sgie y
ffIs shown that if the receiver uses samples from outside the a TA -1C 0 (3)
bit interval, then the receiver structure (called ML nl 31M whrT a*T
nonlinear. The bit error rate performances of these MAL receivers whe~re& iss zL_11,p 0

arecomard t toseoflinarreceiver employing one-sided and 2-1 ULD V andeb rmW me t MrW Rtats
Gaussian last squaresestive tierf-- Now cosdrthe observation vector to consist of the chips
Gaussia autproregrssive mntcedrfileree th ishwn tatddn the ML n ea~indg to the bit under test appended with sorn chips from

receaiver otpiaerors! ithe mathdflete n e n h the previous bit. Le. the receiver has to test the present bit
two ~1 side ti veal but uses Observation samples frm the Present bit Interval and a

Dfrect-sequence spread-spectrum systems offer an Inherent Part of the previous bit Interval. Let J. C I~J1 where
capability at rejecting narrowband interference. This isvetrothlatIci
achieved by modulating the bit waveform With a P71 sgna bbefore isd teeivectoriof The latIkelhoo aio.p
transmission and correlating the received sigal with a replica and t zlhe repdngmxum likelihood deteior forth
of the P1N signal In this way, Interfering signals, whose deeto rM -n inU-iklho (2)cto isr thngieeb
bandwidths are narrow compared to the spread signal, are dtcinpolmi 2 ste ie y
attenuated by the receiver. Processing the received signal prior T -1 1
to correlating with the PN sequence has been employed to Improve am*l (1d'I (4) d.1
the suppression of narrowband Interferne Lierles qursf _____________

estimation techniques to estimate and subtract the narrowband 1-1(41
Interference have been studied Ill. Nonlinear techniques for TZ I
intrfeenc suppression in spiread-spectrum systems have: been dg(* ) Ad- -
Investigated in 121. Here, we study the performance of maximum- hr sh I.(M aalnemti ftesqec
Ikehihod receivers for direct sequec spiread spectrum sigals Where -&~ . & Ac c~ theC+xL+ oain ftesq enc
received in Gaussian Interference with known second order a = d b bc)th

statistics When the receiver operates on the observations in lrirý4d aclton1novngp~on vcosai

the bit duration onl, the receive is the well known Unir) anr~s itcnbAhw httebt ro rbblt o h

detector known as the matched filter. When the observation dabee ItO i on be)1 show thttebte rprbblt o h
Interval exted outside the bit Interval, the receiver structure deetri 4- sge y
IS shown to be nonliear. The nonlinearit arises not due to theo Pe- *rs is 1) > sinh(52) I HO1 ) (5)
modeling of the binaxy chip sequence as as random as in (2), but S Tr9 & A , mg A 1 . y lIsa negative conostnt
due to the uncertaitey on the bits adjacent to the bit beinftvcor m

LL MAIUMUM-uxEuIooD 9ECEIVER test statistic SMMe by (4) is nonlinea nourAn.m
We consider here the performance of maxldmumllellhood reevrbased onl (4) will be called ML a.

receivers. for the following problem . We shall restrict to the M.~terr aeproracso theGA C C M L IandM L
case where an ent Ir maximal length PN code sequence is embedded reeiersi a re ev rated nuericllm n d ofteMpIared to th
in each bit (so called short PN sequences). A similar analyisrole ar f~e evlae nueial an copae itother
can be easily done for the case of long P71 sequences. Let the merlnan mofwthed interferece *oeed andtosie tansecv rersa zers.

recivd sgnl b pocese bya hi-matched-filter and sampled mean Gaussian autoregressive Process with known parameters As
at the chip rate of the P11 sequence to Yield 121 expected. both the maidum-likelihoodreceivers and the

Week' (1) transversal filers perform better when the power spectral
ck 1totloss of generslity~the 5ii5 estyi ek.Th olna L eevrouprom h

StrengthIaIs to beI A.% Is the kth chip of the PM maed fIltPerky rTeier andnlthea L1 onesiedan otw ero-sided

sequence with chip kteral'9.c.'For k < 0or k>L- Iis takenmaceBirrcivrndteo-sednitwsdd
modulo 1. b k a J 1,-41 is the inar Information with bittrnvsa ies. OEMN S
duration T = Lt . L is the processing gain given as the number of Ill L. L. Mdeten,inteferece rejectiontechniquesn
PN chips A~ MeIAMe bit. Note that bk-. b , (11) for all k in spread spectrum communicationaProc. nEEE. vol. 7,6. No.8. June
the same bit Interval. %~ is a, sequence of zero mean l.l.d. ,p6741

Gaussian noise with kn~wn variance as~ Is a sequence of 1288 Rp V657- nd1. VnetPo,"olna ehiu o

narrowband interference modeled as NA l mean Gaussian process 21 P Intrfe nc supprssionincn sPoread-spctru sytehnque Ifor

with autocovarlanc 5~(k). The detection problem is:wr. onefrnc Csuprsin. Von 38 e, No.7. J uly 1990. pp1010M
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Optimal Detection of Discrete Markov Sources Over Discrete
Memoryless Channels - Applications to

Combined Source-Channel Coding t

Nam Plumdo and Nariman Farvardin
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and Systems Research Center
University of Maryland
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Summary The solutions to the above problems are applied to a corn-

in his celebrated paper [11, Shannon stated that in informa- bined source-channel coding problem. The source is assumed to

tion tahissionebrtd o er a ] noiShannel, stredundann imust be be highly correlated and the source encoder is a small-block-sinetion transmission over a noisy channel, predundancy oise vector quantizer (VQ). Since the VQ input is correlated fromintroduced in the proper way to combat the particular noise block to block, its output is also correlated. This correlation isstructure involved. However, any redundancy in the source win referred to as the "residual" redundancy [3]. For simplicity, we
usually help if it is utilized at the receiving point. In particular, model the VQ output as a discrete Markov source. The MAP
if the source already has a certain redundancy and no attempt is detectors described above are then used for error detection and
made to eliminate it in matching to the channel, this redundancy correction of the VQ indexes. Simulation results for this sys-
will help combat noise." tern on a Gauss-Markov source are obtained and comparisons

This statement, though made more than forty yews ago, are made with Farvardin and Vaishampayan's channel-optimized
forms the foundation of the present work. The principal as- VQ (COVQ) [5, 6] and the ordinary VQ designed for a noiseless
sumption here is that the source to be transmitted has a certain channel. Table I shows a summary of our simulation results.
redundancy and due to certain constraints (for example, on the More extensive results can be found in [4].
complexity), the transmitter makes no attempt to "match" the
source to the channel. Instead, the source is transmitted directly VQ+ VQ+ VQ+ VQ+
over the channel. The problem thus is to design a receiver which £ VQ Inast. Seq. COVQ VQ Inst. Seq. COVQ
fully "utilizes" the source redundancy to combat the effect of MAP MAP 1 [5, 6 _ MAP MAP [5, 6]
channel noise. k = 1; R = 1.0 k = 1; R = 3.0

It is hypothesized that the source is in the form of a dis- 0.003 4.24 4.24 4.24 4.25 11.56 12.91 13.69 12.04
crete Markov chain and that the channel is a discrete memo- 0.010 4.09 4.09 4.09 4.11 9.83 11.86 13.03 10.50
ryless channel. The receiver is a maximum a posteriori (MAP) 0.050 3.09 3.08 3.82 3.15 4.26 7.90 10.03 6.47
receiver (detector). The redundancy between successive symbols 0.100 2.09 2.09 3.29 2.27 1.56 5.31 7.34 4.67
of the Markov source is used by the MAP detector to provide k = 2; R = 1.0 k = 4; R = 1.0
some protection against channel errors. 0.005 7.37 7.61 7.70 7.31 9.08 9.40 9.64 9.15

The above formulation has been considered before by several 0.010 6.88 7.30 7.49 6.83 8.21 8.76 9.18 8.37
authors. The most notable is the work by Drake [2), who pro- 0.050 4.21 5.65 6.31 4.37 4.31 5.51 6.62 6.23
vided the optimal instantaneous MAP decoding rule as well as 0.100 2.27 4.01 5.04 2.76 1.95 3.27 4.49 4.65
bounds on the achievable probability of error. Drake also studied
the special case of binary symmetric Markov source and binary Table 1: SNR (in dB) Performances of Combined Source-
symmetric channel and gave a necessary and sufficient condition Channel Coding Schemes Using MAP Detection for a Gauss-
for the optimality of the singlet ("believe-what-you-see") decod- Markov Source with p = 0.9; k = Dimension; R = Rate
ing rule. More recently, Sayood and Borkenhagen [3] considered (Bits/Sample); e = Channel Bit Error Rate.
the detection of a discrete Markov source over a discrete mem-
oryless channel in a joint source-channel DPCM image coding References
system. 1. C. E. Shannon, "A Mathematical Theory of Communication,"

In this work, we consider two variations of this problem: (i) Bell Sst. Tech. J., Vol. 27, pp. 379-423 and 623-656, 1948.
sequence MAP detection which is to determine the most prob- 2. A. W. Drake, "Observation of a Markov Source Through a
able transmitted sequence given an observed sequence and (ii) Noisy Channel," Sc. D. Thesis, M.I.T., Jun. 1962.
instantaneous MAP detection which is to determine the most 3. K. Sayood and J. C. Borkenhagen, "Use of Residual Redun-
probable transmitted symbol at a particular time given all the dancy in the Design of Joint Source/Channel Coders," IEEE
observations up to that time. The solution to the first problem Trans. Commun., Vol. 39, pp. 838-846, Jun. 1991.
results in a "Viterbi-like" implementation of the MAP detector 4. N. Phamdo and N. Farvardin, "Optimal Detection of Discrete
(with large delay) while the latter problem results in a recursive Markov Sources Over Discrete Memoryless Channels - Ap-
implementation (with no delay). For the special case of binary plications to rombined Source-Channel Coding,* submitted
symmetric Markov source and binary symmetric channel, we give to IEEE Trans. Inform. Theory, Mar. 1992.
a necessary and sufficient condition (similar to Drake) for the op- 5. N. Farvardin and V. Vaishampayan, *Optinud Quantiser De-
timality of the "believe-what-you-see" sequence MAP decoding sign for Noisy Channels: An Approach to Combined Source-
rule (see [4]). Extensive simulation results for this special case Channel Coding," IEEE Trans. Inform. Theory, Vol. 33, pp.
are given in [4]. 827-838, Nov. 1987.
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A Communication Channel Modeled by the Spread of Disease

Fady Alajaii and Tom Fuje
Electrical Engineering Department, Systems Research Center

University of Maryland, College Park, Maryland 20742

1. Overview Averaged Communication Channels: Consider a family of

We consider a discrete channel with memory in which errors spread like discrete memoryless channels parameterized by 0:

the spread of a contagious disease through a population. Our motiva-
tion is the observation by Stapper et. at. that the Polya-Eggenberger = I X - = _ I

(PE) distribution is a better "fit" to the distribution of defects in
silicon than the commonly used Poisson distribution. The PE dis- A channel is "averaged" if its block transition probability is the ex-
tribution is one of the distributions generated by Polya's urn model pected value of the block transition probability taken with respect to
for the spread of contagion. We introduce a communication channel some distribution on 0 - i.e., if it's of the form
with noise modeled by Polya's process. We first present a maximum =

likelihood (ML) decoding algorithm; we then show that this channel WA")(Y ! I X = •) J W("'(Y = I X =) dG(9) (2)
is in fact an "averaged" channel in the sense of Ahlswede and others,
and its capacity is zero. Finally, we consider a finite-memory version of where (0, u(O), G) is a probability space for the random variable 0.
the Polya-contagion model; this channel is (unlike the original) ergodic Note that the averaged channel has memory and is stationary.
with a non-zero capacity. Claim: The binary Polya-contagion channel is an averaged chan-

2. Polya-Contagion Channel nel; specifically, the Polya-contagion channel represents the class of

Consider a discrete binary additive communication channel: Yi - binary symmetric channels with crossover probability 0, where 9 is

Xi E Zi, where the random variables Xi, Zi, and Yi are, respectively, distributed according to the beta distribution with parameters p/6

the i'th input, noise, and output of the channel. We assume that the and a/b, Furthermore, from the results of Ahlswede we can show that

input and noise sequences are independent. The noise sequence {ZJ the capacity of this channel is zero.

is generated according to Polya's contagion urn scheme, described as 3. Finite-Memory Contagion Channel
follows. An urn originally contains T balls, of which R are red and S An unrealistic aspect of the Poly-contagion channel is its infinite mem-
are black. Let p = RIT and a = 1 - p = SIT. We make successive ory. Consider, for instance, the millionth ball drawn from Polya's urn;
draws from the urn; after each draw, we return to the urn 1 + A balls the very first ball drawn from the urn and the 999,999'th ball drawn
of the same color as was just drawn. In our problem we assume that from the urn have the identical effect on the outcome of the millionth
A > 0 (contagion case) and that p < a. The noise sequence {Zi} is draw. We now consider a perhaps more realistic model for a contagion
generated by the draws: Zi = I if the i'th draw yields a red bal and channel with finite memory.
Zi = 0 if the i'th draw yields a black ball.

For an input block X = [X,,.. ., XJ and an output block Y _ As before, consider an urn with T balls, of which R are red and
[Y1,..., Y,], the block transition probability of the channel is: S = T - R are black. At the j'th draw we select a ball from the urn

and replace it with 1 + A balls of the same color; then, M draws later
X(_ ) r(f + d) r(q + n - d) - after the (j + M)'th draw - we retrieve from the urn A balls of the

P(Y=X IX=) =)- ) r( + n) (1) color picked at time j. As before, let Z. = I if the i'th draw yields a red
ball and Zi = 0 if the i'th draw yields a black ball. This modification

where d = dH(y,Z), the Hamming distance between k and 1. keeps the total number of balls in the urn constant (T + MA balls)
Channel Properties: Two important properties: (1) Station- after an initialization period of M draws; it also limits the effect of

arity: From equation (1) the noise {Z,- forms an infinite sequence of any draw to M draws in the future.
exchangeable random variables. Therefore, the noise process is strictly For blocklength n < M + 1, the block transition probability of this
stationary. (2) Non-Ergodicity: Let Sn 4 Zi + Z2 + "-"- + Zn. It Can new channel is given by (1). For n _> M + 2, we obtain:

be shown that Z = lim,.n-c Sn/n is (with probability one) a random nr 6_ e + (M - s,-). -
variable drawn according to the beta distribution with parametqrs p16  P(Y = YI X =) = L 1
and a/6. Thus the noise process {Zi} is not ergodic since its sample i=M+2 [P + M6 J [ 1 + M6 J
average does not converge to a constant. where L = [rl 1(p + i6)t'H•.(, + All)]/ Wl(1 + 16). Here, ei =

Maximum Likelihood (ML) Decoding: Suppose M code- 5 E yi, k =• + .-. + em+, and si-, = ei- 1 + ... + ei-m.
wordsMarepossible channelinputs each Decodinf: S oenClaim: The new noise process {ZJ) is a stationary ergodic Markovwords are possible channel inputs: &1,Z2,... ,/,, each of length n. presofodr , dthsheeutigcanisaM kochne

Given an output E, ML decoding selects as its estimate of the trans- process of order Ma, and thus the resulting channel is a Markov channel
mitted codeword the xh that maximizes P(Y = with memory M. The capacity Cm of the channel is given by:

Now g(d) - P(Y = I )X = is strictly log-convex in d E [0, n] Ml (M) (p+i6
with a unique minimum at do = n/2 + (1 - 2p)126. Thus the ML CM= E- M Lih6
decoding algorithm for the channel is given as follows:

where L, = +I'-0(+ j6) ]'(u +-16)J/Hf-•(l + m6), and l(z)1. Given the received vector v, compute d, = dH(I,L.) for each '. is the binary entropy function.
A istebnr nrp ucin

Compute also d,.-, = max{di} and dmi,, min{di). Finally if we let M --. c, CM -,I - fo h4 (z) jz(z)dz where fZ(z)
is the beta pdf with parameters p16 and a/6. This result is identical to2. If idam. - dol < 1

4
,in - dol, map 1! to the .-, for which d, = d,,n,. lin,,.oo(1/nt)I(X¶;Y") if X' and Y" are blocks of length n joined by

In this case ML decoding 4=* mi .nimum distance decoding. i _./n1X;Y)fX adnanbokoflgtnjiedythe original Polya-contagion channel (with equally likely inputs). Thus

3. If Id.m - dol > idej - dol, map It to the Xq for which dj = dS.x. as M -- oo, the stationary ergodic finite-memory contagion channel
In this case ML decoding 4-= maximum distance decoding. converges in distribution to the stationary non-ergodic Polya channel,

but CM does not converge to Cp,,j. = 0.
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Demodulation of AM-FM Signals in Noise
Using Multiband Energy Operators

Alan C. Bovik, Laboratory for Vision Systemns. University of Texas, Austin, TX 78712-1084
Petros Maragos, Division of Applied Sciences, Harvard University, Camnbridge, MA 02138

Thomras F. Quatieri, MIT Ldncoln Laboratory, 244 Wood Street, Lxxington, MA 02173

L WINRODUCTION
We situd the extracton of AM-PM information in signals of the form AttimeI the maximum normalized energy response (dotted lines in Fig. 1)

st) = a~t) costoQ)], (1)*(,) =nmax. ( WlV.Q)J Get(01.) 12 )
with time-varying amrplitude a and instantaneous frequency Wi=* using th is used by the ESA. Once H(w) is selected, tesselase the frequency axis with
operator 'l(s) = (i2-si' developed by Teage [1] and Kaiser [2], shown to be translatesidilates of Go, Since the validity of (S)-() depend on functions of
highly effectve for detecting AM-FM modulations [31. For signals of the form oalw - in order to maintain consistent predicted performance across the Jitter
(1). 'W(s) - a2mi2 man ''(s ) . a2 Ok 4 with small approximation eror under chanels the amro bound is made constant by taking ad&./m - constant.
realistic conditions [3]. This motivates the energy separation algorithm (ESA):

"2 _ ,y 2 ( .,~ -2 Vs) V. EXAMPLE
a ()I~s, it=Yi)Y~).The multiband ESA wasapplied tothienoisy chirp (SNR = l5dB) with initial

Il. ENERGY OF FILTERED NOISY AM-FM SIGNAL frequency 2480Hz,ý a 3000Hsjsec sweep rate, and a 20Hz amplitude modulation
Define a noisy AM-FM signal f =s + n, with s given by (1) and n a zero- shown in Fig. 2(a). The ESA results with muftiband filtering ame shown in
mean WSS Gaussian random process with autocorrelation R(?) and power Figs. 2(b) and 2(c), indicating excellent estimates of both AM and FM
spectral density OW~a. Consider bandpass filters with scaled, translated compneuts; these could be unproved even furthe by post-filtering.
frqec respone

Gd(oi) = (11j) (H0(w-wc) - H0(o*w,,)J (2)
where HoW =ar)- 0'fl(aiwo) is low-pas and unit energy, and denotefa, =
s0 + ,,=s.rgo,+ n~ag An important approximation is often used here:

so -;a= aIG0(aiidl . cos[O Z Go(oq)]. (3) 1
The ester (zero for a monochromatic signal) is bounded as follows. Flirt define

Ap(a) = [j, 1 P 2pg(t)12 df]lt 2, 8(a)=[j, Iaj()12 dj] ifl. (a)0

Theorem I - Let es = Iso, - 301 and amzx = sup~laQ). Then -1

i,5a~A(v-(&+A(q-()3s~~a1  0 .(~. 1 gy.()
We can also bound estimates of the eaneg 1': 0 200 4 6

'l(so) = (aa_,)2IGo(wu)I 2 . VY(io) (aa, 1
2)2IGc,(aWd)2. (4) 1bn (seo)ia

Theorems 2 - Let ep~ = I'l'(so) - 'YV(sV)I. go= 1, Ig0(s)1 dr. Then

AP: 13ka,.)2.8(W) U[Oi&2 (O) + j0Ak(goy) + 2jtih2 Li) 2

Approximationts (3), (4) sggest minimum uncertainty filters minimize model

eorros:Ho(aO= f2/of2- exp(- (o~o)2); then (2) are Gabor functions. (b) 0

III. COMPUTING THE ESA IN NOISE
Define the instantaneous signal-to-noise ratio: S0(i) = a2(1) /ra, where 2

rcris the concentration of noise power in the passband of go(t): 0 5- 4

For So, sufficiently large it can be shown using (3), (4) doat 4M
EjSi2]I .O). 4(5)

(S. + 2)2 ai(5
So (Sc + 2) Wc

arw - Wi 4(Sgo4)/(So+2) 2  
(7)100

vwtra2j -4a4 [((5 0 +l1Sj~j IG0(aidl4. (9) _______

The ratios of (7), (8) to the squares of (5), (6) are negligible for reasonably high 0 a 200 dOW M
Sa in which case it may be assefed that t@ -j 2an^i a2IG lussi)12.

IV- MULTIDAND FILTERING AND ESA
Figure I diagrams a muttiband eaneg operator -A'I) is passed through multiple
passbunds gm - Gm, with center frequencies q. producing outputaf,,,Q). Fig. 2. (a) noisy AM chirp signal. (b). (c) Computed AM and Plwt
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Information Theory and Radar Waveform Design
Mark 1L Bell

School of Electrical Engineering, Purdue University
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Abstract waveform that maximizes the signal-to noise ratio is
that which places as much of the transmitted energy

The use of information theory to design waveforms as possible into the largest scattering mode of the
for the measurement of extended radar targets ex- target under the imposed duration and energy con-
hibiting resonance phenomena is investigated. The straints. This waveform can be found by solving a
target impulse response is introduced to model tar- Fredholm integral equation whose kernel is a function
get scattering behavior. Two radar waveform de- of the target impulse response and the power spectral
sign problems with constraints on waveform energy density of the additive noise.
and duration are then solved. In the first, a deter- Next we examine the problem of designing wave-
ministic target impulse response is used to design forms that maximize the mutual information between
waveform/receiver-filter pairs for the optimal detec- a random extended target ensemble and the associ-
tion of extended targets in additive noise. In the ated radar measurement in the presence of additive
second, a random target impulse response is used to Gaussian noise. Here, the random target ensemble
design waveforms that maximize the mutual informa- is modeled by a target impulse response that is as-
tion between a target ensemble and the received sig- sumed to be a non-stationary finite-energy Gaussian
nal in additive Gaussian noise. The two solutions are random process whose spectral-mean and spectral-
contrasted to show the difference between the char- variance are known. We solve for the family of wave-
acteristics of waveforms for extended target detection forms that maximize the mutual information between
and information extraction. The optimal target de- the target ensemble and the measurement under con-
tection solution places as much energy as possible in straints on waveform energy and duration. The re-
the largest target scattering mode under the imposed suiting family of optimal waveforms can be inter-
constraints on waveform duration and energy. The preted as spreading the energy in the transmitted
optimal information extraction solution distributes waveform under the among the various target scatter-
the energy among the target scattering modes in or- ing modes in such a way that the mutual information
der to maximize the mutual information between the is maximized. The solution has the spectral form of
target ensemble and the received radar waveform, the "water-pouring problem" in continuous waveform

design, with parameters given in terms of the target
Summary ensemble's spectral-variance and the power spectral

density of the additive noise.
The application of information theory to radar was We then note the physical interpretation of radar

originally considered by Woodward and Davies [1, 21, waveform design in terms of distributing energy
who used information theoretic ideas to formulate the among the various scattering modes of the target and
a posteriori radar receiver. They also made the obser- note the distinct difference between optimal detec-
vation that, although radar system design that max- tion waveforms and optimal information extraction
imizes the signal-to-noise ratio at the receiver out- waveforms when viewed in this context. This serves
put achieves the best target detection performance, it to illuminate the distinct differences between optimal
does not necessarily provide the greatest "information waveforms for these two tasks when making measure-
gain" about the target. By "information gain," they ments of extended radar targets.
were referring to the mutual information between a aferenc
random target parameter to be 4-4 termined and the
measured radar observation of the target. They did [1] P. M. Woodward and I. L. Davies, "A The-
not, however, pursue this idea further and investi- ory of Radar Information," Phil. Mag., vol. 41,
gate the design of radar waveforms and receiver fily- of Radar Orti P.5v 4
ters that maximize the mutual information between pp. 1101-17, Oct. 1951.
the observed target and the radar measurement of the 121 P. M. Woodward, Probability and Information
target. In this talk, we investigate the problem of op- Theory with Applications to Radar, London,
timal waveform and receiver filter design for both the England: Pergamon Press, 1953.
detection and information extraction in the case of
extended radar targets. Detailed treatments of these 131 M. R. Bell, "Information Theory and Radar
problems can be found in 13]. Waveform Design," to appear in IEEE Trans-

First we consider the design of the optimal actions on Information Theory.
waveform/receiver-filter pair for optimal detection of
an extended target with a given target impulse re-
sponse under constraints on waveform energy and
time duration in the presence of wide-sense station-
ary additive noise. The receiver filter is seen to be a
straightforward generalization of the matched filter.
However, the overall signal-to-noise ratio is depen-
dent on the transmitted waveform. The transmitted

428



An Upper Bound of the Capacity of Hoplield
Net with Perceptron Algorithm
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A~tractWhen f(i(eJ, # = 1, 2,...,m i = 1, 2,. - , n) are randomly generated
The torae cmityof 1opfeld et i dicussd haed pon er-patterns, or more precisely, (if ) are. independent random variables tak-

ceptron algorithm. We fIrst prove a theorem of linear separability fo aigIt tatd -1wthe setofbqabltyon 1/2 has soutoe Ma e say an rate pcob

perceptron using the technique of convex analysis. It is then applied ablt httesto qain 1 a ouin em aeci

to estimate the meporv ratio c for Hovleld net with n neurons. We
evaluate the probability P(n,cu) that any en randomly generatedi pat P~n, el) - I as ii -. 00.

tern, are the attractors of the net. When Sim....lPn,cn) = 1, the net The cpcijy C. of Hopfeld netunder Perceptron agorithm isdefined
is capable to memorize en patterns in the form of its ecquilibria. The as the supremum of the achievable rates.
maximum of such c's denoted b'y C, is defined as the capacity of the There have been Some Works reardring the utemwqy capascities of
net. We obtain an upper bound C. 5 1/pu, where pe is the Solution of dliferent types under different learning algiirithms fur liupfield networks.
the fbolloing equation Among them Gardner (1188) discussed mnother type of capacity for the

05PSLHopfield net with Perceptron aljorithm and obtained a Upper bound
-plc p-(Ipjio(I-~i~pI =i, 0jpSLC&S 2. In this work we first prtwe a theorem of linear separability for

Since pg >0.227. we obtain 0. <4.41. perceptron using the technique of convex analysis. It is them applied to

Summaq estimate the capacity C, for liopfield tnet. we obtain an upper bound

Ca 5 1/pu,
The dynamics of Ilopfield net with n neurons can be described jOY a weep steslto ftefl igeuto

operator T: It) whr p. istesltono h oloigeut

V*= T(xm) = sgn(WX -h), -prr-J-<rILp)p1n 5P L

where h is the vector of thresholds, W = w,) is the connection matrix snep>.2 ee ;<.1

and lae is operated componestwise. A state x is an equilibrium state This work is supportted by Chinese Tin Yuan Foundation.
when it Satisfia

x = Tx.

Given an arbitrary set of ma desired memories (11), (12),... , (I in), these
vectors should indeed be stable vectors. i.e..

for an1 = .n i = 1.2.... .n. Based upon Perceptron .r(go..
Mrst. W can be chooses to satsh the following set of inequalities

-4>
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Corrective Memory by a Symmetric Sparsely Encoded Network

Y. Baram Department of Computer Science, Technion, Israel Institute of Technology, Haifa 3.000,
Israel.

A neural network that retrieves stored binary vectors, when probed by possibly corrupted versions
of them, is presented. It employs sparse ternary internal coding and autocorrelation (Hebbian)
storage. It is symmetrically structured and, consequently, can be folded into a feedback
configuration. Bounds on the network parameters are derived from probabilistic considerations.
The asymptotic storage capacity is shown to be arbitrarily close to linear in the network size,
which is exponential in the input dimension. The performance of a finite-size symmetric network
is examined by simulation and found to be substantially higher than that of Kanerva's seminal
model, operating as a content addressable memory.
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Strong Universal Consistency of Neural Network Classifiers

Andris Farag6 and Gibor Lugosi
Department of Telecommunication and Telematics Department of Mathematics,

Technical University of Budapest Technical University of Budapest
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ABSTRACT In statistical pattern recognition a classifier is called Here k is the number of nodes (hidden neurons), and Ok =
universally consistent if its error probability converges to the (a,.. .,ak,b ,...., bk,co,Cl,. .. ,c) is the parameter vector of the
Bayes-risk as the size of the training data grows, for all possi- neural network (ai E d, co,b,,c, E I,i = 1,...,k). Here we
ble distributions of the random variable pair of the observation assume that the sigmoid o is the step function
vector and its class. We prove that if a one layered neural net-
work is trained to minimize the empirical risk on the training data, 1 if _>0
then it results in a universally consistent classifier if the number -1 if X < 0.
of nodes k is chosen such that k -* oo and k log(n)/n -- 0 as Our goal is to choose the number of nodes k and set the param-
the size of the training data n grows to infinity. We show that eters such that the error probability Pr{g(X, 0k) 6 Y) be small.
if certain smoothness conditions on the distribution are satisfied, Our strategy is to minimize the empirical error, in other words, we
then by choosing k = O(v//log(n), the exponent in the rate of choose a parameter vector 0k,n for which the corresponding clas-
convergence does not depend on the dimension. sification rule g*,,(x) = g(z, 0k.n) commits the minimum number

of errors on the training sequence:
I. INTRODUCTION = rint(g(.,60)), (5)

The pattern classification problem can be formulated as fol-
lows: Let the random variable pair (X, Y) take its values from wheren
Rd X 10, 1). X E Wd is called the observation (or feature) vector, L(g(., 9k)) = 1l(x,.L)i0Y,)
while Y E 10,1) is its class. Observing X one wants to guess n j=1
the value of Y by a classification rule g : *R - f0, 1) such that is the empirical error probability of the classification rule g(z,0*).
the error probability Pr{g(X) $ Y) be small. The best possible (QA denotes the indicator of an event A).
classification rule is given by Our main result is that such parameter selection has very goad

0 if P0(z> 1/2 properties. In particular, we can show the following:

1 otherwise Theorem 1 If the number of nodes k is chosen to satisfy

where Po(z) = Pr{Y - O0X = z) is the a posteriori probability k - 0o (6)

of class 0. The minimal error probability V = Pr{g*(X) 4 Y} and
is called the Bayes-risk. In practice, the a posteriori probabilities k log(n) 0 (7)
are rarely known, instead, a training sequence n

as nt --* oo, then

= ((XI, YI), (X 2 , Y2 ),..... (Xn, Yn)) (1) lim L(gZ.n) = L' with probability one,
n 00

is available, where (X, Y), (Xi, Yi)...., (X,, Yn) are independent, regardless of the distribution, that is, the sequence of rules {g9,n}
identically distributed (i.i.d.) random variable pairs. Now, one is strongly universally consistent.
can estimate Y by gn(X) = gn(X,ýn), a measurable function of
the observation and the training sequence. The error probability The proof is based on the celebrated result of Cybenko and Hornik,
of g,. is denoted by Stinchcombe and White, that functions realized by networks with

one hidden layer are dense in the class of continuous functions,
L(gn) = Pr{gn(X) 0 Y1W}. and the Vapnik-Chervonenkis inequality.

Applying Barron's results we can estimate the rate of conver-
A sequence of rules is strongly universally consistent if gence for smooth distributions:

lim L(gn) = V with probability one (2) Theorem 2 Assume that there is a compact set A C R7d such
n-00 that Pr{X E A) = I and the Fourier transform PA(w) of Po(z)

for any distribution of (X, Y). satisfies f, Iw (w)Idw < oc. Then

A classification rule realized by a feedforward neural network fýklg,
with one (hidden) layer can be expressed as EL(gZ,n) - V = 0 +

g(z,0k)0= 0 if f(z, Ok) > 0 (3) If, further the number of neurons is chosen to be k1otherwise, (3) =
ote s O( n/dlog(n)), then

k EL(gk,.) - V = 0 .

f(z,Ok) = 'c,(aiz + b.) + co. (4)
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We investigate the tradeoffs among network complexity, which is insignificant compared to other factors entering expo-
training set size. and statistical performance of feedforward nentially, while the lower bound becomes trivial.
neural networks. The number n, obtained via VC theory represents a suffi-

Nets, labeled as functions YI : Rd -. {0, I}, classify input cient condition on sample size to obtain reliable classification.
points & E Rd as either type 0 or type 1. The architecture To supplement this we have obtained a lower bound or a nec-

of all nets under consideration is .K, whose size is gauged by essary condition on the training set size needed to obtain reli-
its VC dimension v, the size of the largest set of points the able classification by examining in detail the error terms for a

architecture can classify in any desired way. Nets r7 E AK are perceptron under multivariate normal input. Suppose the ob-

chosen on the basis of a training set T = {(x 1,t,)}L. These n served data x has equal prior probability of being N(po, Id) or

samples are i.i.d. according to an unknown probability law P. N(p, Id), and that n/2 correctly classified samples are gath-
Performance of a network is measured by the error probability ered from each prior. When the means are known, the classifier

10 minimizing error probability is
E(71) = P1,`i{') # t). 170(z) = 1/2 - sgn((_ - (po + 1, )/2)T(po - il))/2,

and a good (perhaps not unique) net in the architecture is and E(t10) = 4t(-A/2) where A2 = (yo - p )T(p0 - pi) and 4

•= arg mi E1 is the distribution of N(O, 1). The empirically chosen classifier
"= r (.when the means are unknown is formed by substituting the

sample means under each hypothesis, •o and xi, into 170:
To select a net using the training set we employ the empirical
error frequency j*(x_) = 1/2 - sgn((ý_ - (xo + j 1 )/2 )T(.t0 -- l))/2.

1 " £(E* ) is hard to find (see (1], sec. 6.6), but it can be approxi-
vT(,1) = - 1 7i1(._r) - til mated using arguments in the spirit of Raudys [4]. The condi-

,= I tion necessary for reliable classification becomes

sustained by 7 on the training set T. A good choice for a E(tl*)- (qo) ;t t(-(A/2)(1 +4d/hA2)-1/2) -1(-A/2)< f,
classifier is then •= arg mi T(1) uniformly over all values of A. Analysis reveals that meeting

Ar (r the above condition requires

By definition '(i7*) >! (110), and in fact arguments in Vapnik > _

15] can be adapted to yield the VC upper bound 33e2

lower than the VC sufficient condition by a factor of order
- •6(2l)"-n2/s just log(l/e). For this special case, it also improves on the

necessary condition n > v/32e obtained by Baum and Haussler

This inequality shows that sample sizes of about [6]. This result confirms that the VC bound is relatively tight,
and demonstrates that practitioners are overly optimistic when

= 16v log(-) using small sample sizes.
e2 e

References
are sufficient to obtain a small probability of a discrepancy
of more than e between E(r7*) and 6(i10). If for purposes of [1] Anderson, T.. An Introduction to Mu/tivariute Statistical
illustration we take e = .1, v = 50. we find that n c = 328 000, Analysis, second ed., New York: Wiley, 1984.
which disagrees by orders of magnitude with the experience of [21 Baum, E. and D. Haussler, "What size net gives valid gen-

practitioners who train such low-complexity networks (about eralization?," in D. S. Touretzky. ed.. Advances in Neural In-
50 connections). formation Proces,,ing Systens 1. 81 90. 1989.

One way to close this gap between theoretical guidelines [3] Naiman, D. and Wynn, H., "Inclusion-exclusion-Bonfer-
and practical experience is to obtain a tighter upper bound. roni identities...", Annals of Statistic.s. 20, 43-76.
One source of the discrepancy is the union bound employed 14] Raudys, Sh.. "On the amount of a priori information in
in the VC development, a tighter version of which is given by construction of a classification algorithm," Engineering Cyber-
Naiman and Wynn [31: netics, no. 4, 1972. (Russian trans.)

1j P(Ai) - Ej P(Ai n Ai) _ P( U Ai) < [5] Vapnik, V., Estimation of Dependences Based on Empirical
t<i<_ I <i<)<N I<i<N Data. New York: Springer. 1982.

E P(A,) - E P(A, O A,.-). * Prepared with partial support of DARPA under grant
number AFOSR-90-0016A.

However, we have shown that these pairwise corrections re-
duce the upper bound by at most a multiplicative factor of n.
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We address the problem of computing the COMPARISON and a linear error-correcting code of length t and dimension n, and
ADDITION functions of two n-bit numbers using circuits of (non- suppose that the Hamming weight of each non-zero codeword is
monotone) MAJORITY gates. between (1 - e)t and (1 + f)1. Let PA = PA(xI,...,x,) be the
Given n Boolean variables xi. . .. , 7e {-I, 1}, a non-monotone polynomial defined by PA(XI,.. . z x,) = •= l,•16 =1 x,. Clearly
MAJORITY gate (in the variables x,) is a Boolean function whose PA(t,..., 1) = t, and it is not difficult to check that for every
value is the sign of En , c,.r,, where each ci is either 1 or -1. (zx,. ... , z) E {-1, 1)n which is not (1,..., 1), IPA(zI,. .. , zI) <
We construct an explicit sparse polynomial whose sign computes d, since PA(zI, • ., z,) is precisely the difference between the num-
the COMPARISON function of two integers. Similar polynomials ber of O's and the number of l's in the codeword defined by the
are constructed for computing all the bits of the summation of sum (in GF(2)) of all rows i of A such that x, = -1. Linear
the two integers. This supplies explicit constructions of depth-2 codes as above with length t polynomial in the dimension n and
polynomial-size circuits computing these functions, wich use only with f inverse polynomial in the dimension are the duals of BCH
non-monotone MAJORITY gates. These constructions are opti- codes [4], as well as other more recent constructions that have
mal in terms of the depth and can be used to obtain the besE known applications in derandomization of algorithms [2, 51.
explicit constructions of MAJORITY circuits for other functinns The following theorem gives the construction for COMPARISON
like the product of two n-bit numbers and the maximum of n which is based on a sparse delta polynomial with n variables de-
n-bit numbers (see [3] and [61). A crucial ingredient in our ap- noted by P(.).
proach is the construction of a discrete version of a sparse "delta
polynomial"-one that has a large absolute value for a single as- Theorem 1 Let mk(X, Y) = P(z,,y., X,-Y•-y,", k+lYk+l).
signment and extremely small absolute values for all other assign- Define C(X, Y) = rno(X, Y) + T=,(y, - x,)m,(X, Y).
ments. We construct sparse delta polynomials using generator Then C(X, Y) = sign(-C(X, Y)).
matrices of certain linear block codes.
In the rest of this summary we sketch the ideas related to the References
construction for the COMPARISON function. More details and
related results appear in [1]. [11 N. Alon and J. Bruck, Explicit Constructions of Depth-2 Ma-

Let X = (,,, . Xn-..., X0) and Y = (y.,, y,,.-., y') be two vec- jority Circuits for Comparison and Addition, IBM Research

tors in {1, -1}". Let a and b be the integers that correspond to report, RJ8300, August 1991. To appear in SIAM J. on Disc.

X and Y, respectively. Since our convention is that a logical 0 is Math..

represented by .,d a logical 1 is represented by -1 this means [2] N. Alon, 0. Goldreich, J. Hastad and R. Peralta, Simple
that a = •=I I.•z.-2 _ and b = = L'2'-. The COMPAR constructions of almost k-wise independent random variables,
ISON function, C(X, Y), is the Boolean function which is -1 iff Proc. 31" IEEE FOCS, St. Loris, Missouri, IEEE (1990),
a > b. 544-553.
Next we introduce the concept of a sparse delta polynomial. A
polynomial is called sparse if it is the sum of at most n°00) mono- [3] J. Bruck and R. Smolensky, Polynomial Th-, ,' -•ld Functions,
mials. For a vector f = f f ... ,-,}, where f, E {-1,1}, and AC' Functions and Spectral Norms, SIAM J. on Computing,
for a positive real c, we call a polynomial P(zl,.• . , x,) a d ,•ta Vol. 21, No. 1, pp. 33-42, February 1992.

polynomial for o and c if there are two positive constants d and e [41 F. J. MacWillias and N. J. A. Sloane, The Theory of Errorsatisfying • _> c such that: []F .McilasadN .A lae h hoyo ro
satisfing >(,. c sh tat: Correcting Codes, North-Holland, 1977.

(ii) For all ( x1 . z,) E {-1, 1}" which satisfies r..) 9 c, (5] J. Naor and M. Naor, Small-bias probability spaces: effi-

IP(XI., - - ), _J < C. cient con. 'ructions and applications, Proc. 2 211 Annual ACM
Our construction of delta polynomials can be obtained by using STOC, 1990, ACM Press, 213-223.
linear error-correcting codes over GF(2) with length which is poly-
nomial in the dimension and with the property that the Hamming [6] K. Y. Siu and J. Bruck, On the Power of Threshold Circuits
weight of any non-zero codeword is sufficiently close to half the with Small Weights, SIAM J. on Disc. Math., Vol. 4, No. 3
length. Let A = (a,,)_<,<n,.<_<t be the generator 0, 1-matrix of pp. 423-435, August 1991.
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Abstract Specifically, upper and lower bounds for the ca-
pacity Cb of such networks are established in

The capacity Cb of two layer ( -2! --) feed- two steps. First, the statistical capacity[3] of a
forward neural networks is shown to satisfy tile specifically constructed network is evaluated and

relanO Hfound to be 0(-W), where W is the total num-relation 0( ,-") < C < O(W). Hiere NV-2 L- 1I71,IW - ber of weights of the network. It is used asa
stands for tlhe networks with N input. units. 2L hro egt ftentok ti sdaoenet s oithnput unitis, tL lower bound for the capacity Cb. Then an upper
hidden units and obound is obtained through a simple counting ar-

total number of weights of the networks. The gument, and shown to be O(W). Therefore, we
weights take only binary values and the hidden have 0( _)w < Cb!< O(W).
units have integer thresholds. mW -

This result shows that reducing the analog

Summary weights to only binary values, the capacity of
two-layer networks is reduced by at most a log

The motivation for this work comes from hard- factor. This is consistent to what has been
ware implementation of neural networks. When found for a single neuron with binary weights[4].
weights of neural networks are implemented, Therefore, even with binary weights only, multi-
both their accuracy and magnitude have to be layer neural networks still have strong learning
limited. Then a natural questiou to ask is capability.
whether the learning capability of neural net-
works will thus be affected.

Learning capability of neural networks can be References

characterized by their information capacity[2], [1] E. Baum, " On the Capacity of Multilayer
which is defined as the total number of di- Perceptron," J. of Complcxity, 1988.
chotomies implementable by a class of networks [2] T.M. Cover, " Geometrical and Statistical
of the same architecture. The capacity C of two Properties of Systems of Linear Inequalities
layer N - L - 1 feedforward networks with ana- with Applications in Pattern Recognition,"
log weights has been shown to satisfy the relation IEEE Trans. Elec. Comp., EC-14, pp 326-
O(W) < C < O(WInL)[l]. Here I1, L and N
are the total number of weights, the number of
hidden units and the input dimension, respec- [31 R.J . McEliece, E.C . Posner, E.R . Ro-

tively. It remains an open question, however, demich, S.S . Venkatesh, "The Capacity of

what the capacity of multilayer networks would the Hopfield Associative Memory," IEEE

be if their weights can only take discretv values. Trans. Inform. Theory, Vol. IT-33, No. 4,

In this work we answer this question by evaluat- pp 461-482, July 1987.
ing the capacity of two layer N - 2L - I feedfor- [4] S. Venkatesh, "Directed Drift: A New Lin-
ward networks (N inputs, 2L hidden units and I ear Threshold Algorithm for Learning Bi-
output) with binary weights and integer thresh- nary Weights On-Line." Journal of Com-
olds for the hidden units. puter and Systems Sciences, in press.
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Abstract with J determine the precision of the arithmetic operations in-

The construction of fixed-rate vector quantizers based on entropy- volved. Therefore, we replace the condition t(y) :_ nr in the def-

coded scalar quantizers has been suggested in [1]. In [2], a particular inition of C by the condition L- Ei log 2 ANy,) + 1 + nV(K)J <

case of such quantizers based on prefix-coded scalar quantizers was nr. We call the resulting systems, arithmetic-encoded, block-

suggested and a very simple binary encoding scheme was presented as constrained quantizers (ae-BCQ).
well as several reduced-complexity search methods. In this paper, we The major disadvantage of Pasco's implementation is that it
use arithmetic coding as the binary encoding scheme and show that uses multiple-precision arithmetic. We solve this problem by
good performance and low complexity are attained, showing that Pasco's codes can be implemented with fixed-point

Summary arithmetic using (J + K + 1)-bit registers, in a way very similar

The basic idea is as follows : Let = (ql, q2,... ,q.) be a to the implementation of Jones [4].
vector of levels such that q, < q2 < ... < q,,. Let f. be an Table 1 shows the performance of ae-BCQ for various values of
encoding scheme that encodes n-dimensional vectors from Q" = n and r obtained by simulation for IID Gaussian and Laplacian
{q1, q2,. .. , q,,,}" into binary strings, and for any such vector y, let sources and mean-squared-error distortion. The systems are opti-
t(y) = t(f.(y)) be the length of the corresponding binary string. mized using variations of the methods described in [1, 2] and the
We define the quantizer codebook as C = {y E Q" : t(y) _ initial parameters are based on the optimal, entropy-constrained,
nr}, where r is the desired rate. We assume that the produced scalar quantizer (ECSQ) of the given rate. The quantization is
binary string can be completed to length LnrJ with properly- performed using the LM-based method of [2]. From the table,
chosen, dummy bits without affecting the decodability. In such a we also see that the SNR of ae-BCQ with n = 128 is compara-
case, using f., C can be encoded with LnrJ bits, i.e. with a rate ble to the SNR of the pe-BCQ scheme of [2] with n = 192 (a
of LnrJ/n .z r bits per dimension. little better at low rates, a little worse at high rates). The latter

With proper choices of fe, one can easily see that the quantizers has much higher quantization complexity, and somewhat less en-

in [1] and [2] fit the above description, coding complexity. Also, with very little loss in SNR, LM-based

An important issue here is quantizing a given n-dimensional, method can be used with pe-BCQ with the same complexity ad-

source vector 1, i.e. finding a vector in C nearest to z. The com- vantages [2]. The original SVQ of [1] with n = 32 has almost the

plexity of this task is dependent on the structure of C which is same search complexity as pe-BCQ with n = 192 and significantly

determined by f.. In the case of [1, 2], the condition (y_) <_ nr larger encoding complexity.

is replaced by a condition of the form Ei 1(yi) :_ L, where l(.)
is a length function defined on Q that assumes positive integer References
values. In this case, it was shown in [1] that quantization can be
performed using a dynamic programming search. In [2], several [1] R. Laroia and N. Farvardin, "A structured fixed-rate vector
reduced-complexity, suboptimal search methods have been pro- quantizer derived from variable-length encoded scalar quan-
posed. In particular, the Lagrange-multiplier-based (LM-based) tizers," IEEE TRan. Inform. Theory, to appear.
method of [2] can be applied to more general cases like the case [2] A. S. Balamesh and D. L. Neuhoff, "Block-constrained meth-
of arithmetic coding, discussed below. ods of fixed-rate, entropy-coded, scalar quantization," submit-

Now, we consider the case when f. is an arithmetic encoding ted to IEEE Trans. Inform. Theory.
rule. The use of arithmetic codes is motivated by their simplicity [3] R. C. Pasco, "Source coding algorithms for fast data compres-
and the fact that arithmetic coding has a rate very close to the sion," Ph.D. dissertation, Dept. Elec. Eng., Stanford Univ.,
entropy of the encoded source. CA, 1976.

The major problem with arithmetic coding is that it is hard to [4] C. B. Jones, "An efficient coding system for long source se-
precisely calculate the number of bits produced unless the actual quences," IEEE Trans. Inform. Theory, vol. IT-27, pp. 280-
encoding is done. Therefore, we modify the definition of C above 291, May 1981.
so that only a simple upper bound to t(y) is constrained. For
this purpose, we use Pasco's arithmetic codes [3], which permit a Table 1: SNR (dB) for ae-BCQ and other methods
tighter upper bound to I(E). Rate ae-BCQ p e-BCQ SVQ ECSQ

In detail, let ý(q,) be a J-bit, positive fraction correspond- r iin = 321 48 1 64 1 96 128 n = 192 n = 32
ing to q9. For a given positive integer K, an arithmetic code lid Gaussian Source
based on Pasco's method [3] will encode y, in such a way that 1.0 4.18 4.11 4.31 4.36 4.50 4.67 4.64
t(y) < r-L log2,(yj)+nV(K)] _L- ,E lnog2 P(y)+l+nV(K)J 2.0 9.69 9.93 10.06 10.1910 110.16 - 10.43 10.55
bits where V(K) = - l102 (l - 2'-K). The quantity nV(K) can 3.0 15.28 15.57 157 1. 6.0 1656

be made as small as desired by increasing K; however, this will 11D Laplacian Source
increase the complexity of the arithmetic code, since K together 1.0 4.18 1 5.33 5.33 J5.52 [5.60 5.61 5.76

2.0 10.25 110.52 10.71110.9111.00 10.80 10.73 11.31
*This work wa supported in part by a sebolarship from King Abdul-Asis - -, t 20

University, Jeddah, Saudi Arabia and by NSF grant NCR.9105647. 3. 5 115.85 1.01631 aft, 1605 1&An7.0
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ABSTRACT where (x) :- x - [zJ In the jiuctional part of A~ a

Reramtltons andt 94dtical properties of the process a P:- 4P. Here we must assume I n j<b.

U defned y - ~ norm of the nonlinearitiea involved we show that the
?.+I + power spectrum of the binary quantluer error has tistinct

where peaks at Integer multiples of+Vij (frequencý t aled to
A(u) :- u- b -sgn(u) +m 1-1/2,1/2J) for small values of o% This followa by inves-

are given, when C. is a Camslsin white noise. The pro- tiglating the autocoerelation
Um' represents the binary quantizer error in a model for

(single loop) Sigma, Delta modulation, see [3, 61. Teais-~ ,n): E R.Uc - E (Q NE + w --e. +
tence mnd uniqueness of an Invariant probability measure,
ergodicity properties as well as the existence of moments
w.r.t. the Invariant probability are proved uaing Markooy +n. - m E [3o] + E B 2
process theory. Considering!e as a random perturbation Here we calculate using 4j, wich is a function of e;
of the orbits of In view of Cray's formula and since e4 t~ gi + rn, and

*.I- Aa)obtain after conditioning on eZ, as the Caussian noise is
the structure of the power spectrum of the quantiser er- independent of the sequence e; that
ror is studied approximately for small values of the white E[ e , .[f(;v2a
noise variance using the deterministic signa an undler a BQ46.o~.. efe~&)g
unlominaatdstiuon where Es, denotes the expectation with respect to the

bummary uniform and Invariant distribution of the random variable
The binary quantizer error proces U.-= UJ ase defived go. Inserting Cray's formula and using eZ -mr d go this
above is a real valued, discrete time Mer*o, procem. An gives
Invariant probability measure denoted by v, is a prob-
ability measure satisfying ir(A) w fit (dv)P1 (v; A), for EQ4+)e Lz~~~nb)z
any (Borel) set A, where P1 (v; A) designates the one step EQ( )0 fs+im+b)z

transition probability of the binary quantizer error.Then
we have: where we have Introduced the auxiliary function f(z) :

Let A(u)wu - Q(u) + n, &. bea Gussamn whie noise b - -f({2b(!k) + m - b)/v~ra). Since (z +1) - (z) for
wuith tOw variance as and let U..+1 - (U,.)+f.. Thien the every: xe R , f(.) has the period 2b. Using the (complex)
binary quarntiter er-o, U,, - A(U,,) has a unique insrlmnt Fourier coefficients corresponding to f(.) we derive that
probability if and only ift I n I< b. if h e a nonratlonal number then rs~n) :- E 1i,, so]

The process is thus poeitmlyh vcrvwwnL We also show can he expressed as
that ifb - Im 1> fthen the prooce ehas momnents of-
all orders w.r.t. t n~variant probability meaure. The rin ow 1 b2h(hu
exponential momenta E,4e"""1J do not exist for large x., F, ThI"P
which shows that the Invariant probability * dillers sub- k. ,kio

stantially from the normal distribution for n > 0. This apss with the studies of the determinis-
A study of the detail In [1) and the representattons In tic spectrum of the binary quantiser error, sw151, se well

[2, 31 yields the stationary characteristic function O,(w) as with the simulated results.
of the binary quantiser error process 5 ase

PTw:-Esin(b.- w) References
(11 T.L. Fine: The Response of a Particular Nonlinear

with System with Feedback to Each of Two Random Pro-
manss. INEE Nwua. Inf. 77., 14, 1068, pp. 255 - 264.

e~w):- (2E~ ffslz1.ts+Lb~/.u~a)[2) R.M. Gray: Oversaznpled Sigma-Delta Modulation

where j:- vr-ZT and y'zee) : 4.e3/2e'. Evidently IEEE 711.,i. Cbmm., 35, 1987, pp, 481 - 489.

this shows that U,. can In the sta~totnry state be split into [3) R.M. Cray. Source Coding The"r. Kiuwer Academic
a sum of two independent random variables, Publisher*, Boston, 1900.

U., ., m~..14) R-M. Cray. Quantization Noise Spectra. ISEE
- n+m+a Fn'sDcrpsto) 7Iini. Ia!. T7L, 36, 1900, pp. 1220.- 1244.

where g. (*gr~anulr nails) is unfiformly distributed in [5) J.C. Xlefer Analysis of DC Response for a Cas of
f-b, +5 and a, ("slope overload noise) has the distri- One-Bit Feedback Encoders. ISEE ftnas. Conmm,

bution d'terminned by 9(w) and dtg mean equality In 38, 1900, pp.337 - 341.
distribution. Another Important formula, here is the fol- [61 JP.W. Vtib" and R.M. Cray. Sigma -Delta M~odua-
lowing explicit eohtlonaofe4+j - A(e:) due to 12, Thii.l1, latlon with l.l.d. Gaussan Inputs. IEEE 7V&ue. 1w/.
eq. (3.6), p. 4851: TOL, 36, 1900, pp.784 - 7M3

a:- 25Cr + n#) + mn- b, (Gray's formlak),
436



Design of Entropy Constrained Multiple-Decription Scalar Quantizers*

J. Domaszewicz and V. Vaishampayan
Department of Electrical Engineering

Texas A&M University
College Station, TX 77843

The multiple descriptions problem is a generalization of the iterative design algorithm for locally optimal ECMDSQ's. The
problem of source coding subject to a fidelity criterion [1]. In its assignment of index pairs to the quantizer bins-a crucial step
simplest form, two channels, each with their own rate constraints, in the design-is also addressed. Convergence of the algorithm
connect the source to the user. Either channel may be broken is proved. As a reference system, we consider a multiple descrip-
at any given time. The objective is to design a source code that tion scalar quantizer (MDSQ) system in which fixed length binary
minimizes the average distortion when both channels work, sub- codes are used to transmit an index pair [5]. We also make com-
ject to constraints on the average distortion when only one chan- parisons against the optimum performance theoretically attain-
nel works. The rate distortion region for a memoryless Gaussian able (OPTA) [2], [3]. Our results indicate that significant perfor-
source and squared-error distortion measure, for the multiple de- mance improvements are obtained over the MDSQ. For example,
scription problem has been derived in [2], [3]. Surprisingly, despite with R, = R 2 = 4.0 bits/sample/channel and M, = M2 = 24,
strong potential applications to speech and video transmission ECMDSQ achieves a given side distortion at a central distortion
over packet switched networks and to digital mobile telephony, which is 4.5 dB better than that of the MDSQ. Comparisons
the design of such codes has received little attention. Jayant [41 against the OPTA indicate that for a given side distortion fur-
considers the design of a system based on subsampling, for pack- ther gains of 3 dB for the central distortion can be achieved over
etized speech. ECMDSQ.

We wish to encode the output of a stationary, ergodic and
memoryless source which is represented by the random process
fXn, n E 7Z) with zero mean, variance a2 and known prob- References
ability density function (pdf). The entropy-coded multiple de-
scription scalar quantizer (ECMDSQ) is illustrated in Fig. 1. Let f1] C. E. Shannon, "Coding theorems for a discrete source with a
1 = {1, 2,..., N}, 1, = { 1, 2,..., M,}, 12 = {1,2,..., M 2} and fidelity criterion," IRE Nat. Cony. Rec., vol. part 4, pp. 142-
assume that N <_ M1 M2 . The source sample x is mapped by q(.) 163, March 1959.
to the index n that takes values in 1. The operation of q(.) can be [2] A. A. El Gamal and T. M. Cover, "Achievable rates for
described in terms of a vector of thresholds t = (ti, t 2 ,... , tN-1), multiple descriptions," IEEE Trans. Inform. Tb., vol. IT-28,
tl t 2 < ... < tN-I by the equation q(x) = n if x E [t._l't.), pp. 851-857, November 1982.
n - 1,2,... ,N, where [to, tN) is the support of the source pdf.
The index n is mapped to indices i E I1 and j E 12 by a&(.) and [3] L. Ozarow, "On a source coding problem with two channels
a2('), respectively. The mapping (a,, a 2) is called the index as- and three receivers," The Bell Syst. Tech. J., vol. 59, pp. 1909-
signment. We associate with each channel a variable length code 1921, December 1980.
C, = fci, i = 1,2,...., M., m = 1,2, where each codword ci [
is a binary string of length Ii, i = 1, 2,..., M,, m = 1, 2. Indices [4] N. S. Jayant, "Subsac plingof a DPCM speech channel to pro-
i and j are mapped by variable length encoders -ti and "2 to code- vide two "self-contained" half-rate channels," BellSyst. Tech.
words cli and c2i, and transmitted over Channel I and Channel 2, J., vol. 60, pp. 501-509, April 1981.
respectively. If only Channel 1 (Channel 2) works, the index i (j) [5] V. A. Vaishampayan, "Design of multiple description scalar
is recovered by the variable length decoder and mapped by side quantizers," IEEE Trans. Inform. Theory, accepted for publi-
decoder gi (g2) to real number y, (Y2) which takes values in the cation.
reconstruction codebook Y, = f yi, i E I ) (Y2 = {Y2j, j E 12}).
If both channels work, central decoder go maps the index pair
(i,j) to a real number yo which takes values in the reconstruction at 4 71 -1
codebook Yo = (yo.,, - E 1}.

Let dm(Z,ym) be the per-sample distortion between the source r q
sample and the output of the mth decoder, rn = 0, 1, 2. We refer to
do as the central distortion and to d, and d2 as the side distortions.
The average central and side distortions are denoted by do and d1
and d2. Figure 1: Block diagram of the ECMDSQ system.

For given values M1, M2 , D1, D2 , R, and R2 a multiple descrip-
tion scalar quantizer is said to be optimal subject to entropy con-
straints, if it minimizes do subject to d, !5 D1 , d2 !5 D2, H, _< R,
and H2 < R2 -.

We derive necessary conditions for optimality, and present an

"*This work was supported in paut by NSF Grant Number NCR-9104500.
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ABSTRACT For any fixed initial and final trellis states, say a and t, denote the
number of paths that begin in state a, end in state t, and have weight

A pyramid source code is a code that assigns equal-length binary k as N(s, t, L, w, k), k = 0,1,-... Computation of the weight enu-
strings to all reproduction codewords of equal (weighted) 41 norm, meration of the code is the basis for the enumeration encoding and
and finds application in the encoding of Laplacian-distributed data. decoding.
A pyramid source encoding is partitioned into two concatenated map-
pings; the first from source word to reproduction codeword within a - -4 -3 -2 -1 0 1 2 3 4 5
codebook; the second from the reproduction codeword to a binary D3 Do Di D2 D3 Do D 12 D, 3 Do D1
string. The first mapping allows distortion and is accomplished using
trellis coded quantization. The second mapping is noiseless and is de- Fig. 1. Integer lattice codebook and partition into subsets.
noted as enumeration. Efficient pyramid enumeration encoding and
decoding algorithms are presented, for use with fixed-rate or variable- A pyramid trellis encoding first maps an input sequence into the
rate pyramid trellis codes. sequence of repr6duction letters corresponding to the minimum distor-

tion path through the trellis. Fixed- and variable-length enumeration
SUMMARY codes are considered for mapping the sequence of reproduction letters

A pyramid source code is a code that assigns equal-length binary to binary strings. In the first, consecutive L-tuples of the trellis re-
strings to all reproduction codewords of equal (weighted) t4 norm. production sequence are mapped to consecutive fixed-length strings
Such codes are well-suited for encoding Laplacian data [11-[31 and find of (integral) RL bits. The trellis search is constrained to allow only
application in transform and sub-band image coding [4]-[7]. sequences of encoded symbols of pre-selected weights. That is, if the

length-L trellis path begins in state s and ends in state t, then all codeA pyramnid source encoding can be partitioned into two concate- sqecsyms aeoeo osbewihs a , ,.
nated mappings; the first from source word to reproduction codeword such that
within a codebook, and the second from the reproduction codeword M
to a binary string. The first mapping typically allows distortion and N(s, t, L, w, ki) 5 2'L.
is referred to herein as quantization or compression. The second map- i=1
ping is lossless, and is referred to as enumeration. Enumerative source If ki = i- 1, i = 1,-.. , M, then the trellis codewords have been shaped
coding was introduced by Cover [81 for the lexicographic ordering of in sequence space so that each L-tuple lies within a pyramid. By
n-tuples. The ordering developed in this paper is different due to partitioning the integers 0-.. . , 2RL - 1 into M consecutive sets, each
the pyramid formulation and the trellis structure. The pyramid codes of size N(a, t, L, w, kA), it is seen that the essence of the enumeration
use trellis coded quantization [9]. The contribution of the paper is is simply to map each of the N(s, t, L, w, k,) sequences of weight ki to
to describe efficient pyramid enumeration encoding and decoding al- the integers 0,..., N(s, t, L, w, ki) - 1.
gorithms. Fixed-to-fixed length and fixed-to-variable length pyramid In the variable-length encoding, the trellis is searched in the usual
trellis codes are easily constructed using the enumeration algorithms. way to find the minimum distortion path. Then, if the length-L path

Trellis coded quantization (TCQ) [9] is an efficient, low-complexity has weight k, the codeword y is assigned a binary string, say 6(y), of
source coding technique that, when used with entropy coding [101,[11], length Polo2 N(s, t, L, w, k)j bits. A prefix-free code is used to encode
can provide near-optimum rate-distortion performance for a broad k as c(k), and the binary string representing y is (c(jjy11jj),b(y)).
class of memoryless sources. The uniform pyramid trellis codes de-
scribed here use a (possibly scaled or translated) subset of the integer REFERENCES
lattice Z as the codebook, partitioned into 2`"+ subsets, with integer [1] T H. Fischer, "A Pyramid Vector Quantiser," IEEE Trans. Inform.
m > 1. The subsets are assigned to the 2' branches leaving each Th Vol T -!ich . 5P8-583, July 198o.
state in an N-state trellis defined by a rate-m/(m + 1) convolutional [2) T. R. Fischer, "Oeometric source coding and vector quantisation," IEEE
encoder. The entropy-constrained TCQ results in [10] indicate that Tmrn. Inform. Th., vol. IT-35, pp. 137-145, Jan. 1989.
most of the available granular gain is achieved with rin = 1 [3] D.-G. Jeong and J. D. Gibson, Uniform and piecewise unifrom lattice

vector quantisation for memoryless Gaussian and Laplacian sources,"
Consider the integer lattice Z, partitioned into 4 subsets, Dj, IEEE 7brsa. Inform. Th., to appear.

j = 0,1,2,3, as shown in Figure 1. The lattice point a is in 1, if [41 H.-C. Tseng and T. R. Fischer, "ranform and Hybrid lrandorm/DPCMCoding of Images Using Pyramid Vector Quantization," IEEE Trois.and only if z mod 4 = j. A time-invariant labeling assigns one subset Commas. Jan 1987.
to every branch leaving each trellis state in an N-state trellis. For [5] D.-G. Jeong and J. D. Gibson, "Image codingwith uniform and piecewue-uniform vector quantisers," submitted to IEEE Tra. lmale Poea
each time step, i, a positive integer weight, say wi, is assigned to the ifor, May vem.
trellis transition. If y = [YI, 11, "', YLT is the sequence of codewords (6] M. Barlaud, P. Sole, M. Antonini, P. Mathieu, and T. Gaidon, "Pyrami-
corresponding to an L-step trellis path, then the weighted 11 norm of dal lattice vector quantisation for multiscale image coding," submitted
the path symbols (the length-L path weight) is given by to IEEE Trass. Imle Precesing, May 1992.

M. E. Blain and T. H. Fischer, "A comparison of vector quantisation
techniques in transform and subband coding of imagery," Elsevier Sital

ecew.g" Image Comm�s�c�tiows, vol. 3, pp. 91-105, 1991.
L [18 T. M. Cover, "Enumerative Source Encoding," IEEE Trans. Inform,

Th., Vol IT-19, pp. 73-77, Jan. 1973.w9] M. W. Marcellin and T. R. Fischer, -ITellis coded quantization of nerm-
orless and Gauss-Markov sources," IEEE Dews. Commas., Vol. COM-

38, pp. 82-93, Jan. 1990.
[10] 1. T. Fischer and M. Wang, "Entropy-constrained trellis-coded quain-

tustiion,* IEEE Tess. Ia/orm. TA., vol. IT-38, pp. 41"-426, Mar.1992.
t This work was supported, in part, by the National Science Founda- (11] M. W. Marcellin, "On entropy-oonstrained thllie-coded qumstisatiea,"
tion under Grants NCR-8821764 and MIP-9247526. INEE Tflas. Commas., to appear.
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I. For any source, which is V bits away from Gaussianity,Abstract

In this work the improvement in rate-distortion performance p :5 7 + 1 log 2reGk (2)
of an entropy coded dithered uniform (or lattice) quantiser, in- 2
corporating appropriate pre/poet filters, is shown and analyzed.
The proposed scheme attains good coding performance, under where) V f fflog - is the divergene between X and X*,
MSE criterion, for any source distribution, although its design f& is the source density and fX" is a Gaussian density with
depends only on the second order statistics of the source, the same mean and covariance as f&. Note that for a Gaussian

source P = 0, and if we further assume that Gk -- for
lattice quantizer with large dimension, then the scheme achieves
the rate-distortion function of the (Gaussian) source.

2. For any source with a density,
• 1

L lii P p=!log2reGk (3)
D-0 2

Figure 1: I"h, r,,/l', ratefd Coded D•thered Qu,a'.ol,,s Scherer as in dithered quantization without pre/post filtering.

We e.mvine the enhancement in performance achieved by incor- 3. For any source with a covariance matrix R,,
porating pre/post linear filters into the universal coding scheme, com-
posed of a dithered quantizer and a losaless (entropy) coder. We as- P < C f.=i (4)
sume that the second order statistics of the source are known, and
a Mean Square Error (MSE) criterion is used. Considering Figure 1, where C is the power constraint capacity (at input level Si,,
the source is denoted X. E 21, its reconstructed value is 1, the (cod- equals to the allowed distortion D) of the equivalent additive
ed) dithered quantizer is described by the dashed area in the figure, channel Y = A&-Z, and A is the appropriate pre-filter (for A.
and the matrices A and B represent the pre and post filters, respec- and D). Note that this bound implies low redundancy at high
tively. Qk(') is a uniform scalar or k-dimensional lattice quantizer, distortion, and in particular it follows that p -- 0 as D goes to
characterized by Gk - the normalized second moment of its lattice, the source average power (since in that case A -- 0). In general
The pseudo-random dither , is distributed uniformly over the basic C < f log 4reGt which is the upper bound for the redundancy
Voronoi cell of the lattice (e.g., over (-A/2,A/2) when a scalar u- of dithered quantization without filters (see [1]).
niform quantizer with a step size A is used) and is available to both The combination of (2), (3) and (4) leads to useful bounds on the
encoder and decoder. The quantizer output is encoded, conditioned performance of pre/post filtered dithered quantization in the general
on the dither values, by a possibly universal, lossless (entropy) coder, case. In figure 2 (A), the information rate curve versus MSE, of a Gans-
The coding rate of the scheme is thus assumed to be the quantizer sian source encoded by a pre/post filtered scalar dithered quantizer, is
entropy, conditioned on the dither, i.e., RQ = 1H(Qt(AX. + Z)LZ) illustrated. The graph is compared to Shannon's rate-distortion func-
(see W1]). tion (R(D)) and to the performance of a dithered quantizer without

As shown in [1], the coded dithered quantizer is equivalent to an filtering (B). Note that in this case the pre/post filtering saves - 0.75
additive noise channel in rate-distortion sense. The quantization noise bits at high distortion.
is independent of the source and it is distributed as -Z, which implies
that the overall MSE distortion of the scheme is D = *EIIB(AX - K
Z) - XL1 2. The coding rate of tL- scheme is the mutual-information
between the input and the output of the equivalent additive noise I
channel, which in our case can be written as Rq = iI(A.X;A.• - Z). '3

Intuitively speaking, coding performance are enhanced by incorpo-
rating pre/post filtering, since one may allow at first higher distortion
in coding - and thus save rate - relying on noise power reduction at the FA
reconstruction by the post filter. Specifically, in designing the quanti-
zation scheme we try to simulate the structure of the optimal "*frward J --. -u -• -s -
channel', achieving the rate-distortion function of a Gaussian source 1"r t " "
(see e.g. [2J). Now, unlike the "forward channel" realization, which
combines filtering and additive Gaussian noise, the additive quanti- riguT,*: .rmaift t16. ComMu"es, MSE Gas Gaug" Stevc:qwitit adwt
zation noise In the scheme is usually not Gaussian. Nevertheless, we
suggest to tse the optimal filters of the Gaussian case, and here we ex. uttnila. "a I(D).
amine the resulting performance for an arbitrary source and the actual References
quantization noise.

The redundancy of the scheme over the rate-distortion function of [1) R. Zamir and M. Feder. On universal quantization by randomised
the source is defined as uniform lattice quantiser. IEEE lun.. Information 7%wry pages

p =R (D)-R(D) (1) 428-436, March I92.
(2] T. Bers. Ratle D Tuhon 7 w:SAMethemeeicg Dd.AtDat

We derive the following bounds for this redundancy: [2) T. ueq n. Prentike-tail, Englewood CAih, N J, 1 f71.
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Abstract Careful selection of #(x) can minimize the following expresmioa and max-
Thi aril prsnt procedure fo optimizing th scla qunisr imise the signal to quantization noise ratio. The compensia functioa must

based on the pownr spectrum density of the quantization noise. The be chosen in order to displace the peak of the quantiamaio noise spectrum far
input signal is assumed stationary in the wide sense, but no restriction outside the signal bandwidth.
is -sd concerning ita probability density function. d ~ p

Summary P. =s~n 8 ., fV(S)((-)dw (4)

The usual optimization techniques for the scaler quantime are centered where P., represents the noise power that falls inside the signal bsndwidth.
on properties of the probability density function (pdf) of the input signal [1) hi quaniycnb aeqit mlcmae oth oa os ~2
[2]. In fact, there seems to be a tendency of the proposed schemes to obtain qroeuantity calvng hEmaequaite sm4l nompaed toelnaiaino the toalnisunction
an output pdf that more closely resembles the uniform type (31. usually, AprcdefesoinEqaon4nvlsthlneiatoofheucio
the information on the noise power is sufficient to approach a given problem. a)
Sometimes, as in the case of matched filters design, the shape of the noise
spectrum plays a more important role. References

The spectrum of the quantization noise was shown in a recent paper to
be quite independent of the spectrum of the applied signl and remarkably [1] Stuart P. Lloyd. *Least Squares quantization in PCWr. IBBS TVeSe#C.
related to the probability density function of the signal derivative (4]. A small tions on Ialonnetion Theory, 29(2):129-13T, March 1982.
quantization step, as well as a uniform quantisation scheme were considtered
in that proposed model. A generalization of that model is proposed in this [2] Joel Mam oQuantising for Minimum Distortion'. IEEE Trenaections on
article, to account for the nonunifrm case. Infowtio 71cory, 6(l):7-12, March 1940.

Quantisation noise can he thought as the result of the application of the [3] N. S. Jayant and Peter Noll. Digital Coding of Wavefovrns. Prentice-Hall,
signal a(t) to a circuit with characteristic f(z). The function f(s) is periodic, Inc., Englewood Cliff, New Jersey, 1984.
with period d, as shown below [4] Marcelo S. Alencar. 'Power Spectrum Density of Quantisation Noise for

f(s) = s - mLd Uniform Quantiscers. In Procedings of the ZASTED Istevaatioaal Snin.
<a < ~~possum on Computers, Egectroic, Commiunication and Coabvo4 pages

(idn- a) < (m + 1 )d, a = 0, *1, 2," (1) 274-275, Calgary, Canada, April 1991.

The autocorrelation function of the quantisation noise can he evaluated, [5) Marcelo S. Alencar. 'A Modal for Evaluating the Quantization Noise
as described in [5], and its power spectrum density can be obtained by using Power Spectral Density'. In Aneds do Simpdrio Bvesileire de Telecosts.
the Wiener-lkhintehine theorem [6], sicsgics, pages 10.4.1-10.4.3, Slo Paulo, Brazil, Setembro 1991.

SN(W)1 j (, 61 Marcelo S. Alencar. 'Measurement of the Probability Density Function
V()= 2ý px,(j2ý) (2) of Communication Signals'. In Proceedings o1fa teE IBX nstrunsents-

S.1 tion end Maearnremenf Tee~nalogy Conferrace - IMfTC'59, pages 513-541,

where pxI(.) is the probability density function of the derivative of the input Washington, D. C., April 1989.

signal. [7] Marcelo S. Alencar and Denedito 0. Aguiar Neto. 'Estimation of the Prob-
Equation 2 demonstrates that the power spectral density of the quanti- ability Density Function by Spectral Analysis: A Comparative Study'.

satiou noise is related to the probability density function of the derivative In Proceedings of Ike Tftnir~ne Colkfoguear ke Treteueau do SigneR of
of the input signal. The convergence of the noise spectrum to Equation 2, Ate Images.- GRETS!,, pages 377-380, Juan-Les-Pina, France, September
as the stepsise decreases, is a result of a previous work [7]. The noise spec- 1991.
tramn reliects an Ininfite sum of contributions, each one with the shape of
the probability density function, but with decreasing intensity and increasing
bandwidth.

For the nonuniform case, one can assume that the signal is transformed
by a nonlinear function #(.) prior to the quantization process. This gives

SNt)=d ' 1 ud (3)

here, g'(s) is the derivative of the compression function.

*Tbks ,gah was popested by a p e* tSea Canadian Institute hr Tesseemoi.
sanalan Ressearc md nine HC5 Pesarent athe Gsvumem of Ornada

trae ember is owns*p wte the Dopestin d 0srets! eemd camputa -el
Univoottyo Wat tasds Ornaes.
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Abstract Bound [4] is significant, and increases as R increases; and iv) for the

The design of trellis coded quantization (TCQ) to minimize the Gaussian source, the improvement of TCQ over SQ increases as v

mean-squared error (MSE) has been generalized to minimize E{Iz - increases. The first three results are the same as those for v = 2 in

yl£' for positive integer v. Simulation results for memoryless uniform [1].
and Gaussian sources with v = 1 and 4 show that TCQ outperforms The performance of TCQ for non-uniformly distributed sources

scalar quantization (SQ) in the same way as for v = 2. is improved by combining entropy encoding. Such a scheme is called

Entropy-constrained trellis coded quantization (ECTCQ) has also entropy-constrained trellis coded quantization (ECTCQ) [5]. We

been studied for difference distortion measure p(x, y) = Ix - yI". Two study ECTCQ with distortion measure p(z, y) = Ix - y I. Two kinds

ECTCQ realizations have been considered. One is to design the TCQ of ECTCQ systems are considered. The first realization is the natu-

codebook subject to the output entropy of the source encoder. The ral ECTCQ (as for v = 2 described in [5] and [6]). That is, the TCQ

other is to design the TCQ codebook independent of the output en- and entropy encoder are jointly designed to minimize the functional

tropy while the followed entropy code is designed based on the prob- [8]

abilities of the (locally) optimized TCQ codewords for the source J = E{p(z, y)} + AE{i(y), (3)

sequence. The latter is suboptimal but requires less computations.
Simulations show that the performance of the TCQ system is gener- where A is a Lagrange multiplier and l(y) is the number of bits used

ally improved by combining with an entropy encoder. ECTCQ out- by the entropy code to represent y. The second realization is based

performs entropy-constrained scalar quantization (ECSQ) in all cases on designing the TCQ alone, in the same way as in the fixed-rate

considered. The performance difference between the two ECTCQ re- TCQ system, and then designing the entropy encoder based on the

alizations at low output entropy increases as v gets large, but vanishes probabilities of the (locally) optimized TCQ codewords. The latter
as the output entropy increases, approach requires less computations than the former, in the sense

TCQ system with short coding delays and squared-error criterion of either design or implementation. The updating equation for the

has been studied. Simulations show that, with the same amount of TCQ codebook of either ECTCQ realization is given by (1) or (2)

coding delay, the performance of such designed TCQ is comparable depending on the value of v. The entropy encoder is realized as

to that of vector quantizers (VQ) for the memoryless uniform and the state-entropy encoder [6], which assigns a bingie entropy coder

Gaussian sources, while slightly inferior to VQ for the memoryless for each union codebook of subsets that appear as labels for the

Laplacian source. However, TCQ requires much less computations branches leaving each trellis state.

than VQ, expecially for large vector dimensions or encoding rates. Simulation results with t = 1, 2, and 4 for zero mean and unit

Summary variance memoryless Gaussian and Laplacian sources show that the
performance improvement of the jointly designed system over the

Trellis coded quantization (TCQ) [1] is a low-complexity form corresponding independently designed system at low output entropy

of trellis coding [2] in which the trellis branches are labeled with depends on the distortion criterion. The larger v, the larger the

reproduction subsets instead of individual reproduction levels. The improvement. However, such improvement vanishes as the output

idea of designing TCQ to minimize the mean-squared error (MSE) entropy of the encoder increases. Overall, entropy-constrained tech-

[1] is generalized to minimize the average distortion between the niques outperform the corresponding fixed-rate schemes.

input and the output of the quantizer, given a distortion measure The TCQ with short coding delays is studied. Simulation results

p(z,y) = Ix - yl" for positive integer v. Let the encoding rate be with t = 2 show that such designed TCQ has comparable perfor-
R > 0. The TCQ codebook contains N = 2R+R" codewords par- wihv=2sotatucdegndT asom rblprf-

- i 0 The T c bo cts n t the codes pr mance as vector quantization (VQ) (designed with the clustering al-
titioned into K - 2 R'+R" subsets (according to the rules in [1]), goth [7)frhem oyesunomadGusinorcbt

each subset of L - 2 R-R' codewords. 0 < R' 5 R and 0 < R'. gorithm s 7i) for the memoryless uniform and Gaussian sources, ut
The~~~~ ~ ~ N-ttenoigtelsideiebyare- -'('+ I o is slightly inferior to VQ for the memoryless Laplacian source.

The N,-state encoding trellis is defined by a rate- R'/(R' + R") con-

volutional encoder with 2 R' branches entering/leaving each state. References

Let X = {fz : j = 1,2.IiXll} and Y = {y,}= represent the Marcelin and T.R. l -'~eljs coded quantizatio of mew-

source (training) sequence and the TCQ codebook, respectively. Let ry.ess and GausMadrkov sources," IEEE Tuant. Coman., vol-

Bi = {1x : Zj E X is encoded as yi). Then the TCQ codebook Y COM-38, pp82-93, Jan. 1990.

should be designed to satisfy the following conditions

2. L.C. Stewart, R-M. Gray, and Y. Linde, "The design of trellis wave-

Ssgn(xj - yi)(Zj - yi)'-' = 0, for odd positive integer v, (1) form coders," IEEE Trans. Commnun., vol. COM-30, pp. 702-710,

zE B April 1982.

or 3. G. Ungerboeck, "Channel coding with multilevel/phase signals," IEEE

E (zi - Yi)"-1 = 0, for even positive integer v, (2) prng. Inform. 71., vol. IT-28, pp. 55-67, Jan. 1982.

zVeB, 4. T. Berger, Rate Distortion Theory, Prentice-Hafl, 1971.

for i = 1,2,...,N. 5. T.R. Fischer and M. Wang, -Entropy-constrained trellis coded quan-

The performance of the TCQ system with distortion measure tization," IEEE Trans. Inform. Th., vol. IT-38, pp. 416-425, March

p(z,y) = Iz - ypv, v = I and 4 is evaluated by simulation, for zero 1992.

mean and unit variance memoryless uniform and Gaussian sources. 8. M.W. Marcellin, "On entropy.constrained trellis coded quantization,"

The encoding trellises used are 4-, 8- and 256-state rate-l/2 Unger- IEEE Trans. Commnn., to appear.
boeck amplitude modulation trellises [3]. The simulation results show

that i) TCQ always outperforms the scalar quantizer (SQ); ii) as 7. Y. Linde, A. Huso, and R.M. Gray, "An algorithm for vector quzatiser

the number of trellis states increases, the TCQ performance also design," IEEE Trans. IN.fornm T., vol. IT-31, pp.106-10g, Jan. 1965.

increases; iii) for the Gaussian source, the gap between the TCQ 8. P.A. Chou, T. Lookbugh, and R.M. Gray, "Entropy-COstr&isd vec.

performance and the performance promised by the Shannon Lower tor quantization," IEEE Tmrns. ASSA, vol. 37, pp. 3142, Jan. IM.
441



ASYMPTOTIC QUANTIZATION FOR NOISY CHANNELS

Steven W. McLaughlin David L. Neuhoff

Ekctrical Engineering Dept. EECS Department
Rochester Institute of Technology University of Michigan

Rochester, NY 14623 Ann Arbor, MI 48109

A119=

We consider the problem of asymptotic quantization in conjunction X(u) = c p1n1u) (5)
with a noisy binary symmetric channel. For a noiseless channel, where c is a constant independent of N such that f X(u) du = 1.
Bennett's integral is a formula for the distortion of a scalar quantizer The principal result of this paper is the following expression for the
given in terms of the source density, the number of quantization points channel distortion Dc in terms of the point density X(u), the number of
(assumed to be large), and the distribution ofquantization points, or point points N, and the channel crossover probability q, when the codeword
density. In this paper we extend Bennett's integral to the case where the points N andty w
quantizer is used in conjunction with a noisy binary symmetric channel, aignment is random.
assuming that channel codewords are assigned randomly. We also Dc = (1-4l-q)L) ( u2 X(u) du + ,2 -2 D,) (6)
derive an expression for the optimum noisy channel point density.

where 02~ is the variance of the source and Ds is the source distortion.

m For a given source density p(u), size N, and channel crossover
One of Shannon's fundamental results is that source and channel probability q, the total source plus channel distortion is

coding can be treated separately without loss of performance. This I_ r
usually leads to the separate design ofsource and channel coders (e.g. a D = - p(u)du+(l-(l-q)L)(f u2 X(u)du+a2 -2Ds)
source code can be designed assuming a noiseless channel). Shannon's N2  X(u)2

result, however, is one that requires arbitrarily complex source and One may minimize this expression with respect to the point density X(u)
channel coders, which is not reasonable in practice. The practical subject to the constraint that X(u) integrates to 1. This is an isoperimetric
channel code cannot guarantee zero error probability and, consequently, problem of the calculus of variations which yields the noisy channel
the performance of a source code designed for a noiseless channel will point density
degrade when used in conjunction with a noisy channel. Thus one must V(u) = ((c-Q (7)
analyze and design the source code with the noisy channel in mind. ((I-Q) U2 +

The purpose of this paper is first to develop an expression for the where c = (4Q-)lN, Q = (l-q)L and p is a constant such that X(u)
distortion of a quantizer used in conjunction with a noisy binary wheres = 1.
symmetric channel, and then to find the optimum distribution of integrates to 1.
quantization points, or point density, when the number of quantization To see that the optimum point density in (7) performs better than the
points is large and the channel codewords are assigned randomly. in point density in (5), consider a uniform source on [-.5,.5]. From (7), the
previous work [I ] we derived lower bounds to distortion in terms of the optimum noisy channel point density is
point density using a "greedy" codeword assignment. This paper gives 1 c(8)
more accurate estimates of the distortion caused by the noisy channel. ((l-Q) u2 + owc
Recently, Zeger and Manzella [2) have derived a similar, but not quite where c, Q and p were defined previously. Figure 1 compares the signal-
identical expression for distortion, without optimizing the distribution of to-quantization noise performance as a function of q for an N=32quantization points.

quantis described by a set of N (= 2 L) "Channel-optimized" quantizer with the optimal point density in (8) and
A noisy channel quantwer i aecon S %set of Nh (= 2L a "Non-channel optimized" uniform scalar quantizer (the optimum

quatiztio pontsC = (y, i ,a ahen pa on S =IS.) of the real l noiseless channel scalar quantizer) as suggested in [2]. The channel
and a codeword assignment A = cI, where cj e [0,1 )L is the L = optimized point density performs about 3dB better for sufficiently large
lo 2 N bit codeword assigned to quantization point yi. Given a source channel error probabilities.
sample u, the encoder determines in which cell Si the sample u lies and
produces an L-bit binary sequence c, which is transmitted across a binary Refreds
symmetric channel with crossover probability q<.5. The channel output
is an L-bit binary sequence q. The decoder receives c1 and outputs the [1] S.W. McLaughlin and D.L. Neuhoff, "Asymptotic Bounds in Source-

quantization point yj. The mean squared error that res can be written Channel Coding," Proceedings of the 1991 International Symposium on
Information Theory, Budapest, Hungary, July 1991.

D = Ds+ DC (1) [2] K. Zeger and V. Manzella, "Asymptotically Optimal Noisy Channel

where Quantization via Random Coding," presented at Joint DIMACS/IEEE
N Workshop on Coding and Quantization, Rutgers, Oct. 1992.

Ds (u-y')2 p(u) du (2) __

N N Gs W-~~uSW.

Dc = Y P(UeS) 7 qL(,Acj) (y'-yji (3)
I-I j-1

where q.(c1Ici) is the probability that cj is received given that ci is i$
transmitted, p(u) is the probability density of the source, and yi = 50
E[UiUeS i] is the probabilistic centroid of Si. The first term in (1)
(source distortion Ds) is the distortion thit results assuming a noiseless 3 .s
channel and codebook consisting of the y 's. The second term (c1&.Annel
distortion DC) is the distortion due to channel errors.

Bennett's integral is an asymptotic formula (i.e. for large N) for Ds
that depends on the distribution of quantization points, or point density
).(u), the source density p(u) and the number of points N. For a scalar
quantizer with N large, 2

Ds w I J IL p(u) du (4) ' 1 ' • , , . .. . . .
N 2  X(u) 2  "1S00603604606906607cn969.1

This expresion can be used to find the optimum (in minimum mean Figure 1: Signal-to-noise ratio for scalar quantizers with uniform and
squamred ew) point densty for a noiseless channel, which is found to be channel-opimized point density, in wna of crossover proability q.
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IIABSTRACT 3 Results

In this paper, the combinatorial optimization algorithm known as simulated Telswvfr oigsseso ifrn osritlntswr rie
annealing is used for the optimization of the trellis structure or the next-state Telswvfr oigsseso ifrn osritlntswr rie
map of the decoder finite-state machine in trellis waveform coding. The gen- using a first order Gauss-Markov source, and were coded using SA and
eralized Lloyd algorithm which finds the optimum codebook is incorporated GLA. For constraint lengths of K = 2--8, signal-to-quantization-noise ratios
into simulated annealing. Comparison of simulation results with previous (SONR) were computed. Then the system was tested using another first

wor inthelieraureshws hatths cmbiedmethod yields coding sys- order Gauss-Markov source. In Table t, the computed SONR [dB] values
workns wthe litderatresowsmtatnhiccmbne are given (SA+GLA) together with the results of Stewart et al. (GLA) (1],

temswithgoo perormace.and of Ayanoglu and Gray (PS) [6]. Results obtained using SA are better

than those of (1]. This is expected since in [1] the trellis Structure was fixed.
1 Introduction not optimized. The results obtained via the predictive system [6] are better

than the combined system, especially for low constraint lengths. Again, this
A high-performance waveform coding technique is known as trellis, looka- is expected since the predictive system has a higher system complexity.
head, or delayed decision source or waveform coding [1j. Trellis waveform However, our results are sufficiently close to those of [6J for intermediate
coding uses a finite-state machine as the decoder. This machine is de- constraint lengths, so that the nonpredictive system once again becomes
fined by an output map, corresponding to the codebook, and a next-state attractive. Alternatively, SA can be incorporated into the predictive system
map, corresponding to the trellis structure, both of which being functions of design with possibly better performance.
the channel symbol and the current state. The extension of the next-state
map or the state transition diagram in time is known as a trellis structure.
a weighted directed graph consisting of identical stages. Each stage corre- References

sponds to a time instant. The encoder is matched to the decoder, it examines
the trellis and finds the channel sequence that leads to minimum distortion, [1] L. C. Stewart, R. M. Gray. V. Linde. "The Design of Trellis Waveform
which is the sum of the distortion values between the input and reproduction Coders," IEEE Trans. Comm., Vol. COM-30, pp. 702-711, April 1982.

symbois. This can be accomplished by a trellis search algorithm, such as [2] G. H. Freeman. J. W. Mark. I. F'. Blake. "Trellis Source Codes Designed
the Viterbi Algorithm (VA). The encoder in a trellis waveform coding system by Conjugate Gradient Optimization." IEEE Trans. Comm., Vol. COM-
is simply a trellis searchl algorithm matched to the decoder finite-state ma- 36, pp. 1-12, January 1988.
chine. Therefore, the design problem reduces to the design of the decoder
finite-state machine. This problem has been addressed by several authors in [3] J. Foster. R. M. Gray. M. 0. Dunham. "Finite-State Vector Quantization
the literature, see. e.g.. [1]., [2]. The design of the finite-state machine for a for Waveform Coding," IEEE Trans. Into. Theo., Vol. IT-31, pp. 348--359,
quantizer, using a trellis search, or in the context of finite-state vector quart- May 1985.
tization, without any search, has also been addressed in the literature, see,
e.g.. [3]. In this work, we optimize both the codewords and the finite-state [4J S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, "Optimization by Simulated
machine structure of a scalar trellis waveform coder that uses the Viterbi Annealing." Science, Vol. 220. pp. 671--680, May 1983.

algorithm, using a near-optimum approach. For the optimization of the de- D5 . S. Johnson, C. R. Aragon. L. A. McGeoch, C. Shevon, 'Optimization
coder finite-state machine, we make the observation that since the decoder by Simulated Annealing: an Experimental Evaluation. Parts I and lI1,
is equivalent to the trellis structure, for a given set of codewords, and a given Oprations Research, Vol. 37, pp. 865-892. December 1989, and Vol.
input sequence, it is clear that finding the optimum decoder is equivalent to 3,p.37-0,Jn191
finding the trellis structure that will generate a channel sequence with min- ~ 7-0.Jn 91
imum distortion at the decoder output. This is a combinatorial optimization [6] E. Ayanoglu, R. M. Gray, "The Design of Predictive Trellis Waveform
problem and can be solved by known optimization methods. In this paper, Coders Using the Generalized Lloyd Algorithm." IEEE Trans. Comm.,

we propose the simulated annealing algorithm [4] for this purpose. Vol. COM-34, pp. 1073--1081, November 1986.

2 The Design Method

In this work, the state space is chosen to be all the possible state transitionS ~~-~---
in a single stage of the trellis. We are interested in trellis waveform coders SA+GL- .. LA -Pi~tst

with rate 1 bit/sample. This imposes a constraint on the encoder structure. K tain tes -ri et tan ts
from each node, there are two outgoing branches which correspond to values 2 6.92 6.86 6.92 6.86 11.08 10.73
of 0 and 1 for the binary channel code. We also constrain the number of 3 9.81 9.45 8.77 8.59 11.53 11.18
input branches going into each node: there are two incoming branches. 4 11.24 11.13 10.13 9.87 11.84 11.47
This constraint Is imposed in order to obtain a more symmetric structure so 5 11.90 11.77 11.05 10.67 12.1 8 11 .83
that the search space is minimized and the possibility of pathological trellis 6 12.00 11.90 11.56 11.09 12.38 11.96
structures is certainly eliminated. The move set has been chos;en to be just 7 12.29 11.98 11.B, 11.70 12.52 12.52
the flipplng of two branches, so that the output of a move is again In the state 8 12.32 11.97 12.13 11.91 12.64 12.58

space. The cost function is simply the ninimum metric calculated by VA. The
initial value of the control parameter is calculated as suggested by Johnson Ta.ble 1: SQN'R [dB] values, SA+GLA: Simulated Annealing anod Genteral-
at al. [5]. Geometric improvement is used as the cooling schedule. The ized Uloyd Algorithm, GLA: Generalized Uloyd Algorithm only, PS: Predictive

length of Metropolis loops are determined experimentally. As the source, a System. K: Constraint Length.

first order Gauss-Markov source with autocorrelation coefficient 0.9 is used.
This source is chosen since it Is a common model of real data and It is widely
used in comparing data compression systems. For the design Of codewords.
we used the generalized Lloyd algorithm (GLA) [1].

In this work, GLA and SA are run together. For a given codebook, the
trellis structure is optimized using SA, and for this structure, the codebook Is
modified using GLA. The process is stopped when the system reaches an
equilibrium, with respect to the SA criteria.
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